1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
try:
matrix1 = SquareMatrix(2)
matrix1.setName("matrix1")
matrix1[0, 0] = 1.0
matrix1[1, 0] = 2.0
matrix1[0, 1] = 5.0
matrix1[1, 1] = 12.0
print("matrix1 = ", matrix1)
pt = NumericalPoint()
pt.add(5.0)
pt.add(0.0)
print("pt = ", pt)
result = matrix1.solveLinearSystem(pt)
print("result = ", result)
determinant = matrix1.computeDeterminant()
print("determinant = %.6g" % determinant)
ev = matrix1.computeEigenValues()
print("ev = ", ev)
ev, evect = matrix1.computeEV()
print("ev=", ev)
print("evect=", evect)
print("evect=")
print(evect.__str__())
# Check the high dimension determinant computation
matrix2 = SquareMatrix(3)
matrix2[0, 0] = 1.0
matrix2[0, 1] = 2.0
matrix2[0, 2] = 3.0
matrix2[1, 0] = -1.5
matrix2[1, 1] = 2.5
matrix2[1, 2] = -3.5
matrix2[2, 0] = 1.5
matrix2[2, 1] = -3.5
matrix2[2, 2] = 2.5
print("matrix2=")
print(matrix2.__str__())
# Need a specific Python wrapping, e.g returning both value and sign
# sign = 0.0
# value = matrix2.computeLogAbsoluteDeterminant(sign)
# print "log(|det|)=", value, ", sign=", sign
determinant = matrix2.computeDeterminant()
print("determinant = %.6g" % determinant)
except:
import sys
print("t_SquareMatrixLapack_std.py", sys.exc_info()[0], sys.exc_info()[1])
|