File: t_StandardEvent_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (108 lines) | stat: -rwxr-xr-x 3,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # We create a numerical math function */
    myFunction = NumericalMathFunction(
        ["E", "F", "L", "I"], ["d"], ["-F*L^3/(3*E*I)"])

    dim = myFunction.getInputDimension()

    # We create a normal distribution point of dimension dim
    myDistribution = Normal(dim)

    # We create a 'usual' RandomVector from the Distribution
    vect = RandomVector(myDistribution)

    # We create a composite random vector
    output = RandomVector(myFunction, vect)

    # We create an StandardEvent from this RandomVector
    myStandardEvent = StandardEvent(output, Less(), 1.0)
    print("myStandardEvent=", myStandardEvent)

    # We compute one realization of the event
    # E = (Y=f(X), operator, threshold)
    # E as a RandomVector : Y
    print("myStandardEvent (as a RandomVector) realization =",
          repr(RandomVector.getRealization(myStandardEvent)))

    # E as a Bernoulli
    print("myStandardEvent realization=", repr(
        myStandardEvent.getRealization()))

    # We compute a sample of the event
    print("myStandardEvent sample=", repr(myStandardEvent.getSample(10)))

    # Build a standard event based on an event

    R = CorrelationMatrix(dim)
    for i in range(dim - 1):
        R[i + 1, i] = 0.5

    mean = NumericalPoint(dim, 0.0)
    sigma = NumericalPoint(dim, 1.0)
    myDistribution2 = Normal(mean, sigma, R)

    # We create a 'usual' RandomVector from the Distribution
    vect2 = RandomVector(myDistribution2)

    # We create a composite random vector
    output2 = RandomVector(myFunction, vect2)

    # We create an Event from this RandomVector */
    myEvent = Event(output2, Less(), 1.0)

    # Create a StandardEvent based on this Event */
    stdEvent = StandardEvent(myEvent)

    # Check if the StandardEvent is really a StandardEvent */
    # Get a sample from the second antecedent of the standard event */
    size = 2000
    # Check if the failure probabilities are the same */
    print("Failure probability (Event)=%.6f" %
          myEvent.getSample(size).computeMean()[0])
    print("Failure probability (StandardEvent)=%.6f" %
          stdEvent.getSample(size).computeMean()[0])

    collection = UserDefinedPairCollection(
        3, UserDefinedPair(NumericalPoint(dim), 0.0))
    point = NumericalPoint(dim)
    point[0] = 1.0
    point[1] = 0.5
    point[2] = 1.0
    point[3] = 0.5
    collection[0] = UserDefinedPair(point, 0.3)
    point[0] = 2.0
    point[1] = 1.0
    point[2] = 2.0
    point[3] = 1.0
    collection[1] = UserDefinedPair(point, 0.325)
    point[0] = 3.0
    point[1] = 1.5
    point[2] = 3.0
    point[3] = 1.5
    collection[2] = UserDefinedPair(point, 0.375)
    myDistribution3 = UserDefined(collection)

    # We create a 'usual' RandomVector from the Distribution */
    vect3 = RandomVector(myDistribution3)

    # We create a composite random vector */
    output3 = RandomVector(myFunction, vect3)

    # We try to create a StandardEvent from this RandomVector */
    try:
        myStandardEvent3 = StandardEvent(output3, Less(), 1.0)
    except:
        print("Error trying to build myStandardEvent3")

except:
    import sys
    print("t_StandardEvent_std.py", sys.exc_info()[0], sys.exc_info()[1])