File: t_StationaryCovarianceModelFactory_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (52 lines) | stat: -rwxr-xr-x 1,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # Dimension of the input model
    # Size of the TimeGrid
    # dimension parameter
    dimension = 1

    # Amplitude values
    amplitude = NumericalPoint(dimension, 1.00)

    # Scale values
    scale = NumericalPoint(dimension, 1.0)

    size = 128
    timeGrid = RegularGrid(0., 0.1, size)

    # Cauchy model
    model = ExponentialCauchy(amplitude, scale)
    myProcess = SpectralNormalProcess(model, timeGrid)

    # Create a sample of size N = 1000
    sample = myProcess.getSample(1000)

    # StationaryCovarianceModelFactory using default parameter - Factory
    # initiate
    myFactory = StationaryCovarianceModelFactory()

    # Build a UserDefinedCovarianceModel using the Wellch method
    myCovarianceModel = myFactory.buildAsUserDefinedStationaryCovarianceModel(
        sample)
    tg = myCovarianceModel.getTimeGrid()

    # Get the time grid of the model
    for i in range(tg.getN()):
        t = tg.getValue(i)
        estimatedValue = myCovarianceModel(t)[0, 0]
        modelValue = model.computeCovariance(t)[0, 0]
        print("Covariance C( %.6g" % t, ") : ", " evaluation =  %.6g" %
              estimatedValue, " model =  %.6g" % modelValue)

except:
    import sys
    print("t_StationaryCovarianceModelFactory_std.py",
          sys.exc_info()[0], sys.exc_info()[1])