1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
distribution = Student(6.5, -0.5, 2.0)
print("Distribution ", repr(distribution))
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
size = 100
for i in range(2):
msg = ''
if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
msg = "accepted"
else:
msg = "rejected"
print(
"Kolmogorov test for the generator, sample size=", size, " is", msg)
size *= 10
# Define a point
point = NumericalPoint(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# by the finite difference technique
print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(
point + NumericalPoint(1, eps)) - distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# by the finite difference technique
PDFgrFD = NumericalPoint(3)
PDFgrFD[0] = (Student(distribution.getNu() + eps, distribution.getMu(), distribution.getSigma()[0]).computePDF(point) -
Student(distribution.getNu() - eps, distribution.getMu(), distribution.getSigma()[0]).computePDF(point)) / (2.0 * eps)
PDFgrFD[1] = (Student(distribution.getNu(), distribution.getMu() + eps, distribution.getSigma()[0]).computePDF(point) -
Student(distribution.getNu(), distribution.getMu() - eps, distribution.getSigma()[0]).computePDF(point)) / (2.0 * eps)
PDFgrFD[2] = (Student(distribution.getNu(), distribution.getMu(), distribution.getSigma()[0] + eps).computePDF(point) -
Student(distribution.getNu(), distribution.getMu(), distribution.getSigma()[0] - eps).computePDF(point)) / (2.0 * eps)
print("pdf gradient (FD)=", repr(PDFgrFD))
# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", repr(CDFgr))
CDFgrFD = NumericalPoint(3)
CDFgrFD[0] = (Student(distribution.getNu() + eps, distribution.getMu(), distribution.getSigma()[0]).computeCDF(point) -
Student(distribution.getNu() - eps, distribution.getMu(), distribution.getSigma()[0]).computeCDF(point)) / (2.0 * eps)
CDFgrFD[1] = (Student(distribution.getNu(), distribution.getMu() + eps, distribution.getSigma()[0]).computeCDF(point) -
Student(distribution.getNu(), distribution.getMu() - eps, distribution.getSigma()[0]).computeCDF(point)) / (2.0 * eps)
CDFgrFD[2] = (Student(distribution.getNu(), distribution.getMu(), distribution.getSigma()[0] + eps).computeCDF(point) -
Student(distribution.getNu(), distribution.getMu(), distribution.getSigma()[0] - eps).computeCDF(point)) / (2.0 * eps)
print("cdf gradient (FD)=", repr(CDFgrFD))
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
# Specific to this distribution
beta = point.normSquare()
densityGenerator = distribution.computeDensityGenerator(beta)
print("density generator=%.6f" % densityGenerator)
print("pdf via density generator=%.6f" %
EllipticalDistribution.computePDF(distribution, point))
densityGeneratorDerivative = distribution.computeDensityGeneratorDerivative(
beta)
print("density generator derivative =%.6f" %
densityGeneratorDerivative)
print("density generator derivative (FD)=%.6f" % ((distribution.computeDensityGenerator(
beta + eps) - distribution.computeDensityGenerator(beta - eps)) / (2.0 * eps)))
densityGeneratorSecondDerivative = distribution.computeDensityGeneratorSecondDerivative(
beta)
print("density generator second derivative =%.6f" %
densityGeneratorSecondDerivative)
print("density generator second derivative (FD)=%.6f" % ((distribution.computeDensityGeneratorDerivative(
beta + eps) - distribution.computeDensityGeneratorDerivative(beta - eps)) / (2.0 * eps)))
except:
import sys
print("t_Student_std.py", sys.exc_info()[0], sys.exc_info()[1])
|