1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
try:
matrix1 = SymmetricMatrix(2)
matrix1.setName("matrix1")
matrix1[0, 0] = 1.0
matrix1[1, 0] = 5.0
matrix1[1, 1] = 12.0
print("matrix1=", matrix1)
print("matrix1=")
print(matrix1.__str__())
pt = NumericalPoint(0)
pt.add(5.0)
pt.add(0.0)
print("pt=", pt)
result = matrix1.solveLinearSystem(pt)
print("result=", result)
# print "verif. ", matrix1 * result - pt
determinant = matrix1.computeDeterminant()
print("determinant= %.1f" % determinant)
b = Matrix(2, 3)
b[0, 0] = 5.0
b[1, 0] = 0.0
b[0, 1] = 10.0
b[1, 1] = 1.0
b[0, 2] = 15.0
b[1, 2] = 2.0
result2 = Matrix()
result2 = matrix1.solveLinearSystem(b)
print("result2=", result2)
print("result2=")
print(result2.__str__())
ev = matrix1.computeEigenValues()
print("ev=", ev)
ev, evect = matrix1.computeEV()
print("ev=", ev)
print("evect=", repr(evect))
print("evect=")
print(evect.__str__())
# Check the high dimension determinant computation
matrix3 = SymmetricMatrix(3)
matrix3[0, 0] = 1.0
matrix3[0, 1] = 2.0
matrix3[0, 2] = 3.0
matrix3[1, 1] = 2.5
matrix3[1, 2] = -3.5
matrix3[2, 2] = 2.5
print("matrix3=")
print(matrix3.__str__())
# sign = 0.0
# value = matrix3.computeLogAbsoluteDeterminant(sign)
# print "log(|det|)=", value, ", sign=", sign
value = matrix3.computeDeterminant()
print("det=", value)
except:
import sys
print("t_SymmetricMatrixLapack_std.py",
sys.exc_info()[0], sys.exc_info()[1])
|