File: t_TemporalNormalProcess_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (95 lines) | stat: -rw-r--r-- 3,836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
myModel =  class=ExponentialCauchy amplitude=[1] scale=[1]
mySecondOrderModel =  class=SecondOrderModel implementation=class=ExponentialCauchy amplitude=[1] scale=[1]
myProcess =  TemporalNormalProcess(trend=[x]->[0.0], covariance=AbsoluteExponential(input dimension=1, theta=[1], sigma=[1]))
is stationary?  True
mean over  100  realizations =       [            y0         ]
 0 : [  0         -0.0836695 ]
 1 : [  0.1       -0.0854839 ]
 2 : [  0.2       -0.130464  ]
 3 : [  0.3       -0.1401    ]
 4 : [  0.4       -0.145291  ]
 5 : [  0.5       -0.0687641 ]
 6 : [  0.6       -0.0651873 ]
 7 : [  0.7       -0.0923692 ]
 8 : [  0.8       -0.0571668 ]
 9 : [  0.9       -0.0140586 ]
10 : [  1          0.0141645 ]
mean over  100  realizations =       [            y0         ]
 0 : [  0         -0.102779  ]
 1 : [  0.1       -0.0417118 ]
 2 : [  0.2       -0.0484737 ]
 3 : [  0.3       -0.176127  ]
 4 : [  0.4       -0.155222  ]
 5 : [  0.5       -0.179764  ]
 6 : [  0.6       -0.106257  ]
 7 : [  0.7       -0.125425  ]
 8 : [  0.8       -0.0684988 ]
 9 : [  0.9       -0.0666161 ]
10 : [  1         -0.0584345 ]
myCovModel =  ExponentialModel(input dimension=1, amplitude=[1], scale=[1], no spatial correlation)
myProcess1 =  TemporalNormalProcess(trend=[x]->[0.0], covariance=ExponentialModel(input dimension=1, amplitude=[1], scale=[1], no spatial correlation))
is stationary?  True
mean over  100  realizations =       [            y0         ]
 0 : [  0         -0.0630407 ]
 1 : [  0.1        0.0164204 ]
 2 : [  0.2        0.0215278 ]
 3 : [  0.3        0.0329501 ]
 4 : [  0.4        0.0392299 ]
 5 : [  0.5        0.0116844 ]
 6 : [  0.6       -0.0622486 ]
 7 : [  0.7       -0.119746  ]
 8 : [  0.8       -0.160072  ]
 9 : [  0.9       -0.162936  ]
10 : [  1         -0.131856  ]
mean over  100  realizations =       [            y0         ]
 0 : [ 0          0.0577881  ]
 1 : [ 0.1        0.00234506 ]
 2 : [ 0.2        0.0754289  ]
 3 : [ 0.3        0.14116    ]
 4 : [ 0.4        0.15382    ]
 5 : [ 0.5        0.0615315  ]
 6 : [ 0.6        0.0757993  ]
 7 : [ 0.7        0.10172    ]
 8 : [ 0.8        0.0627895  ]
 9 : [ 0.9        0.076767   ]
10 : [ 1          0.170701   ]
myProcess2 =  TemporalNormalProcess(trend=[t]->[4.0], covariance=ExponentialModel(input dimension=1, amplitude=[1], scale=[1], no spatial correlation))
is stationary?  True
mean over  100  realizations=       [                outputVariable ]
 0 : [ 0              4.25822        ]
 1 : [ 0.1            4.21648        ]
 2 : [ 0.2            4.17896        ]
 3 : [ 0.3            4.1298         ]
 4 : [ 0.4            4.15431        ]
 5 : [ 0.5            4.16066        ]
 6 : [ 0.6            4.08968        ]
 7 : [ 0.7            4.02992        ]
 8 : [ 0.8            4.03501        ]
 9 : [ 0.9            4.01855        ]
10 : [ 1              3.94275        ]
myProcess3 =  TemporalNormalProcess(trend=[t]->[sin(t)], covariance=ExponentialModel(input dimension=1, amplitude=[1], scale=[1], no spatial correlation))
is stationary?  False
mean over  100  realizations =       [           y0        ]
 0 : [ 0         0.121181  ]
 1 : [ 0.1       0.112961  ]
 2 : [ 0.2       0.060845  ]
 3 : [ 0.3       0.0787557 ]
 4 : [ 0.4       0.100871  ]
 5 : [ 0.5       0.016238  ]
 6 : [ 0.6       0.0778269 ]
 7 : [ 0.7       0.137006  ]
 8 : [ 0.8       0.222522  ]
 9 : [ 0.9       0.18291   ]
10 : [ 1         0.139098  ]
mean over  100  realizations =       [            y0         ]
 0 : [  0         -0.0741775 ]
 1 : [  0.1       -0.110376  ]
 2 : [  0.2       -0.08856   ]
 3 : [  0.3       -0.0911573 ]
 4 : [  0.4       -0.116458  ]
 5 : [  0.5       -0.0786407 ]
 6 : [  0.6       -0.0424205 ]
 7 : [  0.7        0.0213822 ]
 8 : [  0.8        0.0247897 ]
 9 : [  0.9       -0.0408583 ]
10 : [  1         -0.0519795 ]