File: t_TrapezoidalFactory_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (39 lines) | stat: -rwxr-xr-x 1,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#! /usr/bin/env python

from __future__ import print_function
import openturns as ot

ot.RandomGenerator.SetSeed(0)

ot.ResourceMap.SetAsBool('MaximumLikelihoodFactory-Parallel', False)

distribution = ot.Trapezoidal(1.0, 2.3, 4.5, 5.0)
size = 10000
sample = distribution.getSample(size)
factory = ot.TrapezoidalFactory()
estimatedDistribution = factory.build(sample)
print("distribution=", repr(distribution))
oldPrecision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
print("Estimated distribution=", repr(estimatedDistribution))
ot.PlatformInfo.SetNumericalPrecision(oldPrecision)
estimatedDistribution = factory.build()
print("Default distribution=", estimatedDistribution)
estimatedDistribution = factory.build(distribution.getParameter())
print("Distribution from parameters=", estimatedDistribution)
estimatedTrapezoidal = factory.buildAsTrapezoidal(sample)
print("Trapezoidal          =", distribution)
oldPrecision = ot.PlatformInfo.GetNumericalPrecision()
ot.PlatformInfo.SetNumericalPrecision(4)
print("Estimated trapezoidal=", estimatedTrapezoidal)
ot.PlatformInfo.SetNumericalPrecision(oldPrecision)
estimatedTrapezoidal = factory.buildAsTrapezoidal()
print("Default trapezoidal=", estimatedTrapezoidal)
estimatedTrapezoidal = factory.buildAsTrapezoidal(distribution.getParameter())
print("Trapezoidal from parameters=", estimatedTrapezoidal)
sample = [[0.0]]*size
estimatedDistribution = factory.build(sample)
print("Estimated distribution=", repr(estimatedDistribution))
sample = [[1.0]]*size
estimatedDistribution = factory.build(sample)
print("Estimated distribution=", repr(estimatedDistribution))