File: t_Triangular_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (44 lines) | stat: -rw-r--r-- 2,856 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Distribution  Triangular(a = -0.5, m = 1.5, b = 2.5)
Elliptical =  False
Continuous =  True
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[1.44403]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[1.90705]  last= class=NumericalPoint name=Unnamed dimension=1 values=[1.09635]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.17256]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.39567]
Kolmogorov test for the generator, sample size= 100  is accepted
Kolmogorov test for the generator, sample size= 1000  is accepted
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[1]
ddf     = class=NumericalPoint name=Unnamed dimension=1 values=[0.333333]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[0.333333]
log pdf=-0.693147
pdf     =0.500000
pdf (FD)=0.500000
cdf=0.375000
ccdf=0.625000
characteristic function= (0.312305424736+0.758322070069j)
pdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[0.0833333,-0.25,-0.166667]
cdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.5]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.1875,-0.1875,-0.125]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[0.724745]
cdf(quantile)=0.250000
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[2]
ddf     = class=NumericalPoint name=Unnamed dimension=1 values=[-0.666667]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[-0.666667]
log pdf=-1.098612
pdf     =0.333333
pdf (FD)=0.333333
cdf=0.916667
ccdf=0.083333
pdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[0.111111,0.333333,0.222222]
cdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.0277778,-0.0833333,-0.222222]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[2.1127]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.16667]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[0.62361]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[-0.305441]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[2.4]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[0.388889]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=3 description=[a,m,b] values=[-0.5,1.5,2.5]]