File: t_Triangular_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (171 lines) | stat: -rwxr-xr-x 8,587 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:

    # Instanciate one distribution object
    distribution = Triangular(-0.5, 1.5, 2.5)
    print("Distribution ",  distribution)

    # Is this distribution elliptical ?
    print("Elliptical = ", distribution.isElliptical())

    # Is this distribution continuous ?
    print("Continuous = ", distribution.isContinuous())

    # Test for realization of distribution
    oneRealization = distribution.getRealization()
    print("oneRealization=", repr(oneRealization))

    # Test for sampling
    size = 10000
    oneSample = distribution.getSample(size)
    print("oneSample first=", repr(
        oneSample[0]), " last=", repr(oneSample[size - 1]))
    print("mean=", repr(oneSample.computeMean()))
    print("covariance=", repr(oneSample.computeCovariance()))

    size = 100
    for i in range(2):
        msg = ''
        if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
            msg = "accepted"
        else:
            msg = "rejected"
        print(
            "Kolmogorov test for the generator, sample size=", size, " is", msg)
        size *= 10

    # Define a point, left part of the support
    point = NumericalPoint(distribution.getDimension(), 1.0)
    print("Point= ", repr(point))

    # Show PDF and CDF of point
    eps = 1e-5

    # derivative of PDF with regards its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(DDF))
    # by the finite difference technique
    print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(
        point + NumericalPoint(1, eps)) - distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))

    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)
    # by the finite difference technique from CDF
    print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
                              distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))

    # derivative of the PDF with regards the parameters of the distribution
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    CF = distribution.computeCharacteristicFunction(point[0])
    print("characteristic function= (%.12g%+.12gj)" % (CF.real, CF.imag))
    PDFgr = distribution.computePDFGradient(point)
    print("pdf gradient     =", repr(PDFgr))
    # by the finite difference technique
    PDFgrFD = NumericalPoint(3)
    PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
                  Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps)
    PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
                  Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
    PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
                  Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
    print("pdf gradient (FD)=", repr(PDFgrFD))

    # derivative of the PDF with regards the parameters of the distribution
    CDFgr = distribution.computeCDFGradient(point)
    print("cdf gradient     =", repr(CDFgr))
    CDFgrFD = NumericalPoint(3)
    CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
                  Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
    CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
                  Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
    CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
                  Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
    print("cdf gradient (FD)=",  repr(CDFgrFD))

    # quantile
    quantile = distribution.computeQuantile(0.25)
    print("quantile=", repr(quantile))
    print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))

    # Define a point, right part of the support
    point = NumericalPoint(distribution.getDimension(), 2.0)
    print("Point= ", repr(point))

    # derivative of PDF with regards its arguments
    DDF = distribution.computeDDF(point)
    print("ddf     =", repr(DDF))
    # by the finite difference technique
    print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(
        point + NumericalPoint(1, eps)) - distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))

    # PDF value
    LPDF = distribution.computeLogPDF(point)
    print("log pdf=%.6f" % LPDF)
    PDF = distribution.computePDF(point)
    print("pdf     =%.6f" % PDF)
    # by the finite difference technique from CDF
    print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
                              distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))

    # derivative of the PDF with regards the parameters of the distribution
    CDF = distribution.computeCDF(point)
    print("cdf=%.6f" % CDF)
    CCDF = distribution.computeComplementaryCDF(point)
    print("ccdf=%.6f" % CCDF)
    PDFgr = distribution.computePDFGradient(point)
    print("pdf gradient     =", repr(PDFgr))
    # by the finite difference technique
    PDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computePDF(point) -
                  Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computePDF(point)) / (2.0 * eps)
    PDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computePDF(point) -
                  Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
    PDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computePDF(point) -
                  Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
    print("pdf gradient (FD)=", repr(PDFgrFD))

    # derivative of the PDF with regards the parameters of the distribution
    CDFgr = distribution.computeCDFGradient(point)
    print("cdf gradient     =", repr(CDFgr))
    CDFgrFD = NumericalPoint(3)
    CDFgrFD[0] = (Triangular(distribution.getA() + eps, distribution.getM(), distribution.getB()).computeCDF(point) -
                  Triangular(distribution.getA() - eps, distribution.getM(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
    CDFgrFD[1] = (Triangular(distribution.getA(), distribution.getM() + eps, distribution.getB()).computeCDF(point) -
                  Triangular(distribution.getA(), distribution.getM() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
    CDFgrFD[2] = (Triangular(distribution.getA(), distribution.getM(), distribution.getB() + eps).computeCDF(point) -
                  Triangular(distribution.getA(), distribution.getM(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
    print("cdf gradient (FD)=",  repr(CDFgrFD))

    # quantile
    quantile = distribution.computeQuantile(0.95)
    print("quantile=", repr(quantile))
    print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
    mean = distribution.getMean()
    print("mean=", repr(mean))
    standardDeviation = distribution.getStandardDeviation()
    print("standard deviation=", repr(standardDeviation))
    skewness = distribution.getSkewness()
    print("skewness=", repr(skewness))
    kurtosis = distribution.getKurtosis()
    print("kurtosis=", repr(kurtosis))
    covariance = distribution.getCovariance()
    print("covariance=", repr(covariance))
    parameters = distribution.getParametersCollection()
    print("parameters=", repr(parameters))


except:
    import sys
    print("t_Triangular_std.py", sys.exc_info()[0], sys.exc_info()[1])