1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
#! /usr/bin/env python
from __future__ import print_function
from openturns import *
TESTPREAMBLE()
RandomGenerator.SetSeed(0)
try:
# Instanciate one distribution object
distribution = TruncatedNormal(0.5, 3.0, -2.0, 2.0)
print("Distribution ", distribution)
# Is this distribution elliptical ?
print("Elliptical = ", distribution.isElliptical())
# Is this distribution continuous ?
print("Continuous = ", distribution.isContinuous())
# Test for realization of distribution
oneRealization = distribution.getRealization()
print("oneRealization=", repr(oneRealization))
# Test for sampling
size = 10000
oneSample = distribution.getSample(size)
print("oneSample first=", repr(
oneSample[0]), " last=", repr(oneSample[size - 1]))
print("mean=", repr(oneSample.computeMean()))
print("covariance=", repr(oneSample.computeCovariance()))
size = 100
for i in range(2):
msg = ''
if FittingTest.Kolmogorov(distribution.getSample(size), distribution).getBinaryQualityMeasure():
msg = "accepted"
else:
msg = "rejected"
print(
"Kolmogorov test for the generator, sample size=", size, " is", msg)
size *= 10
# Define a point
point = NumericalPoint(distribution.getDimension(), 1.0)
print("Point= ", repr(point))
# Show PDF and CDF of point
eps = 1e-5
# derivative of PDF with regards its arguments
DDF = distribution.computeDDF(point)
print("ddf =", repr(DDF))
# by the finite difference technique
print("ddf (FD)=", repr(NumericalPoint(1, (distribution.computePDF(
point + NumericalPoint(1, eps)) - distribution.computePDF(point + NumericalPoint(1, -eps))) / (2.0 * eps))))
# PDF value
LPDF = distribution.computeLogPDF(point)
print("log pdf=%.6f" % LPDF)
PDF = distribution.computePDF(point)
print("pdf =%.6f" % PDF)
# by the finite difference technique from CDF
print("pdf (FD)=%.6f" % ((distribution.computeCDF(point + NumericalPoint(1, eps)) -
distribution.computeCDF(point + NumericalPoint(1, -eps))) / (2.0 * eps)))
# derivative of the PDF with regards the parameters of the distribution
CDF = distribution.computeCDF(point)
print("cdf=%.6f" % CDF)
CCDF = distribution.computeComplementaryCDF(point)
print("ccdf=%.6f" % CCDF)
PDFgr = distribution.computePDFGradient(point)
print("pdf gradient =", repr(PDFgr))
# by the finite difference technique
PDFgrFD = NumericalPoint(4)
PDFgrFD[0] = (TruncatedNormal(distribution.getMu() + eps, distribution.getSigma(), distribution.getA(), distribution.getB()).computePDF(point) -
TruncatedNormal(distribution.getMu() - eps, distribution.getSigma(), distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[1] = (TruncatedNormal(distribution.getMu(), distribution.getSigma() + eps, distribution.getA(), distribution.getB()).computePDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma() - eps, distribution.getA(), distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[2] = (TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA() + eps, distribution.getB()).computePDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA() - eps, distribution.getB()).computePDF(point)) / (2.0 * eps)
PDFgrFD[3] = (TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA(), distribution.getB() + eps).computePDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA(), distribution.getB() - eps).computePDF(point)) / (2.0 * eps)
print("pdf gradient (FD)=", repr(PDFgrFD))
# derivative of the PDF with regards the parameters of the distribution
CDFgr = distribution.computeCDFGradient(point)
print("cdf gradient =", repr(CDFgr))
CDFgrFD = NumericalPoint(4)
CDFgrFD[0] = (TruncatedNormal(distribution.getMu() + eps, distribution.getSigma(), distribution.getA(), distribution.getB()).computeCDF(point) -
TruncatedNormal(distribution.getMu() - eps, distribution.getSigma(), distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[1] = (TruncatedNormal(distribution.getMu(), distribution.getSigma() + eps, distribution.getA(), distribution.getB()).computeCDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma() - eps, distribution.getA(), distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[2] = (TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA() + eps, distribution.getB()).computeCDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA() - eps, distribution.getB()).computeCDF(point)) / (2.0 * eps)
CDFgrFD[3] = (TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA(), distribution.getB() + eps).computeCDF(point) -
TruncatedNormal(distribution.getMu(), distribution.getSigma(), distribution.getA(), distribution.getB() - eps).computeCDF(point)) / (2.0 * eps)
print("cdf gradient (FD)=", repr(CDFgrFD))
# quantile
quantile = distribution.computeQuantile(0.95)
print("quantile=", repr(quantile))
print("cdf(quantile)=%.6f" % distribution.computeCDF(quantile))
mean = distribution.getMean()
print("mean=", repr(mean))
standardDeviation = distribution.getStandardDeviation()
print("standard deviation=", repr(standardDeviation))
skewness = distribution.getSkewness()
print("skewness=", repr(skewness))
kurtosis = distribution.getKurtosis()
print("kurtosis=", repr(kurtosis))
covariance = distribution.getCovariance()
print("covariance=", repr(covariance))
parameters = distribution.getParametersCollection()
print("parameters=", repr(parameters))
for i in range(6):
print("standard moment n=", i, " value=",
distribution.getStandardMoment(i))
print("Standard representative=", distribution.getStandardRepresentative())
except:
import sys
print("t_TruncatedNormal_std.py", sys.exc_info()[0], sys.exc_info()[1])
|