1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
|
Distribution class=Weibull name=Weibull dimension=1 alpha=2 beta=1.5 gamma=-0.5
Distribution Weibull(alpha = 2, beta = 1.5, gamma = -0.5)
Elliptical = False
Continuous = True
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[1.49188]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[2.82534] last= class=NumericalPoint name=Unnamed dimension=1 values=[0.847293]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.32223]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.52908]
Kolmogorov test for the generator, sample size= 100 is accepted
Kolmogorov test for the generator, sample size= 1000 is accepted
Point= class=NumericalPoint name=Unnamed dimension=1 values=[1]
ddf = class=NumericalPoint name=Unnamed dimension=1 values=[-0.107263]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[-0.107263]
log pdf=-1.081042
pdf =0.339242
pdf (FD)=0.339242
cdf=0.477703
pdf gradient = class=NumericalPoint name=Unnamed dimension=3 values=[-0.0891733,0.191956,0.107263]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.0891733,0.191956,0.107263]
cdf gradient = class=NumericalPoint name=Unnamed dimension=3 values=[-0.254431,-0.0975938,-0.339242]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.254431,-0.0975938,-0.339242]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[3.65622]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.30549]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[1.22587]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[1.07199]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[4.3904]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.50276]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=3 description=[alpha,beta,gamma] values=[2,1.5,-0.5]]
standard moment n= 0 value= [1]
standard moment n= 1 value= [0.902745]
standard moment n= 2 value= [1.19064]
standard moment n= 3 value= [2]
standard moment n= 4 value= [4.0122]
standard moment n= 5 value= [9.26053]
Standard representative= Weibull(alpha = 1, beta = 1.5, gamma = 0)
mu=1.305491
sigma=1.225872
alpha from (mu, sigma)=2.000000
beta from (mu, sigma)=1.500000
|