File: t_Weibull_std.expout

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (40 lines) | stat: -rw-r--r-- 2,480 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Distribution  class=Weibull name=Weibull dimension=1 alpha=2 beta=1.5 gamma=-0.5
Distribution  Weibull(alpha = 2, beta = 1.5, gamma = -0.5)
Elliptical =  False
Continuous =  True
oneRealization= class=NumericalPoint name=Unnamed dimension=1 values=[1.49188]
oneSample first= class=NumericalPoint name=Unnamed dimension=1 values=[2.82534]  last= class=NumericalPoint name=Unnamed dimension=1 values=[0.847293]
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.32223]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.52908]
Kolmogorov test for the generator, sample size= 100  is accepted
Kolmogorov test for the generator, sample size= 1000  is accepted
Point=  class=NumericalPoint name=Unnamed dimension=1 values=[1]
ddf     = class=NumericalPoint name=Unnamed dimension=1 values=[-0.107263]
ddf (FD)= class=NumericalPoint name=Unnamed dimension=1 values=[-0.107263]
log pdf=-1.081042
pdf     =0.339242
pdf (FD)=0.339242
cdf=0.477703
pdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[-0.0891733,0.191956,0.107263]
pdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.0891733,0.191956,0.107263]
cdf gradient     = class=NumericalPoint name=Unnamed dimension=3 values=[-0.254431,-0.0975938,-0.339242]
cdf gradient (FD)= class=NumericalPoint name=Unnamed dimension=3 values=[-0.254431,-0.0975938,-0.339242]
quantile= class=NumericalPoint name=Unnamed dimension=1 values=[3.65622]
cdf(quantile)=0.950000
mean= class=NumericalPoint name=Unnamed dimension=1 values=[1.30549]
standard deviation= class=NumericalPoint name=Unnamed dimension=1 values=[1.22587]
skewness= class=NumericalPoint name=Unnamed dimension=1 values=[1.07199]
kurtosis= class=NumericalPoint name=Unnamed dimension=1 values=[4.3904]
covariance= class=CovarianceMatrix dimension=1 implementation=class=MatrixImplementation name=Unnamed rows=1 columns=1 values=[1.50276]
parameters= [class=NumericalPointWithDescription name=marginal 1 dimension=3 description=[alpha,beta,gamma] values=[2,1.5,-0.5]]
standard moment n= 0  value= [1]
standard moment n= 1  value= [0.902745]
standard moment n= 2  value= [1.19064]
standard moment n= 3  value= [2]
standard moment n= 4  value= [4.0122]
standard moment n= 5  value= [9.26053]
Standard representative= Weibull(alpha = 1, beta = 1.5, gamma = 0)
mu=1.305491
sigma=1.225872
alpha from (mu, sigma)=2.000000
beta from (mu, sigma)=1.500000