File: t_WelchFactory_std.py

package info (click to toggle)
openturns 1.7-3
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 38,588 kB
  • ctags: 26,495
  • sloc: cpp: 144,032; python: 26,855; ansic: 7,868; sh: 419; makefile: 263; yacc: 123; lex: 44
file content (68 lines) | stat: -rwxr-xr-x 2,425 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#! /usr/bin/env python

from __future__ import print_function
from openturns import *

TESTPREAMBLE()
RandomGenerator.SetSeed(0)

try:
    # Dimension of the input model
    # Size of the TimeGrid
    size = 64
    dimension = 1
    timeGrid = RegularGrid(0.0, 0.1, size)
    amplitude = NumericalPoint(dimension, 2.0)
    scale = NumericalPoint(dimension, 1.0)
    model = ExponentialCauchy(amplitude, scale)
    myProcess = SpectralNormalProcess(model, timeGrid)

    # Create a Process sample
    N = 100
    sample = ProcessSample(myProcess.getSample(N))

    # Filtering Windows
    myFactory = WelchFactory()

    # Build a UserDefinedSpectralModel using the Wellch method
    mySpectralModel = myFactory.build(sample)

    # Get the frequency grid of the model
    myFrequencyGrid = mySpectralModel.getFrequencyGrid()
    for i in range(dimension):
        for j in range(dimension):
            print("Spectre ", i, "-", j)
            for k in range(myFrequencyGrid.getN()):
                frequency = myFrequencyGrid.getStart(
                ) + k * myFrequencyGrid.getStep()
                estimatedValue = (
                    mySpectralModel(frequency)[i, j]).real
                modelValue = (
                    model.computeSpectralDensity(frequency)[i, j]).real
                print("Frequency =  %.6f" % frequency, ", evaluation = %.8f" %
                      estimatedValue, " model = %.8f" % modelValue)

    # Create a Time Series
    timeSeries = myProcess.getRealization()

    # Build a UserDefinedSpectralModel using the Wellch method
    mySpectralModel2 = myFactory.build(timeSeries)

    # Get the frequency grid of the model
    myFrequencyGrid = mySpectralModel2.getFrequencyGrid()
    for i in range(dimension):
        for j in range(dimension):
            print("Spectre ", i, "-", j)
            for k in range(myFrequencyGrid.getN()):
                frequency = myFrequencyGrid.getStart(
                ) + k * myFrequencyGrid.getStep()
                estimatedValue = (
                    mySpectralModel2(frequency)[i, j]).real
                modelValue = (
                    model.computeSpectralDensity(frequency)[i, j]).real
                print("Frequency =  %.6f" % frequency, ", evaluation = %.8f" %
                      estimatedValue, " model = %.8f" % modelValue)

except:
    import sys
    print("t_WelchFactory_std.py", sys.exc_info()[0], sys.exc_info()[1])