1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// Copyright (c) 2009-2017 The OTS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fcntl.h>
#include <ft2build.h>
#include FT_FREETYPE_H
#include FT_OUTLINE_H
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include "opentype-sanitiser.h"
#include "ots-memory-stream.h"
namespace {
void DumpBitmap(const FT_Bitmap *bitmap) {
for (unsigned int i = 0; i < bitmap->rows * bitmap->width; ++i) {
if (bitmap->buffer[i] > 192) {
std::fprintf(stderr, "#");
} else if (bitmap->buffer[i] > 128) {
std::fprintf(stderr, "*");
} else if (bitmap->buffer[i] > 64) {
std::fprintf(stderr, "+");
} else if (bitmap->buffer[i] > 32) {
std::fprintf(stderr, ".");
} else {
std::fprintf(stderr, " ");
}
if ((i + 1) % bitmap->width == 0) {
std::fprintf(stderr, "\n");
}
}
}
int CompareBitmaps(const FT_Bitmap *orig, const FT_Bitmap *trans) {
int ret = 0;
if (orig->width == trans->width &&
orig->rows == trans->rows) {
for (unsigned int i = 0; i < orig->rows * orig->width; ++i) {
if (orig->buffer[i] != trans->buffer[i]) {
std::fprintf(stderr, "bitmap data doesn't match!\n");
ret = 1;
break;
}
}
} else {
std::fprintf(stderr, "bitmap metrics doesn't match! (%d, %d), (%d, %d)\n",
orig->width, orig->rows, trans->width, trans->rows);
ret = 1;
}
if (ret) {
std::fprintf(stderr, "EXPECTED:\n");
DumpBitmap(orig);
std::fprintf(stderr, "\nACTUAL:\n");
DumpBitmap(trans);
std::fprintf(stderr, "\n\n");
}
delete[] orig->buffer;
delete[] trans->buffer;
return ret;
}
int GetBitmap(FT_Library library, FT_Outline *outline, FT_Bitmap *bitmap) {
FT_BBox bbox;
FT_Outline_Get_CBox(outline, &bbox);
bbox.xMin &= ~63;
bbox.yMin &= ~63;
bbox.xMax = (bbox.xMax + 63) & ~63;
bbox.yMax = (bbox.yMax + 63) & ~63;
FT_Outline_Translate(outline, -bbox.xMin, -bbox.yMin);
const int w = (bbox.xMax - bbox.xMin) >> 6;
const int h = (bbox.yMax - bbox.yMin) >> 6;
if (w == 0 || h == 0) {
return -1; // white space
}
if (w < 0 || h < 0) {
std::fprintf(stderr, "bad width/height\n");
return 1; // error
}
uint8_t *buf = new uint8_t[w * h];
std::memset(buf, 0x0, w * h);
bitmap->width = w;
bitmap->rows = h;
bitmap->pitch = w;
bitmap->buffer = buf;
bitmap->pixel_mode = FT_PIXEL_MODE_GRAY;
bitmap->num_grays = 256;
if (FT_Outline_Get_Bitmap(library, outline, bitmap)) {
std::fprintf(stderr, "can't get outline\n");
delete[] buf;
return 1; // error.
}
return 0;
}
int LoadChar(FT_Face face, bool use_bitmap, int pt, FT_ULong c) {
static const int kDpi = 72;
FT_Matrix matrix;
matrix.xx = matrix.yy = 1 << 16;
matrix.xy = matrix.yx = 0 << 16;
FT_Int32 flags = FT_LOAD_DEFAULT | FT_LOAD_TARGET_NORMAL;
if (!use_bitmap) {
// Since the transcoder drops embedded bitmaps from the transcoded one,
// we have to use FT_LOAD_NO_BITMAP flag for the original face.
flags |= FT_LOAD_NO_BITMAP;
}
FT_Error error = FT_Set_Char_Size(face, pt * (1 << 6), 0, kDpi, 0);
if (error) {
std::fprintf(stderr, "Failed to set the char size!\n");
return 1;
}
FT_Set_Transform(face, &matrix, 0);
error = FT_Load_Char(face, c, flags);
if (error) return -1; // no such glyf in the font.
if (face->glyph->format != FT_GLYPH_FORMAT_OUTLINE) {
std::fprintf(stderr, "bad format\n");
return 1;
}
return 0;
}
int LoadCharThenCompare(FT_Library library,
FT_Face orig_face, FT_Face trans_face,
int pt, FT_ULong c) {
FT_Bitmap orig_bitmap, trans_bitmap;
// Load original bitmap.
int ret = LoadChar(orig_face, false, pt, c);
if (ret) return ret; // 1: error, -1: no such glyph
FT_Outline *outline = &orig_face->glyph->outline;
ret = GetBitmap(library, outline, &orig_bitmap);
if (ret) return ret; // white space?
// Load transformed bitmap.
ret = LoadChar(trans_face, true, pt, c);
if (ret == -1) {
std::fprintf(stderr, "the glyph is not found on the transcoded font\n");
}
if (ret) return 1; // -1 should be treated as error.
outline = &trans_face->glyph->outline;
ret = GetBitmap(library, outline, &trans_bitmap);
if (ret) return ret; // white space?
return CompareBitmaps(&orig_bitmap, &trans_bitmap);
}
int SideBySide(FT_Library library, const char *file_name,
uint8_t *orig_font, size_t orig_len,
uint8_t *trans_font, size_t trans_len) {
FT_Face orig_face;
FT_Error error
= FT_New_Memory_Face(library, orig_font, orig_len, 0, &orig_face);
if (error) {
std::fprintf(stderr, "Failed to open the original font: %s!\n", file_name);
return 1;
}
FT_Face trans_face;
error = FT_New_Memory_Face(library, trans_font, trans_len, 0, &trans_face);
if (error) {
std::fprintf(stderr, "Failed to open the transcoded font: %s!\n",
file_name);
return 1;
}
static const int kPts[] = {100, 20, 18, 16, 12, 10, 8}; // pt
static const size_t kPtsLen = sizeof(kPts) / sizeof(kPts[0]);
static const int kUnicodeRanges[] = {
0x0020, 0x007E, // Basic Latin (ASCII)
0x00A1, 0x017F, // Latin-1
0x1100, 0x11FF, // Hangul
0x3040, 0x309F, // Japanese HIRAGANA letters
0x3130, 0x318F, // Hangul
0x4E00, 0x4F00, // CJK Kanji/Hanja
0xAC00, 0xAD00, // Hangul
};
static const size_t kUnicodeRangesLen
= sizeof(kUnicodeRanges) / sizeof(kUnicodeRanges[0]);
for (size_t i = 0; i < kPtsLen; ++i) {
for (size_t j = 0; j < kUnicodeRangesLen; j += 2) {
for (int k = 0; k <= kUnicodeRanges[j + 1] - kUnicodeRanges[j]; ++k) {
int ret = LoadCharThenCompare(library, orig_face, trans_face,
kPts[i],
kUnicodeRanges[j] + k);
if (ret > 0) {
std::fprintf(stderr, "Glyph mismatch! (file: %s, U+%04x, %dpt)!\n",
file_name, kUnicodeRanges[j] + k, kPts[i]);
return 1;
}
}
}
}
return 0;
}
} // namespace
int main(int argc, char **argv) {
if (argc != 2) {
std::fprintf(stderr, "Usage: %s ttf_or_otf_filename\n", argv[0]);
return 1;
}
// load the font to memory.
const int fd = ::open(argv[1], O_RDONLY);
if (fd < 0) {
::perror("open");
return 1;
}
struct stat st;
::fstat(fd, &st);
const off_t orig_len = st.st_size;
uint8_t *orig_font = new uint8_t[orig_len];
if (::read(fd, orig_font, orig_len) != orig_len) {
std::fprintf(stderr, "Failed to read file!\n");
return 1;
}
::close(fd);
// check if FreeType2 can open the original font.
FT_Library library;
FT_Error error = FT_Init_FreeType(&library);
if (error) {
std::fprintf(stderr, "Failed to initialize FreeType2!\n");
return 1;
}
FT_Face dummy;
error = FT_New_Memory_Face(library, orig_font, orig_len, 0, &dummy);
if (error) {
std::fprintf(stderr, "Failed to open the original font with FT2! %s\n",
argv[1]);
return 1;
}
// transcode the original font.
static const size_t kPadLen = 20 * 1024;
uint8_t *trans_font = new uint8_t[orig_len + kPadLen];
ots::MemoryStream output(trans_font, orig_len + kPadLen);
ots::OTSContext context;
bool result = context.Process(&output, orig_font, orig_len);
if (!result) {
std::fprintf(stderr, "Failed to sanitize file! %s\n", argv[1]);
return 1;
}
const size_t trans_len = output.Tell();
// perform side-by-side tests.
return SideBySide(library, argv[1],
orig_font, orig_len,
trans_font, trans_len);
}
|