File: main.cc

package info (click to toggle)
openvdb 10.0.1-2.3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 23,108 kB
  • sloc: cpp: 293,853; ansic: 2,268; python: 776; objc: 714; sh: 527; yacc: 382; lex: 348; makefile: 176
file content (837 lines) | stat: -rw-r--r-- 30,946 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
// Copyright Contributors to the OpenVDB Project
// SPDX-License-Identifier: MPL-2.0
//
/// @file main.cc
///
/// @brief Simple ray tracer for OpenVDB volumes
///
/// @note This is intended mainly as an example of how to ray-trace
/// OpenVDB volumes.  It is not a production-quality renderer.

#include <openvdb/openvdb.h>
#include <openvdb/tools/RayIntersector.h>
#include <openvdb/tools/RayTracer.h>

#include <boost/algorithm/string/predicate.hpp>
#include <boost/algorithm/string/split.hpp>

#ifdef OPENVDB_USE_EXR
#include <OpenEXR/ImfChannelList.h>
#include <OpenEXR/ImfFrameBuffer.h>
#include <OpenEXR/ImfHeader.h>
#include <OpenEXR/ImfOutputFile.h>
#include <OpenEXR/ImfPixelType.h>
#endif

#ifdef OPENVDB_USE_PNG
#include <png.h>
#endif

// tbb/task_scheduler_init.h was removed in TBB 2021. The best construct to swap
// to is tbb/global_control (for executables). global_control was only officially
// added in TBB 2019U4 but exists in 2018 as a preview feature. To avoid more
// compile time branching (as we still support 2018), we use it in 2018 too by
// enabling the below define.
#define TBB_PREVIEW_GLOBAL_CONTROL 1
#include <tbb/global_control.h>
#include <tbb/tick_count.h>

#include <algorithm>
#include <iomanip>
#include <iostream>
#include <limits>
#include <memory>
#include <sstream>
#include <stdexcept>
#include <string>
#include <vector>

namespace {

const char* gProgName = "";

const double LIGHT_DEFAULTS[] = { 0.3, 0.3, 0.0, 0.7, 0.7, 0.7 };

static const char* sExtensions = "ppm"
#ifdef OPENVDB_USE_EXR
",exr"
#endif
#ifdef OPENVDB_USE_PNG
",png"
#endif
;

struct RenderOpts
{
    std::string shader;
    std::string color;
    openvdb::Vec3SGrid::Ptr colorgrid;
    std::string camera;
    float aperture, focal, frame, znear, zfar;
    double isovalue;
    openvdb::Vec3d rotate;
    openvdb::Vec3d translate;
    openvdb::Vec3d target;
    openvdb::Vec3d up;
    bool lookat;
    size_t samples;
    openvdb::Vec3d absorb;
    std::vector<double> light;
    openvdb::Vec3d scatter;
    double cutoff, gain;
    openvdb::Vec2d step;
    size_t width, height;
    std::string compression;
    int threads;
    bool verbose;

    RenderOpts():
        shader("diffuse"),
        camera("perspective"),
        aperture(41.2136f),
        focal(50.0f),
        frame(1.0f),
        znear(1.0e-3f),
        zfar(std::numeric_limits<float>::max()),
        isovalue(0.0),
        rotate(0.0),
        translate(0.0),
        target(0.0),
        up(0.0, 1.0, 0.0),
        lookat(false),
        samples(1),
        absorb(0.1),
        light(LIGHT_DEFAULTS, LIGHT_DEFAULTS + 6),
        scatter(1.5),
        cutoff(0.005),
        gain(0.2),
        step(1.0, 3.0),
        width(1920),
        height(1080),
        compression("zip"),
        threads(0),
        verbose(false)
    {}

    std::string validate() const
    {
        if (shader != "diffuse" && shader != "matte" && shader != "normal" && shader != "position"){
            return "expected diffuse, matte, normal or position shader, got \"" + shader + "\"";
        }
        if (!boost::starts_with(camera, "ortho") && !boost::starts_with(camera, "persp")) {
            return "expected perspective or orthographic camera, got \"" + camera + "\"";
        }
        if (compression != "none" && compression != "rle" && compression != "zip") {
            return "expected none, rle or zip compression, got \"" + compression + "\"";
        }
        if (width < 1 || height < 1) {
            std::ostringstream ostr;
            ostr << "expected width > 0 and height > 0, got " << width << "x" << height;
            return ostr.str();
        }
        return "";
    }

    std::ostream& put(std::ostream& os) const
    {
        os << " -absorb " << absorb[0] << "," << absorb[1] << "," << absorb[2]
           << " -aperture " << aperture
           << " -camera " << camera;
        if (!color.empty()) os << " -color '" << color << "'";
        os << " -compression " << compression
           << " -cpus " << threads
           << " -cutoff " << cutoff
           << " -far " << zfar
           << " -focal " << focal
           << " -frame " << frame
           << " -gain " << gain
           << " -isovalue " << isovalue
           << " -light " << light[0] << "," << light[1] << "," << light[2]
               << "," << light[3] << "," << light[4] << "," << light[5];
        if (lookat) os << " -lookat " << target[0] << "," << target[1] << "," << target[2];
        os << " -near " << znear
           << " -res " << width << "x" << height;
        if (!lookat) os << " -rotate " << rotate[0] << "," << rotate[1] << "," << rotate[2];
        os << " -shader " << shader
           << " -samples " << samples
           << " -scatter " << scatter[0] << "," << scatter[1] << "," << scatter[2]
           << " -shadowstep " << step[1]
           << " -step " << step[0]
           << " -translate " << translate[0] << "," << translate[1] << "," << translate[2];
        if (lookat) os << " -up " << up[0] << "," << up[1] << "," << up[2];
        if (verbose) os << " -v";
        return os;
    }
};

std::ostream& operator<<(std::ostream& os, const RenderOpts& opts) { return opts.put(os); }

void
usage [[noreturn]] (int exitStatus = EXIT_FAILURE)
{
    RenderOpts opts; // default options
    const double fov = openvdb::tools::PerspectiveCamera::focalLengthToFieldOfView(
        opts.focal, opts.aperture);

    std::ostringstream ostr;
    ostr << std::setprecision(3) <<
"Usage: " << gProgName << " in.vdb out.{" << sExtensions << "} [options]\n" <<
"Which: ray-traces OpenVDB volumes\n" <<
"Options:\n" <<
"    -aperture F       perspective camera aperture in mm (default: " << opts.aperture << ")\n" <<
"    -camera S         camera type; either \"persp[ective]\" or \"ortho[graphic]\"\n" <<
"                      (default: " << opts.camera << ")\n" <<
#ifdef OPENVDB_USE_EXR
"    -compression S    EXR compression scheme; either \"none\" (uncompressed),\n" <<
"                      \"rle\" or \"zip\" (default: " << opts.compression << ")\n" <<
#endif
"    -cpus N           number of rendering threads, or 1 to disable threading,\n" <<
"                      or 0 to use all available CPUs (default: " << opts.threads << ")\n" <<
"    -far F            camera far plane depth (default: " << opts.zfar << ")\n" <<
"    -focal F          perspective camera focal length in mm (default: " << opts.focal << ")\n" <<
"    -fov F            perspective camera field of view in degrees\n" <<
"                      (default: " << fov << ")\n" <<
"    -frame F          ortho camera frame width in world units (default: " <<
    opts.frame << ")\n" <<
"    -lookat X,Y,Z     rotate the camera to point to (X, Y, Z)\n" <<
"    -name S           name of the volume to be rendered (default: render\n" <<
"                      the first floating-point volume found in in.vdb)\n" <<
"    -near F           camera near plane depth (default: " << opts.znear << ")\n" <<
"    -res WxH          image dimensions in pixels (default: " <<
    opts.width << "x" << opts.height << ")\n" <<
"    -r X,Y,Z                                    \n" <<
"    -rotate X,Y,Z     camera rotation in degrees\n" <<
"                      (default: look at the center of the volume)\n" <<
"    -t X,Y,Z                            \n" <<
"    -translate X,Y,Z  camera translation\n" <<
"    -up X,Y,Z         vector that should point up after rotation with -lookat\n" <<
"                      (default: " << opts.up << ")\n" <<
"\n" <<
"    -v                verbose (print timing and diagnostics)\n" <<
"    -version          print version information and exit\n" <<
"    -h, -help         print this usage message and exit\n" <<
"\n" <<
"Level set options:\n" <<
"    -color S          name of a vec3s volume to be used to set material colors\n" <<
"    -isovalue F       isovalue in world units for level set ray intersection\n" <<
"                      (default: " << opts.isovalue << ")\n" <<
"    -samples N        number of samples (rays) per pixel (default: " << opts.samples << ")\n" <<
"    -shader S         shader name; either \"diffuse\", \"matte\", \"normal\"\n" <<
"                      or \"position\" (default: " << opts.shader << ")\n" <<
"\n" <<
"Dense volume options:\n" <<
"    -absorb R,G,B     absorption coefficients (default: " << opts.absorb << ")\n" <<
"    -cutoff F         density and transmittance cutoff value (default: " << opts.cutoff << ")\n" <<
"    -gain F           amount of scatter along the shadow ray (default: " << opts.gain << ")\n" <<
"    -light X,Y,Z[,R,G,B]  light source direction and optional color\n" <<
"                      (default: [" << opts.light[0] << ", " << opts.light[1]
    << ", " << opts.light[2] << ", " << opts.light[3] << ", " << opts.light[4]
    << ", " << opts.light[5] << "])\n" <<
"    -scatter R,G,B    scattering coefficients (default: " << opts.scatter << ")\n" <<
"    -shadowstep F     step size in voxels for integration along the shadow ray\n" <<
"                      (default: " << opts.step[1] << ")\n" <<
"    -step F           step size in voxels for integration along the primary ray\n" <<
"                      (default: " << opts.step[0] << ")\n" <<
"\n" <<
"Examples:\n" <<
"    " << gProgName << " crawler.vdb crawler.{" << sExtensions << "} -shader diffuse -res 1920x1080 \\\n" <<
"        -focal 35 -samples 4 -translate 0,210.5,400 -compression rle -v\n" <<
"\n" <<
"    " << gProgName << " bunny_cloud.vdb bunny_cloud.{" << sExtensions << "} -res 1920x1080 \\\n" <<
"        -translate 0,0,110 -absorb 0.4,0.2,0.1 -gain 0.2 -v\n" <<
"\n" <<
"Warning:\n" <<
"     This is not (and is not intended to be) a production-quality renderer.\n" <<
"     Use it for fast previewing or simply as a reference implementation\n" <<
"     for integration into existing ray tracers.\n";

    std::cerr << ostr.str();
    exit(exitStatus);
}

inline void isExtensionSupported(const std::string& fname)
{
    // .ppm always supported
    if (boost::iends_with(fname, ".ppm")) return;
    else if (boost::iends_with(fname, ".exr"))
    {
#ifndef OPENVDB_USE_EXR
        OPENVDB_THROW(openvdb::RuntimeError,
            "vdb_render has not been compiled with .exr support.");
#endif
    }
    else if (boost::iends_with(fname, ".png"))
    {
#ifndef OPENVDB_USE_PNG
        OPENVDB_THROW(openvdb::RuntimeError,
            "vdb_render has not been compiled with .png support.");
#endif
    }
    else {
        OPENVDB_THROW(openvdb::ValueError,
            "unsupported image file format (" + fname + ")");
    }
}

#ifdef OPENVDB_USE_EXR
void
saveEXR(const std::string& fname, const openvdb::tools::Film& film, const RenderOpts& opts)
{
    using RGBA = openvdb::tools::Film::RGBA;

    std::string filename = fname;
    if (!boost::iends_with(filename, ".exr")) filename += ".exr";

    if (opts.verbose) {
        std::cout << gProgName << ": writing " << filename << "..." << std::endl;
    }

    const tbb::tick_count start = tbb::tick_count::now();

    int threads = (opts.threads == 0 ? 8 : opts.threads);
    Imf::setGlobalThreadCount(threads);

    Imf::Header header(int(film.width()), int(film.height()));
    if (opts.compression == "none") {
        header.compression() = Imf::NO_COMPRESSION;
    } else if (opts.compression == "rle") {
        header.compression() = Imf::RLE_COMPRESSION;
    } else if (opts.compression == "zip") {
        header.compression() = Imf::ZIP_COMPRESSION;
    } else {
        OPENVDB_THROW(openvdb::ValueError,
            "expected none, rle or zip compression, got \"" << opts.compression << "\"");
    }
    header.channels().insert("R", Imf::Channel(Imf::FLOAT));
    header.channels().insert("G", Imf::Channel(Imf::FLOAT));
    header.channels().insert("B", Imf::Channel(Imf::FLOAT));
    header.channels().insert("A", Imf::Channel(Imf::FLOAT));

    const size_t pixelBytes = sizeof(RGBA), rowBytes = pixelBytes * film.width();
    RGBA& pixel0 = const_cast<RGBA*>(film.pixels())[0];
    Imf::FrameBuffer framebuffer;
    framebuffer.insert("R",
        Imf::Slice(Imf::FLOAT, reinterpret_cast<char*>(&pixel0.r), pixelBytes, rowBytes));
    framebuffer.insert("G",
        Imf::Slice(Imf::FLOAT, reinterpret_cast<char*>(&pixel0.g), pixelBytes, rowBytes));
    framebuffer.insert("B",
        Imf::Slice(Imf::FLOAT, reinterpret_cast<char*>(&pixel0.b), pixelBytes, rowBytes));
    framebuffer.insert("A",
        Imf::Slice(Imf::FLOAT, reinterpret_cast<char*>(&pixel0.a), pixelBytes, rowBytes));

    Imf::OutputFile imgFile(filename.c_str(), header);
    imgFile.setFrameBuffer(framebuffer);
    imgFile.writePixels(int(film.height()));

    if (opts.verbose) {
        std::ostringstream ostr;
        ostr << gProgName << ": ...completed in " << std::setprecision(3)
            << (tbb::tick_count::now() - start).seconds() << " sec";
        std::cout << ostr.str() << std::endl;
    }
}
#else
void
saveEXR(const std::string&, const openvdb::tools::Film&, const RenderOpts&)
{
    OPENVDB_THROW(openvdb::RuntimeError,
        "vdb_render has not been compiled with .exr support.");
}
#endif

#ifdef OPENVDB_USE_PNG
struct PngWriter
{
    PngWriter() = default;
    ~PngWriter() { this->reset(); }

    inline void write(const std::string& fname, const openvdb::tools::Film& film)
    {
        png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
        if (!png) OPENVDB_THROW(openvdb::RuntimeError, "png_create_write_struct failed");
        info = png_create_info_struct(png);
        if (!info) OPENVDB_THROW(openvdb::RuntimeError, "png_create_info_struct failed.")

        fp = std::fopen(fname.c_str(), "wb");
        if (!fp) {
            OPENVDB_THROW(openvdb::IoError,
                "Unable to open '" + fname + "' for writing");
        }

        if (setjmp(png_jmpbuf(png))) {
            OPENVDB_THROW(openvdb::IoError, "Error during initialization of PNG I/O.");
        }
        png_init_io(png, fp);

        if (setjmp(png_jmpbuf(png))) {
            OPENVDB_THROW(openvdb::IoError, "Error writing PNG file header.");
        }
        // Output is 8bit depth, RGB format.
        png_set_IHDR(png, info,
            int(film.width()), int(film.height()),
            8,
            PNG_COLOR_TYPE_RGB,
            PNG_INTERLACE_NONE,
            PNG_COMPRESSION_TYPE_DEFAULT,
            PNG_FILTER_TYPE_DEFAULT);
        png_write_info(png, info);

        const size_t channels = 3; // 3 = RGB, 4 = RGBA
        auto buffer = film.convertToBitBuffer<uint8_t>(/*alpha=*/false);
        uint8_t* tmp = buffer.get();

        std::unique_ptr<png_bytep[]>
            row_pointers(new png_bytep[film.height()]);

        for (size_t row = 0; row < film.height(); row++) {
            row_pointers[row] = tmp + (row * film.width() * channels);
        }

        if (setjmp(png_jmpbuf(png))) {
            OPENVDB_THROW(openvdb::IoError, "Error writing PNG data buffers.");
        }
        /* write out the entire image data in one call */
        png_write_image(png, row_pointers.get());
        png_write_end(png, nullptr);

        this->reset();
    }

    inline void reset()
    {
        if (fp)  std::fclose(fp);
        if (png) png_destroy_write_struct(&png, &info);
        png = nullptr;
        info = nullptr;
        fp = nullptr;
    }

private:
    FILE* fp = nullptr;
    png_structp png = nullptr;
    png_infop info = nullptr;
};
#else
struct PngWriter {
    inline void write(const std::string&, const openvdb::tools::Film&) {
        OPENVDB_THROW(openvdb::RuntimeError,
            "vdb_render has not been compiled with .png support.");
    }
};
#endif

template<typename GridType>
void
render(const GridType& grid, const std::string& imgFilename, const RenderOpts& opts)
{
    using namespace openvdb;

    const bool isLevelSet = (grid.getGridClass() == GRID_LEVEL_SET);

    tools::Film film(opts.width, opts.height);

    std::unique_ptr<tools::BaseCamera> camera;
    if (boost::starts_with(opts.camera, "persp")) {
        camera.reset(new tools::PerspectiveCamera(film, opts.rotate, opts.translate,
            opts.focal, opts.aperture, opts.znear, opts.zfar));
    } else if (boost::starts_with(opts.camera, "ortho")) {
        camera.reset(new tools::OrthographicCamera(film, opts.rotate, opts.translate,
            opts.frame, opts.znear, opts.zfar));
    } else {
        OPENVDB_THROW(ValueError,
            "expected perspective or orthographic camera, got \"" << opts.camera << "\"");
    }
    if (opts.lookat) camera->lookAt(opts.target, opts.up);

    // Define the shader for level set rendering.  The default shader is a diffuse shader.
    std::unique_ptr<tools::BaseShader> shader;
    if (opts.shader == "matte") {
        if (opts.colorgrid) {
            shader.reset(new tools::MatteShader<openvdb::Vec3SGrid>(*opts.colorgrid));
        } else {
            shader.reset(new tools::MatteShader<>());
        }
    } else if (opts.shader == "normal") {
        if (opts.colorgrid) {
            shader.reset(new tools::NormalShader<Vec3SGrid>(*opts.colorgrid));
        } else {
            shader.reset(new tools::NormalShader<>());
        }
    } else if (opts.shader == "position") {
        const CoordBBox bbox = grid.evalActiveVoxelBoundingBox();
        const math::BBox<Vec3d> bboxIndex(bbox.min().asVec3d(), bbox.max().asVec3d());
        const math::BBox<Vec3R> bboxWorld = bboxIndex.applyMap(*(grid.transform().baseMap()));
        if (opts.colorgrid) {
            shader.reset(new tools::PositionShader<Vec3SGrid>(bboxWorld, *opts.colorgrid));
        } else {
            shader.reset(new tools::PositionShader<>(bboxWorld));
        }
    } else /* if (opts.shader == "diffuse") */ { // default
        if (opts.colorgrid) {
            shader.reset(new tools::DiffuseShader<Vec3SGrid>(*opts.colorgrid));
        } else {
            shader.reset(new tools::DiffuseShader<>());
        }
    }

    if (opts.verbose) {
        std::cout << gProgName << ": ray-tracing";
        const std::string gridName = grid.getName();
        if (!gridName.empty()) std::cout << " " << gridName;
        std::cout << "..." << std::endl;
    }
    const tbb::tick_count start = tbb::tick_count::now();

    if (isLevelSet) {
        tools::LevelSetRayIntersector<GridType> intersector(
            grid, static_cast<typename GridType::ValueType>(opts.isovalue));
        tools::rayTrace(grid, intersector, *shader, *camera, opts.samples,
            /*seed=*/0, (opts.threads != 1));
    } else {
        using IntersectorType = tools::VolumeRayIntersector<GridType>;
        IntersectorType intersector(grid);

        tools::VolumeRender<IntersectorType> renderer(intersector, *camera);
        renderer.setLightDir(opts.light[0], opts.light[1], opts.light[2]);
        renderer.setLightColor(opts.light[3], opts.light[4], opts.light[5]);
        renderer.setPrimaryStep(opts.step[0]);
        renderer.setShadowStep(opts.step[1]);
        renderer.setScattering(opts.scatter[0], opts.scatter[1], opts.scatter[2]);
        renderer.setAbsorption(opts.absorb[0], opts.absorb[1], opts.absorb[2]);
        renderer.setLightGain(opts.gain);
        renderer.setCutOff(opts.cutoff);

        renderer.render(opts.threads != 1);
    }

    if (opts.verbose) {
        std::ostringstream ostr;
        ostr << gProgName << ": ...completed in " << std::setprecision(3)
            << (tbb::tick_count::now() - start).seconds() << " sec";
        std::cout << ostr.str() << std::endl;
    }

    if (boost::iends_with(imgFilename, ".ppm")) {
        // Save as PPM (fast, but large file size).
        std::string filename = imgFilename;
        filename.erase(filename.size() - 4); // strip .ppm extension
        film.savePPM(filename);
    } else if (boost::iends_with(imgFilename, ".exr")) {
        // Save as EXR (slow, but small file size).
        saveEXR(imgFilename, film, opts);
    } else if (boost::iends_with(imgFilename, ".png")) {
        PngWriter png;
        png.write(imgFilename, film);
    } else {
        OPENVDB_THROW(ValueError, "unsupported image file format (" + imgFilename + ")");
    }
}


void
strToSize(const std::string& s, size_t& x, size_t& y)
{
    std::vector<std::string> elems;
    boost::split(elems, s, boost::algorithm::is_any_of(",x"));
    const size_t numElems = elems.size();
    if (numElems > 0) x = size_t(std::max(0, atoi(elems[0].c_str())));
    if (numElems > 1) y = size_t(std::max(0, atoi(elems[1].c_str())));
}


std::vector<double>
strToVec(const std::string& s)
{
    std::vector<double> result;
    std::vector<std::string> elems;
    boost::split(elems, s, boost::algorithm::is_any_of(","));
    for (size_t i = 0, N = elems.size(); i < N; ++i) {
        result.push_back(atof(elems[i].c_str()));
    }
    return result;
}


openvdb::Vec3d
strToVec3d(const std::string& s)
{
    openvdb::Vec3d result(0.0, 0.0, 0.0);
    std::vector<double> elems = strToVec(s);
    if (!elems.empty()) {
        result = openvdb::Vec3d(elems[0]);
        for (int i = 1, N = std::min(3, int(elems.size())); i < N; ++i) {
            result[i] = elems[i];
        }
    }
    return result;
}


struct OptParse
{
    int argc;
    char** argv;

    OptParse(int argc_, char* argv_[]): argc(argc_), argv(argv_) {}

    bool check(int idx, const std::string& name, int numArgs = 1) const
    {
        if (argv[idx] == name) {
            if (idx + numArgs >= argc) {
                OPENVDB_LOG_FATAL("option " << name << " requires "
                    << numArgs << " argument" << (numArgs == 1 ? "" : "s"));
                usage();
            }
            return true;
        }
        return false;
    }
};

} // unnamed namespace


int
main(int argc, char *argv[])
{
    OPENVDB_START_THREADSAFE_STATIC_WRITE
    gProgName = argv[0];
    if (const char* ptr = ::strrchr(gProgName, '/')) gProgName = ptr + 1;
    OPENVDB_FINISH_THREADSAFE_STATIC_WRITE

    int retcode = EXIT_SUCCESS;

    if (argc == 1) usage();

    openvdb::logging::initialize(argc, argv);

    std::string vdbFilename, imgFilename, gridName;
    RenderOpts opts;

    bool hasFocal = false, hasFov = false, hasRotate = false, hasLookAt = false;
    float fov = 0.0;

    OptParse parser(argc, argv);
    for (int i = 1; i < argc; ++i) {
        std::string arg = argv[i];
        if (arg[0] == '-') {
            if (parser.check(i, "-absorb")) {
                ++i;
                opts.absorb = strToVec3d(argv[i]);
            } else if (parser.check(i, "-aperture")) {
                ++i;
                opts.aperture = float(atof(argv[i]));
            } else if (parser.check(i, "-camera")) {
                ++i;
                opts.camera = argv[i];
            } else if (parser.check(i, "-color")) {
                ++i;
                opts.color = argv[i];
            } else if (parser.check(i, "-compression")) {
                ++i;
                opts.compression = argv[i];
            } else if (parser.check(i, "-cpus")) {
                ++i;
                opts.threads = std::max(0, atoi(argv[i]));
            } else if (parser.check(i, "-cutoff")) {
                ++i;
                opts.cutoff = atof(argv[i]);
            } else if (parser.check(i, "-isovalue")) {
                ++i;
                opts.isovalue = atof(argv[i]);
            } else if (parser.check(i, "-far")) {
                ++i;
                opts.zfar = float(atof(argv[i]));
            } else if (parser.check(i, "-focal")) {
                ++i;
                opts.focal = float(atof(argv[i]));
                hasFocal = true;
            } else if (parser.check(i, "-fov")) {
                ++i;
                fov = float(atof(argv[i]));
                hasFov = true;
            } else if (parser.check(i, "-frame")) {
                ++i;
                opts.frame = float(atof(argv[i]));
            } else if (parser.check(i, "-gain")) {
                ++i;
                opts.gain = atof(argv[i]);
            } else if (parser.check(i, "-light")) {
                ++i;
                opts.light = strToVec(argv[i]);
            } else if (parser.check(i, "-lookat")) {
                ++i;
                opts.lookat = true;
                opts.target = strToVec3d(argv[i]);
                hasLookAt = true;
            } else if (parser.check(i, "-name")) {
                ++i;
                gridName = argv[i];
            } else if (parser.check(i, "-near")) {
                ++i;
                opts.znear = float(atof(argv[i]));
            } else if (parser.check(i, "-r") || parser.check(i, "-rotate")) {
                ++i;
                opts.rotate = strToVec3d(argv[i]);
                hasRotate = true;
            } else if (parser.check(i, "-res")) {
                ++i;
                strToSize(argv[i], opts.width, opts.height);
            } else if (parser.check(i, "-scatter")) {
                ++i;
                opts.scatter = strToVec3d(argv[i]);
            } else if (parser.check(i, "-shader")) {
                ++i;
                opts.shader = argv[i];
            } else if (parser.check(i, "-shadowstep")) {
                ++i;
                opts.step[1] = atof(argv[i]);
            } else if (parser.check(i, "-samples")) {
                ++i;
                opts.samples = size_t(std::max(0, atoi(argv[i])));
            } else if (parser.check(i, "-step")) {
                ++i;
                opts.step[0] = atof(argv[i]);
            } else if (parser.check(i, "-t") || parser.check(i, "-translate")) {
                ++i;
                opts.translate = strToVec3d(argv[i]);
            } else if (parser.check(i, "-up")) {
                ++i;
                opts.up = strToVec3d(argv[i]);
            } else if (arg == "-v") {
                opts.verbose = true;
            } else if (arg == "-version" || arg == "--version") {
                std::cout << "OpenVDB library version: "
                    << openvdb::getLibraryAbiVersionString() << "\n";
                std::cout << "OpenVDB file format version: "
                    << openvdb::OPENVDB_FILE_VERSION << std::endl;
                return EXIT_SUCCESS;
            } else if (arg == "-h" || arg == "-help" || arg == "--help") {
                usage(EXIT_SUCCESS);
            } else {
                OPENVDB_LOG_FATAL("\"" << arg << "\" is not a valid option");
                usage();
            }
        } else if (vdbFilename.empty()) {
            vdbFilename = arg;
        } else if (imgFilename.empty()) {
            imgFilename = arg;
        } else {
            usage();
        }
    }
    if (vdbFilename.empty() || imgFilename.empty()) {
        usage();
    }
    if (hasFov) {
        if (hasFocal) {
            OPENVDB_LOG_FATAL("specify -focal or -fov, but not both");
            usage();
        }
        opts.focal = float(
            openvdb::tools::PerspectiveCamera::fieldOfViewToFocalLength(fov, opts.aperture));
    }
    if (hasLookAt && hasRotate) {
        OPENVDB_LOG_FATAL("specify -lookat or -r[otate], but not both");
        usage();
    }
    {
        const std::string err = opts.validate();
        if (!err.empty()) {
            OPENVDB_LOG_FATAL(err);
            usage();
        }
    }

    try {
        // throw if an extension has been set but we don't support it
        isExtensionSupported(imgFilename);

        std::unique_ptr<tbb::global_control> control;
        if (opts.threads > 0) {
            // note, opts.threads == 0 means use all threads (default), so don't
            // manually create a tbb::global_control in this case
            control.reset(new tbb::global_control(tbb::global_control::max_allowed_parallelism, opts.threads));
        }

        openvdb::initialize();

        const tbb::tick_count start = tbb::tick_count::now();
        if (opts.verbose) {
            std::cout << gProgName << ": reading ";
            if (!gridName.empty()) std::cout << gridName << " from ";
            std::cout << vdbFilename << "..." << std::endl;
        }

        openvdb::FloatGrid::Ptr grid;
        {
            openvdb::io::File file(vdbFilename);

            if (!gridName.empty()) {
                file.open();
                grid = openvdb::gridPtrCast<openvdb::FloatGrid>(file.readGrid(gridName));
                if (!grid) {
                    OPENVDB_THROW(openvdb::ValueError,
                        gridName + " is not a scalar, floating-point volume");
                }
            } else {
                // If no grid was specified by name, retrieve the first float grid from the file.
                file.open(/*delayLoad=*/false);
                openvdb::io::File::NameIterator it = file.beginName();
                openvdb::GridPtrVecPtr grids = file.readAllGridMetadata();
                for (size_t i = 0; i < grids->size(); ++i, ++it) {
                    grid = openvdb::gridPtrCast<openvdb::FloatGrid>(grids->at(i));
                    if (grid) {
                        gridName = *it;
                        file.close();
                        file.open();
                        grid = openvdb::gridPtrCast<openvdb::FloatGrid>(file.readGrid(gridName));
                        break;
                    }
                }
                if (!grid) {
                    OPENVDB_THROW(openvdb::ValueError,
                        "no scalar, floating-point volumes in file " + vdbFilename);
                }
            }

            if (!opts.color.empty()) {
                opts.colorgrid =
                    openvdb::gridPtrCast<openvdb::Vec3SGrid>(file.readGrid(opts.color));
                if (!opts.colorgrid) {
                    OPENVDB_THROW(openvdb::ValueError,
                        opts.color + " is not a vec3s color volume");
                }
            }
        }

        if (opts.verbose) {
            std::ostringstream ostr;
            ostr << gProgName << ": ...completed in " << std::setprecision(3)
                << (tbb::tick_count::now() - start).seconds() << " sec";
            std::cout << ostr.str() << std::endl;
        }

        if (grid) {
            if (!hasLookAt && !hasRotate) {
                // If the user specified neither the camera rotation nor a target
                // to look at, orient the camera to point to the center of the grid.
                opts.target = grid->evalActiveVoxelBoundingBox().getCenter();
                opts.target = grid->constTransform().indexToWorld(opts.target);
                opts.lookat = true;
            }

            if (opts.verbose) std::cout << opts << std::endl;

            render<openvdb::FloatGrid>(*grid, imgFilename, opts);
        }
    } catch (std::exception& e) {
        OPENVDB_LOG_FATAL(e.what());
        retcode = EXIT_FAILURE;
    } catch (...) {
        OPENVDB_LOG_FATAL("Exception caught (unexpected type)");
        std::terminate();
    }

    return retcode;
}