File: axfunctionlist.txt

package info (click to toggle)
openvdb 10.0.1-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 23,092 kB
  • sloc: cpp: 293,853; ansic: 2,268; python: 776; objc: 714; sh: 527; yacc: 382; lex: 348; makefile: 176
file content (886 lines) | stat: -rw-r--r-- 21,439 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
/**
<div style="width:800px;text-align:justify;">

@page axfunctionlist AX Supported Functions

This page holds the full list of functions currently supported by AX. It is
usually automatically updated from the most recent output of the @ref vdbaxbinary
"vdb_ax binary's" function option.

@section axfunccontents Functions
<ul style="height: 500px; display:flex; flex-direction:column; flex-wrap:wrap;">
    <li> @ref axabs "abs"</li>
    <li> @ref axacos "acos"</li>
    <li> @ref axacosh "acosh"</li>
    <li> @ref axaddtogroup "addtogroup"</li>
    <li> @ref axadjoint "adjoint"</li>
    <li> @ref axargsort "argsort"</li>
    <li> @ref axasin "asin"</li>
    <li> @ref axasinh "asinh"</li>
    <li> @ref axatan "atan"</li>
    <li> @ref axatan2 "atan2"</li>
    <li> @ref axatanh "atanh"</li>
    <li> @ref axatof "atof"</li>
    <li> @ref axatoi "atoi"</li>
    <li> @ref axcbrt "cbrt"</li>
    <li> @ref axceil "ceil"</li>
    <li> @ref axclamp "clamp"</li>
    <li> @ref axcofactor "cofactor"</li>
    <li> @ref axcos "cos"</li>
    <li> @ref axcosh "cosh"</li>
    <li> @ref axcross "cross"</li>
    <li> @ref axcurlsimplexnoise "curlsimplexnoise"</li>
    <li> @ref axdegrees "degrees"</li>
    <li> @ref axdeletepoint "deletepoint"</li>
    <li> @ref axdeterminant "determinant"</li>
    <li> @ref axdiag "diag"</li>
    <li> @ref axdot "dot"</li>
    <li> @ref axeuclideanmod "euclideanmod"</li>
    <li> @ref axexp "exp"</li>
    <li> @ref axexp2 "exp2"</li>
    <li> @ref axexternal "external"</li>
    <li> @ref axexternalv "externalv"</li>
    <li> @ref axfabs "fabs"</li>
    <li> @ref axfit "fit"</li>
    <li> @ref axfloor "floor"</li>
    <li> @ref axfloormod "floormod"</li>
    <li> @ref axgetcoordx "getcoordx"</li>
    <li> @ref axgetcoordy "getcoordy"</li>
    <li> @ref axgetcoordz "getcoordz"</li>
    <li> @ref axgetvoxelpws "getvoxelpws"</li>
    <li> @ref axhash "hash"</li>
    <li> @ref axidentity3 "identity3"</li>
    <li> @ref axidentity4 "identity4"</li>
    <li> @ref axingroup "ingroup"</li>
    <li> @ref axinverse "inverse"</li>
    <li> @ref axisfinite "isfinite"</li>
    <li> @ref axisinf "isinf"</li>
    <li> @ref axisnan "isnan"</li>
    <li> @ref axlength "length"</li>
    <li> @ref axlengthsq "lengthsq"</li>
    <li> @ref axlerp "lerp"</li>
    <li> @ref axlog "log"</li>
    <li> @ref axlog10 "log10"</li>
    <li> @ref axlog2 "log2"</li>
    <li> @ref axmax "max"</li>
    <li> @ref axmin "min"</li>
    <li> @ref axnormalize "normalize"</li>
    <li> @ref axpolardecompose "polardecompose"</li>
    <li> @ref axpostscale "postscale"</li>
    <li> @ref axpow "pow"</li>
    <li> @ref axprescale "prescale"</li>
    <li> @ref axpretransform "pretransform"</li>
    <li> @ref axprint "print"</li>
    <li> @ref axradians "radians"</li>
    <li> @ref axrand "rand"</li>
    <li> @ref axrand32 "rand32"</li>
    <li> @ref axremovefromgroup "removefromgroup"</li>
    <li> @ref axround "round"</li>
    <li> @ref axsign "sign"</li>
    <li> @ref axsignbit "signbit"</li>
    <li> @ref axsimplexnoise "simplexnoise"</li>
    <li> @ref axsin "sin"</li>
    <li> @ref axsinh "sinh"</li>
    <li> @ref axsort "sort"</li>
    <li> @ref axsqrt "sqrt"</li>
    <li> @ref axtan "tan"</li>
    <li> @ref axtanh "tanh"</li>
    <li> @ref axtrace "trace"</li>
    <li> @ref axtransform "transform"</li>
    <li> @ref axtranspose "transpose"</li>
    <li> @ref axtruncatemod "truncatemod"</li>
</ul><hr>


@anchor axabs
@par abs
Computes the absolute value of an integer number.
@code{.c}
int64(int64 n);
int32(int32 n);
double(double n);
float(float n);
@endcode

@anchor axacos
@par acos
Computes the principal value of the arc cosine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axacosh
@par acosh
Computes the inverse hyperbolic cosine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axaddtogroup
@par addtogroup
Add the current point to the given group name, effectively setting its membership to true. If the
group does not exist, it is implicitly created. This function has no effect if the point
already belongs to the given group.
@code{.c}
void(string);
@endcode

@anchor axadjoint
@par adjoint
Returns the adjoint of a 3x3 matrix. That is, the transpose of its cofactor matrix.
@code{.c}
mat3d(mat3d input);
mat3f(mat3f input);
@endcode

@anchor axargsort
@par argsort
Returns a vector of the indexes that would sort the input vector.
@code{.c}
vec3i(vec3d v);
vec3i(vec3f v);
vec3i(vec3i v);
vec4i(vec4d v);
vec4i(vec4f v);
vec4i(vec4i v);
@endcode

@anchor axasin
@par asin
Computes the principal value of the arc sine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axasinh
@par asinh
Computes the inverse hyperbolic sine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axatan
@par atan
Computes the principal value of the arc tangent of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axatan2
@par atan2
Computes the arc tangent of y/x using the signs of arguments to determine the correct quadrant.
@code{.c}
double(double y; double x);
float(float y; float x);
@endcode

@anchor axatanh
@par atanh
Computes the inverse hyperbolic tangent of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axatof
@par atof
Parses the string input, interpreting its content as a floating point number and returns its value
as a double.
@code{.c}
double(i8* str);
@endcode

@anchor axatoi
@par atoi
Parses the string input interpreting its content as an integral number, which is returned as a value
of type int.
@code{.c}
int32(i8* str);
@endcode

@anchor axcbrt
@par cbrt
Computes the cubic root of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axceil
@par ceil
Computes the smallest integer value not less than arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axclamp
@par clamp
Clamps the first argument to the minimum second argument value and maximum third argument value
@code{.c}
double(double in; double min; double max);
float(float in; float min; float max);
int64(int64 in; int64 min; int64 max);
int32(int32 in; int32 min; int32 max);
@endcode

@anchor axcofactor
@par cofactor
Returns the cofactor matrix of a 3x3 matrix. That is, the matrix of its cofactors.
@code{.c}
mat3d(mat3d input);
mat3f(mat3f input);
@endcode

@anchor axcos
@par cos
Computes the cosine of arg (measured in radians).
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axcosh
@par cosh
Computes the hyperbolic cosine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axcross
@par cross
Returns the length of the given vector
@code{.c}
vec3d(vec3d a; vec3d b);
vec3f(vec3f a; vec3f b);
vec3i(vec3i a; vec3i b);
@endcode

@anchor axcurlsimplexnoise
@par curlsimplexnoise
Generates divergence-free 3D noise, computed using a curl function on Simplex Noise.
@code{.c}
vec3d(vec3d pos);
vec3d(double pos; double; double);
@endcode

@anchor axdegrees
@par degrees
Converts the number of radians to degrees.
@code{.c}
double(double radians);
float(float radians);
@endcode

@anchor axdeletepoint
@par deletepoint
Delete the current point from the point set. Note that this does not stop AX execution - any
additional AX commands will be executed on the point and it will remain accessible until the
end of execution.
@code{.c}
void();
@endcode

@anchor axdeterminant
@par determinant
Returns the determinant of a matrix.
@code{.c}
double(mat3d mat);
float(mat3f mat);
double(mat4d mat);
float(mat4f mat);
@endcode

@anchor axdiag
@par diag
Create a diagonal matrix from a vector, or return the diagonal components of a matrix as a vector.
@code{.c}
vec3d(mat3d vec);
vec3f(mat3f vec);
vec4d(mat4d vec);
vec4f(mat4f vec);
mat3d(vec3d mat);
mat3f(vec3f mat);
mat4d(vec4d mat);
mat4f(vec4f mat);
@endcode

@anchor axdot
@par dot
Computes the dot product of two vectors.
@code{.c}
double(vec3d a; vec3d b);
float(vec3f a; vec3f b);
int32(vec3i a; vec3i b);
@endcode

@anchor axeuclideanmod
@par euclideanmod
Euclidean modulo, where by the result of the division operator on (dividend / divisor) is floored or
ceiled depending on its sign, guaranteeing that the return value is always positive. The
remainder is thus calculated with D - d * (d < 0 ? ceil(D/d) : floor(D/d)). This is NOT equal
to a%b in AX. See truncatemod(), floormod().
@code{.c}
double(double dividend; double divisor);
float(float dividend; float divisor);
int64(int64 dividend; int64 divisor);
int32(int32 dividend; int32 divisor);
@endcode

@anchor axexp
@par exp
Computes e (Euler's number, 2.7182818...) raised to the given power arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axexp2
@par exp2
Computes 2 raised to the given power arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axexternal
@par external
Find a custom user parameter with a given name of type 'float' in the Custom data provided to the AX
compiler. If the data can not be found, or is not of the expected type 0.0f is returned.
@code{.c}
float(string str);
@endcode

@anchor axexternalv
@par externalv
Find a custom user parameter with a given name of type 'vector float' in the Custom data provided to
the AX compiler. If the data can not be found, or is not of the expected type { 0.0f, 0.0f,
0.0f } is returned.
@code{.c}
vec3f(string str);
@endcode

@anchor axfabs
@par fabs
Computes the absolute value of a floating point value arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axfit
@par fit
Fit the first argument to the output range by first clamping the value between the second and third
input range arguments and then remapping the result to the output range fourth and fifth
arguments
@code{.c}
double(double value; double omin; double omax; double nmin; double nmax);
float(float value; float omin; float omax; float nmin; float nmax);
double(int64 value; int64 omin; int64 omax; int64 nmin; int64 nmax);
double(int32 value; int32 omin; int32 omax; int32 nmin; int32 nmax);
@endcode

@anchor axfloor
@par floor
Computes the largest integer value not greater than arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axfloormod
@par floormod
Floored modulo, where the result of the division operator on (dividend / divisor) is floored. The
remainder is thus calculated with D - d * floor(D/d). This is the implemented modulo % operator
of AX. This is equal to the python % implementation. See trucnatemod(), euclideanmod().
@code{.c}
double(double dividend; double divisor);
float(float dividend; float divisor);
int64(int64 dividend; int64 divisor);
int32(int32 dividend; int32 divisor);
@endcode

@anchor axgetcoordx
@par getcoordx
Returns the current voxel's X index value in index space as an integer.
@code{.c}
int32();
@endcode

@anchor axgetcoordy
@par getcoordy
Returns the current voxel's Y index value in index space as an integer.
@code{.c}
int32();
@endcode

@anchor axgetcoordz
@par getcoordz
Returns the current voxel's Z index value in index space as an integer.
@code{.c}
int32();
@endcode

@anchor axgetvoxelpws
@par getvoxelpws
Returns the current voxel's position in world space as a vector float.
@code{.c}
vec3f();
@endcode

@anchor axhash
@par hash
Return a hash of the provided string.
@code{.c}
int64(string str);
@endcode

@anchor axidentity3
@par identity3
Returns the 3x3 identity matrix
@code{.c}
mat3f();
@endcode

@anchor axidentity4
@par identity4
Returns the 4x4 identity matrix
@code{.c}
mat4f();
@endcode

@anchor axingroup
@par ingroup
Return whether or not the current point is a member of the given group name. This returns false if
the group does not exist.
@code{.c}
bool(string);
@endcode

@anchor axinverse
@par inverse
Return the inverse of a 3x3 matrix.If the matrix is singular, returns the input matrix.
@code{.c}
mat3d(mat3d input);
mat3f(mat3f input);
@endcode

@anchor axisfinite
@par isfinite
Returns whether the value is finite i.e. not infinite or NaN. For matrix and vector types will
return false if any element is not finite.
@code{.c}
bool(vec2d);
bool(vec2f);
bool(vec3d);
bool(vec3f);
bool(vec4d);
bool(vec4f);
bool(mat3f);
bool(mat3d);
bool(mat4f);
bool(mat4d);
bool(double arg);
bool(float arg);
@endcode

@anchor axisinf
@par isinf
Returns whether the value is inf. For matrix and vector types will return true if any element is
inf.
@code{.c}
bool(vec2d);
bool(vec2f);
bool(vec3d);
bool(vec3f);
bool(vec4d);
bool(vec4f);
bool(mat3f);
bool(mat3d);
bool(mat4f);
bool(mat4d);
bool(double arg);
bool(float arg);
@endcode

@anchor axisnan
@par isnan
Returns whether the value is NaN (not-a-number).
@code{.c}
bool(vec2d);
bool(vec2f);
bool(vec3d);
bool(vec3f);
bool(vec4d);
bool(vec4f);
bool(mat3f);
bool(mat3d);
bool(mat4f);
bool(mat4d);
bool(double arg);
bool(float arg);
@endcode

@anchor axlength
@par length
Returns the length of the given vector
@code{.c}
double(vec2d v);
float(vec2f v);
double(vec2i v);
double(vec3d v);
float(vec3f v);
double(vec3i v);
double(vec4d v);
float(vec4f v);
double(vec4i v);
@endcode

@anchor axlengthsq
@par lengthsq
Returns the squared length of the given vector
@code{.c}
double(vec2d v);
float(vec2f v);
int32(vec2i v);
double(vec3d v);
float(vec3f v);
int32(vec3i v);
double(vec4d v);
float(vec4f v);
int32(vec4i v);
@endcode

@anchor axlerp
@par lerp
Performs bilinear interpolation between the values. If the amount is outside the range 0 to 1, the
values will be extrapolated linearly. If amount is 0, the first value is returned. If it is 1,
the second value is returned. This implementation is guaranteed to be monotonic.
@code{.c}
double(double a; double b; double amount);
float(float a; float b; float amount);
@endcode

@anchor axlog
@par log
Computes the natural (base e) logarithm of arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axlog10
@par log10
Computes the common (base-10) logarithm of arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axlog2
@par log2
Computes the binary (base-2) logarithm of arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axmax
@par max
Returns the larger of the given values.
@code{.c}
double(double a; double b);
float(float a; float b);
int64(int64 a; int64 b);
int32(int32 a; int32 b);
@endcode

@anchor axmin
@par min
Returns the smaller of the given values.
@code{.c}
double(double a; double b);
float(float a; float b);
int64(int64 a; int64 b);
int32(int32 a; int32 b);
@endcode

@anchor axnormalize
@par normalize
Returns the normalized result of the given vector.
@code{.c}
vec3d(vec3d v);
vec3f(vec3f v);
vec3d(vec3i v);
vec4d(vec4d v);
vec4f(vec4f v);
vec4d(vec4i v);
@endcode

@anchor axpolardecompose
@par polardecompose
Decompose an invertible 3x3 matrix into its orthogonal (unitary) matrix and symmetric matrix
components. If the determinant of the unitary matrix is 1 it is a rotation, otherwise if it is
-1 there is some part reflection.
@code{.c}
bool(mat3d input; mat3d unitary; mat3d symmetric);
bool(mat3f input; mat3f unitary; mat3f symmetric);
@endcode

@anchor axpostscale
@par postscale
Post-scale a given matrix by the provided vector.
@code{.c}
void(mat4d transform; vec3d vec);
void(mat4f transform; vec3f vec);
@endcode

@anchor axpow
@par pow
Computes the value of the first argument raised to the power of the second argument.
@code{.c}
double(double base; double exp);
float(float base; float exp);
double(double base; int32 exp);
@endcode

@anchor axprescale
@par prescale
Pre-scale a given matrix by the provided vector.
@code{.c}
void(mat4d transform; vec3d vec);
void(mat4f transform; vec3f vec);
@endcode

@anchor axpretransform
@par pretransform
Return the transformed vector by transpose of this matrix. This function is equivalent to
pre-multiplying the matrix.
@code{.c}
vec3d(mat3d vec; vec3d mat);
vec3f(mat3f vec; vec3f mat);
vec3d(mat4d vec; vec3d mat);
vec3f(mat4f vec; vec3f mat);
vec4d(mat4d vec; vec4d mat);
vec4f(mat4f vec; vec4f mat);
@endcode

@anchor axprint
@par print
Prints the input to the standard output stream. Warning: This will be run for every element.
@code{.c}
void(double n);
void(float n);
void(int64 n);
void(int32 n);
void(string n);
void(vec2i n);
void(vec2f n);
void(vec2d n);
void(vec3i n);
void(vec3f n);
void(vec3d n);
void(vec4i n);
void(vec4f n);
void(vec4d n);
void(mat3f n);
void(mat3d n);
void(mat4f n);
void(mat4d n);
@endcode

@anchor axradians
@par radians
Converts the number of degrees to radians.
@code{.c}
double(double degrees);
float(float degrees);
@endcode

@anchor axrand
@par rand
Creates a random number based on the provided seed. The number will be in the range of 0 to 1. The
same number is produced for the same seed. Note that if rand is called without a seed the
previous state of the random number generator is advanced for the currently processing element.
This state is determined by the last call to rand() with a given seed. If rand is not called
with a seed, the generator advances continuously across different elements which can produce
non-deterministic results. It is important that rand is always called with a seed at least once
for deterministic results.
@code{.c}
double();
double(double seed);
double(int64 seed);
@endcode

@anchor axrand32
@par rand32
Creates a random number based on the provided 32 bit seed. The number will be in the range of 0 to
1. The same number is produced for the same seed. NOTE: This function does not share the same
random number generator as rand(). rand32() may provide a higher throughput on some
architectures, but will produce different results to rand(). NOTE: If rand32 is called without
a seed the previous state of the random number generator is advanced for the currently
processing element. This state is determined by the last call to rand32() with a given seed. If
rand32 is not called with a seed, the generator advances continuously across different elements
which can produce non-deterministic results. It is important that rand32 is always called with
a seed at least once for deterministic results.
@code{.c}
double();
double(double seed);
double(int32 seed);
@endcode

@anchor axremovefromgroup
@par removefromgroup
Remove the current point from the given group name, effectively setting its membership to false.
This function has no effect if the group does not exist.
@code{.c}
void(string);
@endcode

@anchor axround
@par round
Computes the nearest integer value to arg (in floating-point format), rounding halfway cases away
from zero.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axsign
@par sign
Implements signum, determining if the input is negative, zero or positive. Returns -1 for a negative
number, 0 for the number zero, and +1 for a positive number. Note that this function does not
check the sign of floating point +/-0.0 values. See signbit().
@code{.c}
int32(double n);
int32(float n);
int32(int64 n);
int32(int32 n);
@endcode

@anchor axsignbit
@par signbit
Determines if the given floating point number input is negative. Returns true if arg is negative,
false otherwise. Will return true for -0.0, false for +0.0
@code{.c}
bool(double n);
bool(float n);
@endcode

@anchor axsimplexnoise
@par simplexnoise
Compute simplex noise at coordinates x, y and z. Coordinates which are not provided will be set to
0.
@code{.c}
double(double x);
double(double x; double y);
double(double x; double y; double z);
double(vec3d pos);
@endcode

@anchor axsin
@par sin
Computes the sine of arg (measured in radians).
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axsinh
@par sinh
Computes the hyperbolic sine of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axsort
@par sort
Returns the sorted result of the given vector.
@code{.c}
vec3d(vec3d v);
vec3f(vec3f v);
vec3i(vec3i v);
vec4d(vec4d v);
vec4f(vec4f v);
vec4i(vec4i v);
@endcode

@anchor axsqrt
@par sqrt
Computes the square root of arg.
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axtan
@par tan
Computes the tangent of arg (measured in radians).
@code{.c}
double(double n);
float(float n);
@endcode

@anchor axtanh
@par tanh
Computes the hyperbolic tangent of the input.
@code{.c}
double(double arg);
float(float arg);
@endcode

@anchor axtrace
@par trace
Return the trace of a matrix, the sum of the diagonal elements.
@code{.c}
double(mat3d mat);
float(mat3f mat);
double(mat4d mat);
float(mat4f mat);
@endcode

@anchor axtransform
@par transform
Return the transformed vector by the provided matrix. This function is equivalent to
post-multiplying the matrix, i.e. vec * mult.
@code{.c}
vec3d(vec3d vec; mat3d mat);
vec3f(vec3f vec; mat3f mat);
vec3d(vec3d vec; mat4d mat);
vec3f(vec3f vec; mat4f mat);
vec4d(vec4d vec; mat4d mat);
vec4f(vec4f vec; mat4f mat);
@endcode

@anchor axtranspose
@par transpose
Returns the transpose of a matrix
@code{.c}
mat3d(mat3d mat);
mat3f(mat3f mat);
mat4d(mat4d mat);
mat4f(mat4f mat);
@endcode

@anchor axtruncatemod
@par truncatemod
Truncated modulo, where the result of the division operator on (dividend / divisor) is truncated.
The remainder is thus calculated with D - d * trunc(D/d). This is equal to the C/C++ %
implementation. This is NOT equal to a%b in AX. See floormod(), euclideanmod().
@code{.c}
double(double dividend; double divisor);
float(float dividend; float divisor);
int64(int64 dividend; int64 divisor);
int32(int32 dividend; int32 divisor);
@endcode


</div>
*/