File: examplecode.txt

package info (click to toggle)
openvdb 10.0.1-3
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 23,092 kB
  • sloc: cpp: 293,853; ansic: 2,268; python: 776; objc: 714; sh: 527; yacc: 382; lex: 348; makefile: 176
file content (2073 lines) | stat: -rw-r--r-- 75,824 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
/**

@page codeExamples OpenVDB Cookbook

This section provides code snippets and some complete programs that
illustrate how to use OpenVDB and how to perform common tasks.


@section sCookbookContents Contents
- @ref sHelloWorld
- @ref sAllocatingGrids
- @ref sPopulatingGrids
- @ref sModifyingGrids
- @ref sStreamIO
- @ref sHandlingMetadata
  - @ref sAddingMetadata
  - @ref sGettingMetadata
  - @ref sRemovingMetadata
- @ref sIteration
  - @ref sNodeIterator
  - @ref sLeafIterator
  - @ref sValueIterator
  - @ref sIteratorRange
- @ref sInterpolation
  - @ref sSamplers
  - @ref sGridSampler
  - @ref sDualGridSampler
- @ref sXformTools
  - @ref sResamplingTools
  - @ref sValueXformTools
- @ref sCombiningGrids
  - @ref sCsgTools
  - @ref sCompTools
  - @ref sCombineTools
- @ref sGenericProg
  - @ref sTypedGridMethods
- @ref sPointsHelloWorld
- @ref sPointsConversion
- @ref sPointsGeneration
- @ref sPointIterationFiltering
  - @ref sPointIteration
  - @ref sPointGroups
  - @ref sPointFiltering
  - @ref sPointCustomFiltering
- @ref sPointStride
  - @ref sConstantStride
- @ref sPointMove
  - @ref sPointAdvect
  - @ref sPointCustomDeformer

@section sHelloWorld “Hello, World” for OpenVDB
This is a very simple example showing how to create a grid and access
its voxels.  OpenVDB supports both random access to voxels by coordinates
and sequential access by means of iterators.  This example illustrates both
types of access:
@code
#include <openvdb/openvdb.h>
#include <iostream>

int main()
{
    // Initialize the OpenVDB library.  This must be called at least
    // once per program and may safely be called multiple times.
    openvdb::initialize();

    // Create an empty floating-point grid with background value 0.
    openvdb::FloatGrid::Ptr grid = openvdb::FloatGrid::create();

    std::cout << "Testing random access:" << std::endl;

    // Get an accessor for coordinate-based access to voxels.
    openvdb::FloatGrid::Accessor accessor = grid->getAccessor();

    // Define a coordinate with large signed indices.
    openvdb::Coord xyz(1000, -200000000, 30000000);

    // Set the voxel value at (1000, -200000000, 30000000) to 1.
    accessor.setValue(xyz, 1.0);

    // Verify that the voxel value at (1000, -200000000, 30000000) is 1.
    std::cout << "Grid" << xyz << " = " << accessor.getValue(xyz) << std::endl;

    // Reset the coordinates to those of a different voxel.
    xyz.reset(1000, 200000000, -30000000);

    // Verify that the voxel value at (1000, 200000000, -30000000) is
    // the background value, 0.
    std::cout << "Grid" << xyz << " = " << accessor.getValue(xyz) << std::endl;

    // Set the voxel value at (1000, 200000000, -30000000) to 2.
    accessor.setValue(xyz, 2.0);

    // Set the voxels at the two extremes of the available coordinate space.
    // For 32-bit signed coordinates these are (-2147483648, -2147483648, -2147483648)
    // and (2147483647, 2147483647, 2147483647).
    accessor.setValue(openvdb::Coord::min(), 3.0f);
    accessor.setValue(openvdb::Coord::max(), 4.0f);

    std::cout << "Testing sequential access:" << std::endl;

    // Print all active ("on") voxels by means of an iterator.
    for (openvdb::FloatGrid::ValueOnCIter iter = grid->cbeginValueOn(); iter; ++iter) {
        std::cout << "Grid" << iter.getCoord() << " = " << *iter << std::endl;
    }
}
@endcode
Output:
@code
Testing random access:
Grid[1000, -200000000, 30000000] = 1
Grid[1000, 200000000, -30000000] = 0
Testing sequential access:
Grid[-2147483648, -2147483648, -2147483648] = 3
Grid[1000, -200000000, 30000000] = 1
Grid[1000, 200000000, -30000000] = 2
Grid[2147483647, 2147483647, 2147483647] = 4
@endcode



@section sAllocatingGrids Creating and writing a grid
This example is a complete program that illustrates some of the basic steps
to create grids and write them to disk.  (See @ref sPopulatingGrids,
below, for the implementation of the @b makeSphere function.)
@code
#include <openvdb/openvdb.h>

int main()
{
    openvdb::initialize();

    // Create a shared pointer to a newly-allocated grid of a built-in type:
    // in this case, a FloatGrid, which stores one single-precision floating point
    // value per voxel.  Other built-in grid types include BoolGrid, DoubleGrid,
    // Int32Grid and Vec3SGrid (see openvdb.h for the complete list).
    // The grid comprises a sparse tree representation of voxel data,
    // user-supplied metadata and a voxel space to world space transform,
    // which defaults to the identity transform.
    openvdb::FloatGrid::Ptr grid =
        openvdb::FloatGrid::create(/*background value=*/2.0);

    // Populate the grid with a sparse, narrow-band level set representation
    // of a sphere with radius 50 voxels, located at (1.5, 2, 3) in index space.
    makeSphere(*grid, /*radius=*/50.0, /*center=*/openvdb::Vec3f(1.5, 2, 3));

    // Associate some metadata with the grid.
    grid->insertMeta("radius", openvdb::FloatMetadata(50.0));

    // Associate a scaling transform with the grid that sets the voxel size
    // to 0.5 units in world space.
    grid->setTransform(
        openvdb::math::Transform::createLinearTransform(/*voxel size=*/0.5));

    // Identify the grid as a level set.
    grid->setGridClass(openvdb::GRID_LEVEL_SET);

    // Name the grid "LevelSetSphere".
    grid->setName("LevelSetSphere");

    // Create a VDB file object.
    openvdb::io::File file("mygrids.vdb");

    // Add the grid pointer to a container.
    openvdb::GridPtrVec grids;
    grids.push_back(grid);

    // Write out the contents of the container.
    file.write(grids);
    file.close();
}
@endcode

The OpenVDB library includes optimized routines for many common tasks.
For example, most of the steps given above are encapsulated in the function
@vdblink::tools::createLevelSetSphere() tools::createLevelSetSphere@endlink, so that
the above can be written simply as follows:

@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/LevelSetSphere.h>

int main()
{
    openvdb::initialize();

    // Create a FloatGrid and populate it with a narrow-band
    // signed distance field of a sphere.
    openvdb::FloatGrid::Ptr grid =
        openvdb::tools::createLevelSetSphere<openvdb::FloatGrid>(
            /*radius=*/50.0, /*center=*/openvdb::Vec3f(1.5, 2, 3),
            /*voxel size=*/0.5, /*width=*/4.0);

    // Associate some metadata with the grid.
    grid->insertMeta("radius", openvdb::FloatMetadata(50.0));

    // Name the grid "LevelSetSphere".
    grid->setName("LevelSetSphere");

    // Create a VDB file object and write out the grid.
    openvdb::io::File("mygrids.vdb").write({grid});
}
@endcode



@section sPopulatingGrids Populating a grid with values
The following code is templated so as to operate on grids containing values
of any scalar type, provided that the value type supports negation and
comparison.  Note that this algorithm is only meant as an example and should
never be used in production; use the much more efficient routines in
tools/LevelSetSphere.h instead.

See @ref sGenericProg for more on processing grids of arbitrary type.
@anchor makeSphereCode
@code
// Populate the given grid with a narrow-band level set representation of a sphere.
// The width of the narrow band is determined by the grid's background value.
// (Example code only; use tools::createSphereSDF() in production.)
template<class GridType>
void
makeSphere(GridType& grid, float radius, const openvdb::Vec3f& c)
{
    using ValueT = typename GridType::ValueType;

    // Distance value for the constant region exterior to the narrow band
    const ValueT outside = grid.background();

    // Distance value for the constant region interior to the narrow band
    // (by convention, the signed distance is negative in the interior of
    // a level set)
    const ValueT inside = -outside;

    // Use the background value as the width in voxels of the narrow band.
    // (The narrow band is centered on the surface of the sphere, which
    // has distance 0.)
    int padding = int(openvdb::math::RoundUp(openvdb::math::Abs(outside)));
    // The bounding box of the narrow band is 2*dim voxels on a side.
    int dim = int(radius + padding);

    // Get a voxel accessor.
    typename GridType::Accessor accessor = grid.getAccessor();

    // Compute the signed distance from the surface of the sphere of each
    // voxel within the bounding box and insert the value into the grid
    // if it is smaller in magnitude than the background value.
    openvdb::Coord ijk;
    int &i = ijk[0], &j = ijk[1], &k = ijk[2];
    for (i = c[0] - dim; i < c[0] + dim; ++i) {
        const float x2 = openvdb::math::Pow2(i - c[0]);
        for (j = c[1] - dim; j < c[1] + dim; ++j) {
            const float x2y2 = openvdb::math::Pow2(j - c[1]) + x2;
            for (k = c[2] - dim; k < c[2] + dim; ++k) {

                // The distance from the sphere surface in voxels
                const float dist = openvdb::math::Sqrt(x2y2
                    + openvdb::math::Pow2(k - c[2])) - radius;

                // Convert the floating-point distance to the grid's value type.
                ValueT val = ValueT(dist);

                // Only insert distances that are smaller in magnitude than
                // the background value.
                if (val < inside || outside < val) continue;

                // Set the distance for voxel (i,j,k).
                accessor.setValue(ijk, val);
            }
        }
    }

    // Propagate the outside/inside sign information from the narrow band
    // throughout the grid.
    openvdb::tools::signedFloodFill(grid.tree());
}
@endcode



@section sModifyingGrids Reading and modifying a grid
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/ChangeBackground.h>

openvdb::initialize();

// Create a VDB file object.
openvdb::io::File file("mygrids.vdb");

// Open the file.  This reads the file header, but not any grids.
file.open();

// Loop over all grids in the file and retrieve a shared pointer
// to the one named "LevelSetSphere".  (This can also be done
// more simply by calling file.readGrid("LevelSetSphere").)
openvdb::GridBase::Ptr baseGrid;
for (openvdb::io::File::NameIterator nameIter = file.beginName();
    nameIter != file.endName(); ++nameIter)
{
    // Read in only the grid we are interested in.
    if (nameIter.gridName() == "LevelSetSphere") {
        baseGrid = file.readGrid(nameIter.gridName());
    } else {
        std::cout << "skipping grid " << nameIter.gridName() << std::endl;
    }
}

file.close();

// From the example above, "LevelSetSphere" is known to be a FloatGrid,
// so cast the generic grid pointer to a FloatGrid pointer.
openvdb::FloatGrid::Ptr grid = openvdb::gridPtrCast<openvdb::FloatGrid>(baseGrid);

// Convert the level set sphere to a narrow-band fog volume, in which
// interior voxels have value 1, exterior voxels have value 0, and
// narrow-band voxels have values varying linearly from 0 to 1.

const float outside = grid->background();
const float width = 2.0 * outside;

// Visit and update all of the grid's active values, which correspond to
// voxels on the narrow band.
for (openvdb::FloatGrid::ValueOnIter iter = grid->beginValueOn(); iter; ++iter) {
    float dist = iter.getValue();
    iter.setValue((outside - dist) / width);
}

// Visit all of the grid's inactive tile and voxel values and update the values
// that correspond to the interior region.
for (openvdb::FloatGrid::ValueOffIter iter = grid->beginValueOff(); iter; ++iter) {
    if (iter.getValue() < 0.0) {
        iter.setValue(1.0);
        iter.setValueOff();
    }
}

// Set exterior voxels to 0.
openvdb::tools::changeBackground(grid->tree(), 0.0);
@endcode



@section sStreamIO Stream I/O
The @vdblink::io::Stream io::Stream@endlink class allows grids
to be written to and read from streams that do not support random access,
with the restriction that all grids must be written or read at once.
(With @vdblink::io::File io::File@endlink,
grids can be read individually by name, provided that they were originally
written with @b io::File, rather than streamed to a file.)

@code
#include <openvdb/openvdb.h>
#include <openvdb/io/Stream.h>

openvdb::initialize();

openvdb::GridPtrVecPtr grids(new GridPtrVec);
grids->push_back(...);

// Stream the grids to a string.
std::ostringstream ostr(std::ios_base::binary);
openvdb::io::Stream(ostr).write(*grids);

// Stream the grids to a file.
std::ofstream ofile("mygrids.vdb", std::ios_base::binary);
openvdb::io::Stream(ofile).write(*grids);

// Stream in grids from a string.
// Note that io::Stream::getGrids() returns a shared pointer
// to an openvdb::GridPtrVec.
std::istringstream istr(ostr.str(), std::ios_base::binary);
openvdb::io::Stream strm(istr);
grids = strm.getGrids();

// Stream in grids from a file.
std::ifstream ifile("mygrids.vdb", std::ios_base::binary);
grids = openvdb::io::Stream(ifile).getGrids();
@endcode



@section sHandlingMetadata Handling metadata
Metadata of various types (string, floating point, integer, etc.&mdash;see
Metadata.h for more) can be attached both to individual <b>Grid</b>s
and to files on disk.
The examples that follow refer to <b>Grid</b>s, but the usage is the same
for the @vdblink::MetaMap MetaMap@endlink that can optionally be supplied
to a @vdblink::io::File::write() file@endlink or
@vdblink::io::Stream::write() stream@endlink for writing.

@subsection sAddingMetadata Adding metadata
The @vdblink::Grid::insertMeta() Grid::insertMeta@endlink method either
adds a new (@em name, @em value) pair if the name is unique, or overwrites
the existing value if the name matches an existing one.  An existing value
cannot be overwritten with a new value of a different type; the old metadata
must be removed first.
@code
#include <openvdb/openvdb.h>

openvdb::Vec3SGrid::Ptr grid = openvdb::Vec3SGrid::create();

grid->insertMeta("vector type", openvdb::StringMetadata("covariant (gradient)"));
grid->insertMeta("radius", openvdb::FloatMetadata(50.0));
grid->insertMeta("center", openvdb::Vec3SMetadata(openvdb::Vec3S(10, 15, 10)));

// OK, overwrites existing value:
grid->insertMeta("center", openvdb::Vec3SMetadata(openvdb::Vec3S(10.5, 15, 30)));

// Error (throws openvdb::TypeError), can't overwrite a value of type Vec3S
// with a value of type float:
grid->insertMeta("center", openvdb::FloatMetadata(0.0));
@endcode

@subsection sGettingMetadata Retrieving metadata
Call @vdblink::Grid::metaValue() Grid::metaValue@endlink to retrieve
the value of metadata of a known type.  For example,
@code
std::string s = grid->metaValue<std::string>("vector type");

float r = grid->metaValue<float>("radius");

// Error (throws openvdb::TypeError), can't read a value of type Vec3S as a float:
float center = grid->metaValue<float>("center");
@endcode

@vdblink::Grid::beginMeta() Grid::beginMeta@endlink and
@vdblink::Grid::endMeta() Grid::endMeta@endlink return @b std::map
iterators over all of the metadata associated with a grid:
@code
for (openvdb::MetaMap::MetaIterator iter = grid->beginMeta();
    iter != grid->endMeta(); ++iter)
{
    const std::string& name = iter->first;
    openvdb::Metadata::Ptr value = iter->second;
    std::string valueAsString = value->str();
    std::cout << name << " = " << valueAsString << std::endl;
}
@endcode

If the type of the metadata is not known, use the
@vdblink::Grid::operator[]() index operator@endlink to retrieve
a shared pointer to a generic @vdblink::Metadata Metadata@endlink object,
then query its type:
@code
openvdb::Metadata::Ptr metadata = grid["center"];

// See typenameAsString<T>() in Types.h for a list of strings that can be
// returned by the typeName() method.
std::cout << metadata->typeName() << std::endl; // prints "vec3s"

// One way to process metadata of arbitrary types:
if (metadata->typeName() == openvdb::StringMetadata::staticTypeName()) {
    std::string s = static_cast<openvdb::StringMetadata&>(*metadata).value();
} else if (metadata->typeName() == openvdb::FloatMetadata::staticTypeName()) {
    float f = static_cast<openvdb::FloatMetadata&>(*metadata).value();
} else if (metadata->typeName() == openvdb::Vec3SMetadata::staticTypeName()) {
    openvdb::Vec3S v = static_cast<openvdb::Vec3SMetadata&>(*metadata).value();
}
@endcode

@subsection sRemovingMetadata Removing metadata
@vdblink::Grid::removeMeta() Grid::removeMeta@endlink removes metadata
by name.  If the given name is not found, the call has no effect.
@code
grid->removeMeta("vector type");
grid->removeMeta("center");
grid->removeMeta("vector type"); // OK (no effect)
@endcode



@section sIteration Iteration

@subsection sNodeIterator Node Iterator
A @vdblink::tree::Tree::NodeIter Tree::NodeIter@endlink visits each node in
a tree exactly once.  In the following example, the tree is known to have a
depth of 4; see the @ref treeNodeIterRef "Overview" for a discussion of
why node iteration can be complicated when the tree depth is not known.
There are techniques (beyond the scope of this Cookbook) for operating
on trees of arbitrary depth.
@code
#include <openvdb/openvdb.h>

using GridType = openvdb::FloatGrid;
using TreeType = GridType::TreeType;
using RootType = TreeType::RootNodeType;   // level 3 RootNode
assert(RootType::LEVEL == 3);
using Int1Type = RootType::ChildNodeType;  // level 2 InternalNode
using Int2Type = Int1Type::ChildNodeType;  // level 1 InternalNode
using LeafType = TreeType::LeafNodeType;   // level 0 LeafNode

GridType::Ptr grid = ...;

for (TreeType::NodeIter iter = grid->tree().beginNode(); iter; ++iter) {
    switch (iter.getDepth()) {
    case 0: { RootType* node = nullptr; iter.getNode(node); if (node) ...; break; }
    case 1: { Int1Type* node = nullptr; iter.getNode(node); if (node) ...; break; }
    case 2: { Int2Type* node = nullptr; iter.getNode(node); if (node) ...; break; }
    case 3: { LeafType* node = nullptr; iter.getNode(node); if (node) ...; break; }
    }
}
@endcode


@subsection sLeafIterator Leaf Node Iterator
A @vdblink::tree::Tree::LeafIter Tree::LeafIter@endlink visits each leaf
node in a tree exactly once.
@code
#include <openvdb/openvdb.h>

using GridType = openvdb::FloatGrid;
using TreeType = GridType::TreeType;

GridType::Ptr grid = ...;

// Iterate over references to const LeafNodes.
for (TreeType::LeafCIter iter = grid->tree().cbeginLeaf(); iter; ++iter) {
    const TreeType::LeafNodeType& leaf = *iter;
    ...
}
// Iterate over references to non-const LeafNodes.
for (TreeType::LeafIter iter = grid->tree().beginLeaf(); iter; ++iter) {
    TreeType::LeafNodeType& leaf = *iter;
    ...
}
// Iterate over pointers to const LeafNodes.
for (TreeType::LeafCIter iter = grid->tree().cbeginLeaf(); iter; ++iter) {
    const TreeType::LeafNodeType* leaf = iter.getLeaf();
    ...
}
// Iterate over pointers to non-const LeafNodes.
for (TreeType::LeafIter iter = grid->tree().beginLeaf(); iter; ++iter) {
    TreeType::LeafNodeType* leaf = iter.getLeaf();
    ...
}
@endcode
See the @ref treeLeafIterRef "Overview" for more on leaf node iterators.


@subsection sValueIterator Value Iterator
A @vdblink::tree::Tree::ValueAllIter Tree::ValueIter@endlink visits each
@ref subsecValues "value" (both tile and voxel) in a tree exactly once.
Iteration can be unrestricted or can be restricted to only active values
or only inactive values.  Note that tree-level value iterators (unlike
the node iterators described above) can be accessed either through a
grid's tree or directly through the grid itself, as in the following example:
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/ChangeBackground.h>

using GridType = openvdb::Vec3SGrid;
using TreeType = GridType::TreeType;

GridType::Ptr grid = ...;

// Iterate over all active values but don't allow them to be changed.
for (GridType::ValueOnCIter iter = grid->cbeginValueOn(); iter.test(); ++iter) {
    const openvdb::Vec3f& value = *iter;

    // Print the coordinates of all voxels whose vector value has
    // a length greater than 10, and print the bounding box coordinates
    // of all tiles whose vector value length is greater than 10.
    if (value.length() > 10.0) {
        if (iter.isVoxelValue()) {
            std::cout << iter.getCoord() << std::endl;
        } else {
            openvdb::CoordBBox bbox;
            iter.getBoundingBox(bbox);
            std::cout << bbox << std::endl;
        }
    }
}

// Iterate over and normalize all inactive values.
for (GridType::ValueOffIter iter = grid->beginValueOff(); iter.test(); ++iter) {
    openvdb::Vec3f value = *iter;
    value.normalize();
    iter.setValue(value);
}

// Normalize the (inactive) background value as well.
openvdb::tools::changeBackground(grid->tree(), grid->background().unit());
@endcode
See the @ref treeValueIterRef "Overview" for more on value iterators.


@subsection sIteratorRange Iterator Range
A @vdblink::tree::IteratorRange tree::IteratorRange@endlink wraps any grid or
tree iterator and gives the iterator
<A HREF="http://www.threadingbuildingblocks.org">TBB</A> splittable range
semantics, so that it can be used as the Range argument to functions like
@b tbb::parallel_for and @b tbb::parallel_reduce.
(This is in fact how @vdblink::tools::foreach() tools::foreach@endlink and
@vdblink::tools::transformValues() tools::transformValues@endlink are
implemented; see @ref sValueXformTools, below, for more on those functions.)
There is some overhead to splitting, since grid and tree iterators are not
random-access, but the overhead should typically be negligible compared with
the amount of work done per subrange.

The following is a complete program that uses
@vdblink::tree::IteratorRange tree::IteratorRange@endlink.
The program iterates in parallel over the leaf nodes of a tree (by splitting
the iteration range of a
@vdblink::tree::Tree::LeafCIter Tree::LeafCIter@endlink) and computes
the total number of active leaf-level voxels by incrementing a global,
thread-safe counter.
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/LevelSetSphere.h>
#include <tbb/parallel_for.h>
#include <atomic>
#include <cassert>
#include <iostream>

// Global active voxel counter, atomically updated from multiple threads
std::atomic<openvdb::Index64> activeLeafVoxelCount;

// Functor for use with tbb::parallel_for() that operates on a grid's leaf nodes
template<typename GridType>
struct LeafProcessor
{
    using TreeType = typename GridType::TreeType;
    using LeafNode = typename TreeType::LeafNodeType;
    // Define an IteratorRange that splits the iteration space of a leaf iterator.
    using IterRange = openvdb::tree::IteratorRange<typename TreeType::LeafCIter>;

    void operator()(IterRange& range) const
    {
        // Note: this code must be thread-safe.

        // Iterate over a subrange of the leaf iterator's iteration space.
        for ( ; range; ++range) {
            // Retrieve the leaf node to which the iterator is pointing.
            const LeafNode& leaf = *range.iterator();
            // Update the global counter.
            activeLeafVoxelCount.fetch_add(leaf.onVoxelCount());
        }
    }
};


int
main()
{
    openvdb::initialize();

    // Generate a level set grid.
    openvdb::FloatGrid::Ptr grid =
        openvdb::tools::createLevelSetSphere<openvdb::FloatGrid>(/*radius=*/20.0,
            /*center=*/openvdb::Vec3f(1.5, 2, 3), /*voxel size=*/0.5);

    // Construct a functor for use with tbb::parallel_for()
    // that processes the leaf nodes of a FloatGrid.
    using FloatLeafProc = LeafProcessor<openvdb::FloatGrid>;
    FloatLeafProc proc;

    // Wrap a leaf iterator in an IteratorRange.
    FloatLeafProc::IterRange range(grid->tree().cbeginLeaf());
    // Iterate over leaf nodes in parallel.
    tbb::parallel_for(range, proc);

    std::cout << activeLeafVoxelCount << " active leaf voxels" << std::endl;

    // The computed voxel count should equal the grid's active voxel count,
    // since all of the active voxels in a level set grid are stored at the
    // leaf level (that is, there are no active tiles in a level set grid).
    assert(activeLeafVoxelCount == grid->activeVoxelCount());
}
@endcode



@section sInterpolation Interpolation of grid values

Applications such as rendering require evaluation of grids at arbitrary,
fractional coordinates in either index or world space.
This is achieved, of course, by interpolating between known grid values
at neighboring whole-voxel locations, that is, at integer coordinates
in index space.
The following sections introduce OpenVDB&rsquo;s various interpolation schemes
as well as the @ref sGridSampler and @ref sDualGridSampler classes for
efficient, continuous sampling of grids.
In most cases, @b GridSampler is the preferred interface for interpolation,
but note that when a fixed transform is to be applied to all values in a grid
(that is, the grid is to be resampled), it is both easier and more efficient to
use the multithreaded @vdblink::tools::GridTransformer GridTransformer@endlink
class, introduced in @ref sXformTools.


@subsection sSamplers Index-space samplers
OpenVDB offers low-level zero-, first- and second-order interpolators
@vdblink::tools::PointSampler PointSampler@endlink,
@vdblink::tools::BoxSampler BoxSampler@endlink and
@vdblink::tools::QuadraticSampler QuadraticSampler@endlink, in addition to the
variants @vdblink::tools::StaggeredPointSampler StaggeredPointSampler@endlink,
@vdblink::tools::StaggeredBoxSampler StaggeredBoxSampler@endlink and
@vdblink::tools::StaggeredQuadraticSampler StaggeredQuadraticSampler@endlink
for @ref sStaggered "staggered" velocity grids.

@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/Interpolation.h>

const GridType grid = ...;

// Choose fractional coordinates in index space.
const openvdb::Vec3R ijk(10.5, -100.2, 50.3);

// Compute the value of the grid at ijk via nearest-neighbor (zero-order)
// interpolation.
GridType::ValueType v0 = openvdb::tools::PointSampler::sample(grid.tree(), ijk);

// Compute the value via trilinear (first-order) interpolation.
GridType::ValueType v1 = openvdb::tools::BoxSampler::sample(grid.tree(), ijk);

// Compute the value via triquadratic (second-order) interpolation.
GridType::ValueType v2 = openvdb::tools::QuadraticSampler::sample(grid.tree(), ijk);
@endcode

These examples invoke the @vdblink::tree::Tree::getValue() getValue@endlink
method on the grid&rsquo;s tree to fetch sample values in the neighborhood
of @ijk.
Accessing values via the tree is thread-safe due to the lack of caching,
but for that reason it is also suboptimal.
For better performance, use @ref subsecValueAccessor "value accessors"
(but be careful to use one accessor per computational thread):
@code
GridType::ConstAccessor accessor = grid.getConstAccessor();

GridType::ValueType v0 = openvdb::tools::PointSampler::sample(accessor, ijk);
GridType::ValueType v1 = openvdb::tools::BoxSampler::sample(accessor, ijk);
GridType::ValueType v2 = openvdb::tools::QuadraticSampler::sample(accessor, ijk);
@endcode

Another issue with these low-level interpolators is that they operate only
in index space.
To interpolate in world space, use the higher-level classes discussed below.


@subsection sGridSampler Grid Sampler

The @vdblink::tools::GridSampler GridSampler@endlink class allows for
continuous sampling in both world space and index space and can be used
with grids, trees or value accessors.

@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/Interpolation.h>

const GridType grid = ...;

// Instantiate the GridSampler template on the grid type and on a box sampler
// for thread-safe but uncached trilinear interpolation.
openvdb::tools::GridSampler<GridType, openvdb::tools::BoxSampler> sampler(grid);

// Compute the value of the grid at fractional coordinates in index space.
GridType::ValueType indexValue = sampler.isSample(openvdb::Vec3R(10.5, -100.2, 50.3));

// Compute the value of the grid at a location in world space.
GridType::ValueType worldValue = sampler.wsSample(openvdb::Vec3R(0.25, 1.4, -1.1));

// Request a value accessor for accelerated access.
// (Because value accessors employ a cache, it is important to declare
// one accessor per thread.)
GridType::ConstAccessor accessor = grid.getConstAccessor();

// Instantiate the GridSampler template on the accessor type and on
// a box sampler for accelerated trilinear interpolation.
openvdb::tools::GridSampler<GridType::ConstAccessor, openvdb::tools::BoxSampler>
    fastSampler(accessor, grid.transform());

// Compute the value of the grid at fractional coordinates in index space.
indexValue = fastSampler.isSample(openvdb::Vec3R(10.5, -100.2, 50.3));

// Compute the value of the grid at a location in world space.
worldValue = fastSampler.wsSample(openvdb::Vec3R(0.25, 1.4, -1.1));
@endcode
Note that when constructing a @b GridSampler with either a tree or a
value accessor, you must also supply an index-to-world transform.
When constructing a @b GridSampler with a grid, the grid's transform is used
automatically.


@subsection sDualGridSampler Dual Grid Sampler

It might sometimes be necessary to interpolate values from a source grid
into the index space of a target grid.
If this transformation is to be applied to all of the values in the source grid,
then it is best to use the tools in GridTransformer.h.
For other cases, consider using the
@vdblink::tools::DualGridSampler DualGridSampler@endlink class.
Like the @b GridSampler class, this class can be used with grids, trees
or value accessors.
In addition, @b DualGridSampler checks if the source and target grids
are aligned (that is, they have the same transform), in which case
it avoids unnecessary interpolation.

@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/Interpolation.h>

const GridType sourceGrid = ...;

// Instantiate the DualGridSampler template on the grid type and on
// a box sampler for thread-safe but uncached trilinear interpolation.
openvdb::tools::DualGridSampler<GridType, openvdb::tools::BoxSampler>
    sampler(sourceGrid, targetGrid.constTransform());

// Compute the value of the source grid at a location in the
// target grid's index space.
GridType::ValueType value = sampler(openvdb::Coord(-23, -50, 202));

// Request a value accessor for accelerated access to the source grid.
// (Because value accessors employ a cache, it is important to declare
// one accessor per thread.)
GridType::ConstAccessor accessor = sourceGrid.getConstAccessor();

// Instantiate the DualGridSampler template on the accessor type and on
// a box sampler for accelerated trilinear interpolation.
openvdb::tools::DualGridSampler<GridType::ConstAccessor, openvdb::tools::BoxSampler>
    fastSampler(accessor, sourceGrid.constTransform(), targetGrid.constTransform());

// Compute the value of the source grid at a location in the
// target grid's index space.
value = fastSampler(openvdb::Coord(-23, -50, 202));
@endcode
Note that interpolation is done by invoking a @b DualGridSampler as a functor,
in contrast to the more general-purpose @b GridSampler.



@section sXformTools Transforming grids

@subsection sResamplingTools Geometric transformation
A @vdblink::tools::GridTransformer GridTransformer@endlink applies a
geometric transformation to an input grid using one of several sampling
schemes, and stores the result in an output grid.  The operation is
multithreaded by default, though threading can be disabled by calling
@vdblink::tools::GridTransformer::setThreaded() setThreaded(false)@endlink.
A @b GridTransformer object can be reused to apply the same transformation
to multiple input grids, optionally using different sampling schemes.
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/GridTransformer.h>

openvdb::FloatGrid::Ptr
    sourceGrid = ...
    targetGrid = ...;

// Get the source and target grids' index space to world space transforms.
const openvdb::math::Transform
    &sourceXform = sourceGrid->transform(),
    &targetXform = targetGrid->transform();
// Compute a source grid to target grid transform.
// (For this example, we assume that both grids' transforms are linear,
// so that they can be represented as 4 x 4 matrices.)
openvdb::Mat4R xform =
    sourceXform.baseMap()->getAffineMap()->getMat4() *
    targetXform.baseMap()->getAffineMap()->getMat4().inverse();

// Create the transformer.
openvdb::tools::GridTransformer transformer(xform);

// Resample using nearest-neighbor interpolation.
transformer.transformGrid<openvdb::tools::PointSampler, openvdb::FloatGrid>(
    *sourceGrid, *targetGrid);

// Resample using trilinear interpolation.
transformer.transformGrid<openvdb::tools::BoxSampler, openvdb::FloatGrid>(
    *sourceGrid, *targetGrid);

// Resample using triquadratic interpolation.
transformer.transformGrid<openvdb::tools::QuadraticSampler, openvdb::FloatGrid>(
    *sourceGrid, *targetGrid);

// Prune the target tree for optimal sparsity.
targetGrid->tree().prune();
@endcode


@subsection sValueXformTools Value transformation

This example uses @vdblink::tools::foreach() tools::foreach@endlink to
multiply all values (both tile and voxel and both active and inactive)
of a scalar, floating-point grid by two:
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/ValueTransformer.h>

// Define a local function that doubles the value to which the given
// value iterator points.
struct Local {
    static inline void op(const openvdb::FloatGrid::ValueAllIter& iter) {
        iter.setValue(*iter * 2);
    }
};

openvdb::FloatGrid::Ptr grid = ...;

// Apply the function to all values.
openvdb::tools::foreach(grid->beginValueAll(), Local::op);
@endcode

This example uses @vdblink::tools::foreach() tools::foreach@endlink to
rotate all active vectors of a vector-valued grid by 45&deg; about the
@em y axis:
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/ValueTransformer.h>

// Define a functor that multiplies the vector to which the given
// value iterator points by a fixed matrix.
struct MatMul {
    openvdb::math::Mat3s M;
    MatMul(const openvdb::math::Mat3s& mat): M(mat) {}
    inline void operator()(const openvdb::Vec3SGrid::ValueOnIter& iter) const {
        iter.setValue(M.transform(*iter));
    }
};

openvdb::Vec3SGrid::Ptr grid = ...;

// Construct the rotation matrix.
openvdb::math::Mat3s rot45 =
    openvdb::math::rotation<openvdb::math::Mat3s>(openvdb::math::Y_AXIS, openvdb::math::pi<double>()/4.0);

// Apply the functor to all active values.
openvdb::tools::foreach(grid->beginValueOn(), MatMul(rot45));
@endcode

@vdblink::tools::transformValues() tools::transformValues@endlink is
similar to @vdblink::tools::foreach() tools::foreach@endlink, but it populates
an output grid with transformed values from an input grid that may have a
different value type.  The following example populates a scalar,
floating-point grid with the lengths of all active vectors from a
vector-valued grid
(like @vdblink::tools::magnitude() tools::magnitude@endlink):
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/ValueTransformer.h>

// Define a local function that, given an iterator pointing to a vector value
// in an input grid, sets the corresponding tile or voxel in a scalar,
// floating-point output grid to the length of the vector.
struct Local {
    static inline void op(
        const openvdb::Vec3SGrid::ValueOnCIter& iter,
        openvdb::FloatGrid::ValueAccessor& accessor)
    {
        if (iter.isVoxelValue()) { // set a single voxel
            accessor.setValue(iter.getCoord(), iter->length());
        } else { // fill an entire tile
            openvdb::CoordBBox bbox;
            iter.getBoundingBox(bbox);
            accessor.getTree().fill(bbox, iter->length());
        }
    }
};

openvdb::Vec3SGrid::ConstPtr inGrid = ...;

// Create a scalar grid to hold the transformed values.
openvdb::FloatGrid::Ptr outGrid = openvdb::FloatGrid::create();

// Populate the output grid with transformed values.
openvdb::tools::transformValues(inGrid->cbeginValueOn(), *outGrid, Local::op);
@endcode



@section sCombiningGrids Combining grids

The following examples show various ways in which a pair of grids can be
combined in @ref subsecVoxSpace "index space".  The assumption is that index
coordinates @ijk in both grids correspond to the same physical, @ref
subsecWorSpace "world space" location.  When the grids have different
transforms, it is usually necessary to first @ref sResamplingTools "resample"
one grid into the other grid's @ref subsecVoxSpace "index space".

@subsection sCsgTools Level set CSG operations
The level set CSG functions in tools/Composite.h operate on pairs of grids
of the same type, using sparse traversal for efficiency.  These operations
always leave the second grid empty.
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/Composite.h>

// Two grids of the same type containing level set volumes
openvdb::FloatGrid::Ptr gridA(...), gridB(...);

// Save copies of the two grids; CSG operations always modify
// the A grid and leave the B grid empty.
openvdb::FloatGrid::ConstPtr
    copyOfGridA = gridA->deepCopy(),
    copyOfGridB = gridB->deepCopy();

// Compute the union (A u B) of the two level sets.
openvdb::tools::csgUnion(*gridA, *gridB);

// Restore the original level sets.
gridA = copyOfGridA->deepCopy();
gridB = copyOfGridB->deepCopy();

// Compute the intersection (A n B) of the two level sets.
openvdb::tools::csgIntersection(*gridA, *gridB);

// Restore the original level sets.
gridA = copyOfGridA->deepCopy();
gridB = copyOfGridB->deepCopy();

// Compute the difference (A / B) of the two level sets.
openvdb::tools::csgDifference(*gridA, *gridB);
@endcode


@subsection sCompTools Compositing operations
Like the @ref sCsgTools "CSG operations", the compositing functions in
tools/Composite.h operate on pairs of grids of the same type, and they
always leave the second grid empty.
@code
#include <openvdb/openvdb.h>
#include <openvdb/tools/Composite.h>

// Two grids of the same type
openvdb::FloatGrid::Ptr gridA = ..., gridB = ...;

// Save copies of the two grids; compositing operations always
// modify the A grid and leave the B grid empty.
openvdb::FloatGrid::ConstPtr
    copyOfGridA = gridA->deepCopy(),
    copyOfGridB = gridB->deepCopy();

// At each voxel, compute a = max(a, b).
openvdb::tools::compMax(*gridA, *gridB);

// Restore the original grids.
gridA = copyOfGridA->deepCopy();
gridB = copyOfGridB->deepCopy();

// At each voxel, compute a = min(a, b).
openvdb::tools::compMin(*gridA, *gridB);

// Restore the original grids.
gridA = copyOfGridA->deepCopy();
gridB = copyOfGridB->deepCopy();

// At each voxel, compute a = a + b.
openvdb::tools::compSum(*gridA, *gridB);

// Restore the original grids.
gridA = copyOfGridA->deepCopy();
gridB = copyOfGridB->deepCopy();

// At each voxel, compute a = a * b.
openvdb::tools::compMul(*gridA, *gridB);
@endcode


@subsection sCombineTools Generic combination
The @vdblink::tree::Tree::combine() Tree::combine@endlink family of
methods apply a user-supplied operator to pairs of corresponding values
of two trees.  These methods are efficient because they take into account
the sparsity of the trees; they are not multithreaded, however.

This example uses the @vdblink::tree::Tree::combine() Tree::combine@endlink
method to compute the difference between corresponding voxels of two
floating-point grids:
@code
#include <openvdb/openvdb.h>

// Define a local function that subtracts two floating-point values.
struct Local {
    static inline void diff(const float& a, const float& b, float& result) {
        result = a - b;
    }
};

openvdb::FloatGrid::Ptr aGrid = ..., bGrid = ...;

// Compute the difference between corresponding voxels of aGrid and bGrid
// and store the result in aGrid, leaving bGrid empty.
aGrid->tree().combine(bGrid->tree(), Local::diff);
@endcode

Another @vdblink::tree::Tree::combine() Tree::combine@endlink example,
this time using a functor to preserve state:
@code
#include <openvdb/openvdb.h>

// Define a functor that computes f * a + (1 - f) * b  for pairs of
// floating-point values a and b.
struct Blend {
    Blend(float f): frac(f) {}
    inline void operator()(const float& a, const float& b, float& result) const {
        result = frac * a + (1.0 - frac) * b;
    }
    float frac;
};

openvdb::FloatGrid::Ptr aGrid = ..., bGrid = ...;

// Compute a = 0.25 * a + 0.75 * b for all corresponding voxels of
// aGrid and bGrid.  Store the result in aGrid and empty bGrid.
aGrid->tree().combine(bGrid->tree(), Blend(0.25));
@endcode

The @vdblink::tree::Tree::combineExtended() Tree::combineExtended@endlink
method invokes a function of the form <tt>void f(CombineArgs\<T>& args)</tt>,
where the @vdblink::CombineArgs CombineArgs@endlink object encapsulates an
@em a and a @em b value and their active states as well as a result value
and its active state.  In the following example, voxel values in
floating-point @a aGrid are replaced with corresponding values from
floating-point @a bGrid (leaving @a bGrid empty) wherever the @em b values
are larger.  The active states of any transferred values are preserved.
@code
#include <openvdb/openvdb.h>

// Define a local function that retrieves a and b values from a CombineArgs
// struct and then sets the result member to the maximum of a and b.
struct Local {
    static inline void max(CombineArgs<float>& args) {
        if (args.b() > args.a()) {
            // Transfer the B value and its active state.
            args.setResult(args.b());
            args.setResultIsActive(args.bIsActive());
        } else {
            // Preserve the A value and its active state.
            args.setResult(args.a());
            args.setResultIsActive(args.aIsActive());
        }
    }
};

openvdb::FloatGrid::Ptr aGrid = ..., bGrid = ...;

aGrid->tree().combineExtended(bGrid->tree(), Local::max);
@endcode

Like @b combine, @vdblink::tree::Tree::combine2() Tree::combine2@endlink
applies an operation to pairs of corresponding values of two trees.
However, @b combine2 writes the result to a third, output tree and does
not modify either of the two input trees.  (As a result, it is less
space-efficient than the @b combine method.)  Here, the voxel differencing
example above is repeated using @b combine2:
@code #include
<openvdb/openvdb.h>

struct Local {
    static inline void diff(const float& a, const float& b, float& result) {
        result = a - b;
    }
};

openvdb::FloatGrid::ConstPtr aGrid = ..., bGrid = ...;
openvdb::FloatGrid::Ptr resultGrid = openvdb::FloatGrid::create();

// Combine aGrid and bGrid and write the result into resultGrid.
// The input grids are not modified.
resultGrid->tree().combine2(aGrid->tree(), bGrid->tree(), Local::diff);
@endcode
An @vdblink::tree::Tree::combine2Extended() extended combine2@endlink
is also available.



@section sGenericProg Generic programming

@subsection sTypedGridMethods Calling Grid methods
A common task is to perform some operation on all of the grids in a file,
where the operation involves @vdblink::Grid Grid@endlink method calls
and the grids are of different types.
Only a handful of @b Grid methods, such as
@vdblink::Grid::activeVoxelCount() activeVoxelCount@endlink,
are virtual and can be called through a @vdblink::GridBase GridBase@endlink
pointer; most are not, because they require knowledge of the <b>Grid</b>'s
value type.
For example, one might want to @vdblink::tree::Tree::prune() prune@endlink
the trees of all of the grids in a file regardless of their type, but
@b Tree::prune is non-virtual because it accepts an optional pruning
tolerance argument whose type is the grid's value type.

The @b processTypedGrid function below makes this kind of task easier.
It is called with a @b GridBase pointer and a functor whose call operator
accepts a pointer to a @b Grid of arbitrary type.  The call operator should
be templated on the grid type and, if necessary, overloaded for specific
grid types.

@code
template<typename OpType>
void processTypedGrid(openvdb::GridBase::Ptr grid, OpType& op)
{
#define CALL_OP(GridType) \
    op.template operator()<GridType>(openvdb::gridPtrCast<GridType>(grid))

    if (grid->isType<openvdb::BoolGrid>())        CALL_OP(openvdb::BoolGrid);
    else if (grid->isType<openvdb::FloatGrid>())  CALL_OP(openvdb::FloatGrid);
    else if (grid->isType<openvdb::DoubleGrid>()) CALL_OP(openvdb::DoubleGrid);
    else if (grid->isType<openvdb::Int32Grid>())  CALL_OP(openvdb::Int32Grid);
    else if (grid->isType<openvdb::Int64Grid>())  CALL_OP(openvdb::Int64Grid);
    else if (grid->isType<openvdb::Vec3IGrid>())  CALL_OP(openvdb::Vec3IGrid);
    else if (grid->isType<openvdb::Vec3SGrid>())  CALL_OP(openvdb::Vec3SGrid);
    else if (grid->isType<openvdb::Vec3DGrid>())  CALL_OP(openvdb::Vec3DGrid);

#undef CALL_OP
}
@endcode

The following example shows how to use @b processTypedGrid to implement
a generic pruning operation for grids of all built-in types:
@code
#include <openvdb.h>

// Define a functor that prunes the trees of grids of arbitrary type
// with a fixed pruning tolerance.
struct PruneOp {
    double tolerance;
    PruneOp(double t): tolerance(t) {}

    template<typename GridType>
    void operator()(typename GridType::Ptr grid) const
    {
        grid->tree().prune(typename GridType::ValueType(tolerance));
    }
};

// Read all grids from a file.
openvdb::io::File file("mygrids.vdb");
file.open();
openvdb::GridPtrVecPtr myGrids = file.getGrids();
file.close();

// Prune each grid with a tolerance of 1%.
const PruneOp pruner(/*tolerance=*/0.01);
for (openvdb::GridPtrVecIter iter = myGrids->begin();
    iter != myGrids->end(); ++iter)
{
    openvdb::GridBase::Ptr grid = *iter;
    processTypedGrid(grid, pruner);
}
@endcode



@anchor openvdbPointsHelloWorld

@section sPointsHelloWorld &ldquo;Hello, World&rdquo; for OpenVDB Points
This is a simple example showing how to convert a few points,
perform I/O and iterate over them to extract their world-space positions.

For more information about using OpenVDB to store point data, see the
@ref openvdbPointsOverview "OpenVDB Points Documentation".
@code
#include <iostream>
#include <vector>
#include <openvdb/openvdb.h>
#include <openvdb/points/PointConversion.h>
#include <openvdb/points/PointCount.h>

int main()
{
    // Initialize grid types and point attributes types.
    openvdb::initialize();

    // Create a vector with four point positions.
    std::vector<openvdb::Vec3R> positions;
    positions.push_back(openvdb::Vec3R(0, 1, 0));
    positions.push_back(openvdb::Vec3R(1.5, 3.5, 1));
    positions.push_back(openvdb::Vec3R(-1, 6, -2));
    positions.push_back(openvdb::Vec3R(1.1, 1.25, 0.06));

    // The VDB Point-Partioner is used when bucketing points and requires a
    // specific interface. For convenience, we use the PointAttributeVector
    // wrapper around an stl vector wrapper here, however it is also possible to
    // write one for a custom data structure in order to match the interface
    // required.
    openvdb::points::PointAttributeVector<openvdb::Vec3R> positionsWrapper(positions);

    // This method computes a voxel-size to match the number of
    // points / voxel requested. Although it won't be exact, it typically offers
    // a good balance of memory against performance.
    int pointsPerVoxel = 8;
    float voxelSize =
        openvdb::points::computeVoxelSize(positionsWrapper, pointsPerVoxel);

    // Print the voxel-size to cout
    std::cout << "VoxelSize=" << voxelSize << std::endl;

    // Create a transform using this voxel-size.
    openvdb::math::Transform::Ptr transform =
        openvdb::math::Transform::createLinearTransform(voxelSize);

    // Create a PointDataGrid containing these four points and using the
    // transform given. This function has two template parameters, (1) the codec
    // to use for storing the position, (2) the grid we want to create
    // (ie a PointDataGrid).
    // We use no compression here for the positions.
    openvdb::points::PointDataGrid::Ptr grid =
        openvdb::points::createPointDataGrid<openvdb::points::NullCodec,
                        openvdb::points::PointDataGrid>(positions, *transform);

    // Set the name of the grid
    grid->setName("Points");

    // Create a VDB file object and write out the grid.
    openvdb::io::File("mypoints.vdb").write({grid});

    // Create a new VDB file object for reading.
    openvdb::io::File newFile("mypoints.vdb");

    // Open the file. This reads the file header, but not any grids.
    newFile.open();

    // Read the grid by name.
    openvdb::GridBase::Ptr baseGrid = newFile.readGrid("Points");
    newFile.close();

    // From the example above, "Points" is known to be a PointDataGrid,
    // so cast the generic grid pointer to a PointDataGrid pointer.
    grid = openvdb::gridPtrCast<openvdb::points::PointDataGrid>(baseGrid);

    openvdb::Index64 count = openvdb::points::pointCount(grid->tree());
    std::cout << "PointCount=" << count << std::endl;

    // Iterate over all the leaf nodes in the grid.
    for (auto leafIter = grid->tree().cbeginLeaf(); leafIter; ++leafIter) {

        // Verify the leaf origin.
        std::cout << "Leaf" << leafIter->origin() << std::endl;

        // Extract the position attribute from the leaf by name (P is position).
        const openvdb::points::AttributeArray& array =
            leafIter->constAttributeArray("P");

        // Create a read-only AttributeHandle. Position always uses Vec3f.
        openvdb::points::AttributeHandle<openvdb::Vec3f> positionHandle(array);

        // Iterate over the point indices in the leaf.
        for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

            // Extract the voxel-space position of the point.
            openvdb::Vec3f voxelPosition = positionHandle.get(*indexIter);

            // Extract the index-space position of the voxel.
            const openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();

            // Compute the world-space position of the point.
            openvdb::Vec3f worldPosition =
                grid->transform().indexToWorld(voxelPosition + xyz);

            // Verify the index and world-space position of the point
            std::cout << "* PointIndex=[" << *indexIter << "] ";
            std::cout << "WorldPosition=" << worldPosition << std::endl;
        }
    }
}
@endcode
Output:
@code
VoxelSize=3.34716
PointCount=4
Leaf[0, 0, -8]
* PointIndex=[0] WorldPosition=[-1, 6, -2]
Leaf[0, 0, 0]
* PointIndex=[0] WorldPosition=[0, 1, 0]
* PointIndex=[1] WorldPosition=[1.1, 1.25, 0.06]
* PointIndex=[2] WorldPosition=[1.5, 3.5, 1]
@endcode

@section sPointsConversion Converting Point Attributes
This example is the same as the @ref sPointsHelloWorld example, however it
demonstrates converting radius in addition to position. It uses a tailored
attribute compression for the radius to demonstrate how to reduce memory.

These methods heavily rely on the point conversion methods contained in
points/PointConversion.h.
@code
#include <iostream>
#include <vector>
#include <openvdb/openvdb.h>
#include <openvdb/points/PointConversion.h>
#include <openvdb/points/PointCount.h>

int main()
{
    // Initialize grid types and point attributes types.
    openvdb::initialize();

    // Create a vector with four point positions.
    std::vector<openvdb::Vec3R> positions;
    positions.push_back(openvdb::Vec3R(0, 1, 0));
    positions.push_back(openvdb::Vec3R(1.5, 3.5, 1));
    positions.push_back(openvdb::Vec3R(-1, 6, -2));
    positions.push_back(openvdb::Vec3R(1.1, 1.25, 0.06));

    // Create a vector with four radii.
    std::vector<float> radius;
    radius.push_back(0.1);
    radius.push_back(0.15);
    radius.push_back(0.2);
    radius.push_back(0.5);

    // The VDB Point-Partioner is used when bucketing points and requires a
    // specific interface. For convenience, we use the PointAttributeVector
    // wrapper around an stl vector wrapper here, however it is also possible to
    // write one for a custom data structure in order to match the interface
    // required.
    openvdb::points::PointAttributeVector<openvdb::Vec3R> positionsWrapper(positions);

    // This method computes a voxel-size to match the number of
    // points / voxel requested. Although it won't be exact, it typically offers
    // a good balance of memory against performance.
    int pointsPerVoxel = 8;
    float voxelSize =
        openvdb::points::computeVoxelSize(positionsWrapper, pointsPerVoxel);

    // Create a transform using this voxel-size.
    openvdb::math::Transform::Ptr transform =
        openvdb::math::Transform::createLinearTransform(voxelSize);

    // Create a PointIndexGrid. This can be done automatically on creation of
    // the grid, however as this index grid is required for the position and
    // radius attributes, we create one we can use for both attribute creation.
    openvdb::tools::PointIndexGrid::Ptr pointIndexGrid =
        openvdb::tools::createPointIndexGrid<openvdb::tools::PointIndexGrid>(
            positionsWrapper, *transform);

    // Create a PointDataGrid containing these four points and using the point
    // index grid. This requires the positions wrapper.
    openvdb::points::PointDataGrid::Ptr grid =
        openvdb::points::createPointDataGrid<openvdb::points::NullCodec,
            openvdb::points::PointDataGrid>(*pointIndexGrid, positionsWrapper, *transform);

    // Append a "pscale" attribute to the grid to hold the radius.
    // This attribute storage uses a unit range codec to reduce the memory
    // storage requirements down from 4-bytes to just 1-byte per value. This is
    // only possible because accuracy of the radius is not that important to us
    // and the values are always within unit range (0.0 => 1.0).
    // Note that this attribute type is not registered by default so needs to be
    // explicitly registered.
    using Codec = openvdb::points::FixedPointCodec</*1-byte=*/false,
            openvdb::points::UnitRange>;
    openvdb::points::TypedAttributeArray<float, Codec>::registerType();
    openvdb::NamePair radiusAttribute =
        openvdb::points::TypedAttributeArray<float, Codec>::attributeType();
    openvdb::points::appendAttribute(grid->tree(), "pscale", radiusAttribute);

    // Create a wrapper around the radius vector.
    openvdb::points::PointAttributeVector<float> radiusWrapper(radius);

    // Populate the "pscale" attribute on the points
    openvdb::points::populateAttribute<openvdb::points::PointDataTree,
        openvdb::tools::PointIndexTree, openvdb::points::PointAttributeVector<float>>(
            grid->tree(), pointIndexGrid->tree(), "pscale", radiusWrapper);

    // Set the name of the grid
    grid->setName("Points");

    // Iterate over all the leaf nodes in the grid.
    for (auto leafIter = grid->tree().cbeginLeaf(); leafIter; ++leafIter) {

        // Verify the leaf origin.
        std::cout << "Leaf" << leafIter->origin() << std::endl;

        // Extract the position attribute from the leaf by name (P is position).
        const openvdb::points::AttributeArray& positionArray =
            leafIter->constAttributeArray("P");

        // Extract the radius attribute from the leaf by name (pscale is radius).
        const openvdb::points::AttributeArray& radiusArray =
            leafIter->constAttributeArray("pscale");

        // Create read-only handles for position and radius.
        openvdb::points::AttributeHandle<openvdb::Vec3f> positionHandle(positionArray);
        openvdb::points::AttributeHandle<float> radiusHandle(radiusArray);

        // Iterate over the point indices in the leaf.
        for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

            // Extract the voxel-space position of the point.
            openvdb::Vec3f voxelPosition = positionHandle.get(*indexIter);

            // Extract the world-space position of the voxel.
            openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();

            // Compute the world-space position of the point.
            openvdb::Vec3f worldPosition =
                grid->transform().indexToWorld(voxelPosition + xyz);

            // Extract the radius of the point.
            float radius = radiusHandle.get(*indexIter);

            // Verify the index, world-space position and radius of the point.
            std::cout << "* PointIndex=[" << *indexIter << "] ";
            std::cout << "WorldPosition=" << worldPosition << " ";
            std::cout << "Radius=" << radius << std::endl;
        }
    }
}
@endcode
Output:
@code
Leaf[0, 0, -8]
* PointIndex=[0] WorldPosition=[-1, 6, -2] Radius=0.2
Leaf[0, 0, 0]
* PointIndex=[0] WorldPosition=[0, 1, 0] Radius=0.0999924
* PointIndex=[1] WorldPosition=[1.1, 1.25, 0.06] Radius=0.499992
* PointIndex=[2] WorldPosition=[1.5, 3.5, 1] Radius=0.149996
@endcode

@section sPointsGeneration Random Point Generation
This example demonstrates how to create a new point grid and to populate it with
random point positions initialized inside a level set sphere.

@code
#include <iostream>
#include <openvdb/openvdb.h>
#include <openvdb/tools/LevelSetSphere.h>
#include <openvdb/points/PointCount.h>

int main()
{
    // Initialize grid types and point attributes types.
    openvdb::initialize();

    // Generate a level set grid.
    openvdb::FloatGrid::Ptr sphereGrid =
        openvdb::tools::createLevelSetSphere<openvdb::FloatGrid>(/*radius=*/20.0,
            /*center=*/openvdb::Vec3f(1.5, 2, 3), /*voxel size=*/0.5);

    // Retrieve the number of leaf nodes in the grid.
    openvdb::Index leafCount = sphereGrid->tree().leafCount();

    // Use the topology to create a PointDataTree
    openvdb::points::PointDataTree::Ptr pointTree(
        new openvdb::points::PointDataTree(sphereGrid->tree(), 0, openvdb::TopologyCopy()));

    // Ensure all tiles have been voxelized
    pointTree->voxelizeActiveTiles();

    // Define the position type and codec using fixed-point 16-bit compression.
    using PositionAttribute = openvdb::points::TypedAttributeArray<openvdb::Vec3f,
        openvdb::points::FixedPointCodec<false>>;
    openvdb::NamePair positionType = PositionAttribute::attributeType();

    // Create a new Attribute Descriptor with position only
    openvdb::points::AttributeSet::Descriptor::Ptr descriptor(
        openvdb::points::AttributeSet::Descriptor::create(positionType));

    // Determine the number of points / voxel and points / leaf.
    openvdb::Index pointsPerVoxel = 8;
    openvdb::Index voxelsPerLeaf = openvdb::points::PointDataGrid::TreeType::LeafNodeType::SIZE;
    openvdb::Index pointsPerLeaf = pointsPerVoxel * voxelsPerLeaf;

    // Iterate over the leaf nodes in the point tree.
    for (auto leafIter = pointTree->beginLeaf(); leafIter; ++leafIter) {

        // Initialize the attributes using the descriptor and point count.
        leafIter->initializeAttributes(descriptor, pointsPerLeaf);

        // Initialize the voxel offsets
        openvdb::Index offset(0);
        for (openvdb::Index index = 0; index < voxelsPerLeaf; ++index) {
            offset += pointsPerVoxel;
            leafIter->setOffsetOn(index, offset);
        }
    }

    // Create the points grid.
    openvdb::points::PointDataGrid::Ptr points =
        openvdb::points::PointDataGrid::create(pointTree);

    // Set the name of the grid.
    points->setName("Points");

    // Copy the transform from the sphere grid.
    points->setTransform(sphereGrid->transform().copy());

    // Randomize the point positions.
    std::mt19937 generator(/*seed=*/0);
    std::uniform_real_distribution<> distribution(-0.5, 0.5);

    // Iterate over the leaf nodes in the point tree.
    for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

        // Create an AttributeWriteHandle for position.
        // Note that the handle only requires the value type, not the codec.
        openvdb::points::AttributeArray& array = leafIter->attributeArray("P");
        openvdb::points::AttributeWriteHandle<openvdb::Vec3f> handle(array);

        // Iterate over the point indices in the leaf.
        for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

            // Compute a new random position (in the range -0.5 => 0.5).
            openvdb::Vec3f positionVoxelSpace(distribution(generator));

            // Set the position of this point.
            // As point positions are stored relative to the voxel center, it is
            // not necessary to convert these voxel space values into
            // world-space during this process.
            handle.set(*indexIter, positionVoxelSpace);
        }
    }

    // Verify the point count.
    openvdb::Index count = openvdb::points::pointCount(points->tree());
    std::cout << "LeafCount=" << leafCount << std::endl;
    std::cout << "PointCount=" << count << std::endl;
}
@endcode
Output:
@code
LeafCount=660
PointCount=2703360
@endcode

@section sPointIterationFiltering Point Iteration, Groups and Filtering

This section demonstrates how to iterate over points and to use point groups and
custom filters during iteration.

See the documentation describing iteration and filtering under
@ref openvdbPointsIterators "OpenVDB Points Iteration" for more information.

@subsection sPointIteration Point Iteration

Iterating over point attribute data is most easily done by iterating over the
leaf nodes of a PointDataGrid and then the index indices of the attribute within
the leaf and extracting the values from a handle bound to the attribute stored
within the leaf.

This example demonstrates single-threaded, read-only iteration over all float
values of an attribute called "name".

@code
for (auto leafIter = pointTree.beginLeaf(); leafIter; ++leafIter) {
    openvdb::points::AttributeArray& array =
        leafIter->constAttributeArray("name");
    openvdb::points::AttributeHandle<float> handle(array);

    // Iterate over active indices in the leaf.
    for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

        // Retrieve value
        float value = handle.get(*indexIter);
    }
}
@endcode

This example demonstrates single-threaded, read-write iteration for a similar
float attribute by setting all values to be 5.0f.

@code
for (auto leafIter = pointTree.beginLeaf(); leafIter; ++leafIter) {
    openvdb::points::AttributeArray& array =
        leafIter->attributeArray("name");
    openvdb::points::AttributeWriteHandle<float> handle(array);

    // Iterate over active indices in the leaf.
    for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

        // Set value
        handle.set(*indexIter, 5.0f);
    }
}
@endcode

Here is the same read-only example using TBB and a custom operator for
reading values using multi-threaded access.

In this example, we also find the index of the attribute in the descriptor to
avoid having to look this up each time (assuming that all leaf nodes share the
same descriptor).

A similar approach can be used for multi-threaded writing.

@code
struct ReadValueOp
{
    explicit ReadValueOp(openvdb::Index64 index) : mIndex(index) { }

    void operator()(const openvdb::tree::LeafManager<
        openvdb::points::PointDataTree>::LeafRange& range) const {

        for (auto leafIter = range.begin(); leafIter; ++leafIter) {

            for (auto indexIter = leafIter->beginIndexOn();
                indexIter; ++indexIter) {

                const openvdb::points::AttributeArray& array =
                    leafIter->constAttributeArray(mIndex);
                openvdb::points::AttributeHandle<float> handle(array);

                float value = handle.get(*indexIter);
            }
        }
    }

    openvdb::Index64 mIndex;
};

// Create a leaf iterator for the PointDataTree.
auto leafIter = pointTree.cbeginLeaf();

// Check that the tree has leaf nodes.
if (!leafIter) {
    std::cerr << "No Leaf Nodes" << std::endl;
}

// Retrieve the index from the descriptor.
auto descriptor = leafIter->attributeSet().descriptor();
openvdb::Index64 index = descriptor.find("name");

// Check that the attribute has been found.
if (index == openvdb::points::AttributeSet::INVALID_POS) {
    std::cerr << "Invalid Attribute" << std::endl;
}

// Create a leaf manager for the points tree.
openvdb::tree::LeafManager<openvdb::points::PointDataTree> leafManager(
    pointsTree);
// Create a new operator
ReadValueOp op(index);
// Evaluate in parallel
tbb::parallel_for(leafManager.leafRange(), op);
@endcode

Tip: To run a multi-threaded operator as single-threaded for debugging, set the
grainsize argument to a number larger than the number of leaf nodes
(it defaults to 1).

@code
// Evaluate parallel operator in serial
tbb::parallel_for(leafManager.leafRange(/*grainsize=*/1000000), op);
@endcode

@subsection sPointGroups Creating and Assigning Point Groups

Point groups in OpenVDB are analagous to Houdini point groups as an
efficient way of tagging specific points to belong to a named group.

This example uses the data set generated in the @ref sPointsGeneration example.

@code
// Append a new (empty) group to the point tree.
openvdb::points::appendGroup(points->tree(), "positiveY");

// Count all points that belong to this group.
openvdb::Index groupCount =
    openvdb::points::groupPointCount(points->tree(), "positiveY");

// Verify group is empty.
std::cout << "PointCount=" << count << std::endl;
std::cout << "EmptyGroupPointCount=" << groupCount << std::endl;

// Create leaf node iterator for points tree.
auto leafIter = points->tree().beginLeaf();
if (!leafIter) {
    std::cerr << "No Leaf Nodes" << std::endl;
}

// Extract the group index.
openvdb::points::AttributeSet::Descriptor::GroupIndex groupIndex =
    leafIter->attributeSet().groupIndex("positiveY");

// Iterate over leaf nodes.
for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

    // Create a read-only position handle.
    const openvdb::points::AttributeArray& positionArray =
        leafIter->constAttributeArray("P");
    openvdb::points::AttributeHandle<openvdb::Vec3f> positionHandle(
        positionArray);

    // Create a read-write group handle.
    openvdb::points::GroupWriteHandle groupHandle =
        leafIter->groupWriteHandle("positiveY");

    // Iterate over the point indices in the leaf.
    for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

        // Extract the voxel-space position of the point.
        openvdb::Vec3f voxelPosition = positionHandle.get(*indexIter);

        // Extract the world-space position of the voxel.
        openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();

        // Compute the world-space position of the point.
        openvdb::Vec3f worldPosition =
            points->transform().indexToWorld(voxelPosition + xyz);

        // If the world-space position is greater than zero in Y, add this
        // point to the group.
        if (worldPosition.y() > 0.0f) {
            groupHandle.set(*indexIter, /*on=*/true);
        }
    }

    // Attempt to compact the array for efficiency if all points in a leaf
    // have the same membership for example.
    groupHandle.compact();
}

// Count all points in this group once again.
groupCount = openvdb::points::groupPointCount(points->tree(), "positiveY");

// Verify group membership.
std::cout << "GroupPointCount=" << groupCount << std::endl;
@endcode
Output:
@code
PointCount=2703360
EmptyGroupPointCount=0
GroupPointCount=1463740
@endcode

@subsection sPointFiltering Point Filtering using Groups

One highly useful feature of groups is to be able to use them for performing
filtered iteration.

Here is an example iterating over all the points in the same data set to compute
the average position in Y.

@code
openvdb::Index64 iterationCount(0);

double averageY(0.0);

// Iterate over leaf nodes.
for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

    // Create a read-only position handle.
    const openvdb::points::AttributeArray& positionArray =
        leafIter->constAttributeArray("P");
    openvdb::points::AttributeHandle<openvdb::Vec3f> positionHandle(
        positionArray);

    // Iterate over the point indices in the leaf.
    for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

        // Extract the world-space position of the point.
        openvdb::Vec3f voxelPosition = positionHandle.get(*indexIter);
        openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();
        openvdb::Vec3f worldPosition =
            points->transform().indexToWorld(voxelPosition + xyz);

        // Increment the sum.
        averageY += worldPosition.y();

        // Track iteration
        iterationCount++;
    }
}

averageY /= double(count);

std::cout << "IterationCount=" << iterationCount << std::endl;
std::cout << "AveragePositionInY=" << averageY << std::endl;
@endcode
Output:
@code
IterationCount=2703360
AveragePositionInY=1.89564
@endcode

And the same example filtering using the "positiveY" group during iteration.

@code
iterationCount = 0;

double averageYPositive(0.0);

// Create a "positiveY" group filter.
openvdb::points::GroupFilter filter("positiveY");

// Iterate over leaf nodes.
for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

    // Create a read-only position handle.
    const openvdb::points::AttributeArray& positionArray =
        leafIter->constAttributeArray("P");
    openvdb::points::AttributeHandle<openvdb::Vec3f> positionHandle(
        positionArray);

    // Iterate over the point indices in the leaf that match the filter.
    for (auto indexIter = leafIter->beginIndexOn(filter); indexIter; ++indexIter) {

        // Extract the world-space position of the point.
        openvdb::Vec3f voxelPosition = positionHandle.get(*indexIter);
        openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();
        openvdb::Vec3f worldPosition =
            points->transform().indexToWorld(voxelPosition + xyz);

        // Increment the sum.
        averageYPositive += worldPosition.y();

        // Track iteration
        iterationCount++;
    }
}

averageYPositive /= double(groupCount);

std::cout << "IterationCount=" << iterationCount << std::endl;
std::cout << "AveragePositivePositionInY=" << averageYPositive << std::endl;
@endcode
Output:
@code
IterationCount=1463740
AveragePositivePositionInY=11.373
@endcode

This approach still performs this operation in two passes, (1) creating and
assigning the groups and (2) iterating using the group.

@subsection sPointCustomFiltering Point Filtering using Custom Filters

For common operations, it is typically faster to sacrifice the flexibility of
point groups for a custom filter. This is using the same data set
from the previous example.

@code
// Evalutate true for points that are positive in Y only
struct PositiveYFilter
{
    using Handle = openvdb::points::AttributeHandle<openvdb::Vec3f>;

    explicit PositiveYFilter(const openvdb::math::Transform& transform)
            : mTransform(transform) { }

    PositiveYFilter(const PositiveYFilter& filter)
        : mTransform(filter.mTransform)
    {
        if (filter.mPositionHandle) {
            mPositionHandle.reset(new Handle(*filter.mPositionHandle));
        }
    }

    inline bool initialized() const { return bool(mPositionHandle); }

    template <typename LeafT>
    void reset(const LeafT& leaf) {
        mPositionHandle.reset(new Handle(leaf.constAttributeArray("P")));
    }

    template <typename IterT>
    bool valid(const IterT& indexIter) const {
        openvdb::Vec3f voxelPosition = mPositionHandle->get(*indexIter);
        openvdb::Vec3d xyz = indexIter.getCoord().asVec3d();
        openvdb::Vec3f worldPosition =
            mTransform.indexToWorld(voxelPosition + xyz);
        return worldPosition.y() > 0.0f;
    }

    const openvdb::math::Transform& mTransform;
    Handle::UniquePtr mPositionHandle;
};

// Drop the "positiveY" group.
openvdb::points::dropGroup(points->tree(), "positiveY");

// Create a new positive-Y filter.
PositiveYFilter positiveYFilter(points->transform());

iterationCount = 0.0;

// Iterate over the points using the custom filter
for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

    for (auto indexIter = leafIter->beginIndexOn(positiveYFilter);
        indexIter; ++indexIter) {

        // Track iteration
        iterationCount++;
    }
}

std::cout << "IterationCount=" << iterationCount << std::endl;
@endcode
Output:
@code
IterationCount=1463740
@endcode

@section sPointStride Strided Point Attributes

Point attributes can have a stride greater than one in order to store multiple
values with each attribute with each point.

@subsection sConstantStride Constant Stride Attributes

A stride can be constant so that each attribute has the same number of values.
This example demonstrates using a hard-coded 10 samples per point in an
attribute called "samples".

@code
// Store 10 values per point in an attribute called samples.
openvdb::Index stride(10);
openvdb::points::appendAttribute(points->tree(), "samples",
    openvdb::points::TypedAttributeArray<float>::attributeType(), stride);

// Iterate over leaf nodes.
for (auto leafIter = points->tree().beginLeaf(); leafIter; ++leafIter) {

    // Create a read-write samples handle.
    openvdb::points::AttributeArray& array(
        leafIter->attributeArray("samples"));
    openvdb::points::AttributeWriteHandle<float> handle(array);

    // Iterate over the point indices in the leaf.
    for (auto indexIter = leafIter->beginIndexOn(); indexIter; ++indexIter) {

        // Use ascending sample values for each element in the strided array
        for (int i = 0; i < 10; i++) {
            handle.set(*indexIter, /*strideIndex=*/i, float(i));
        }
    }
}
@endcode

@section sPointMove Moving Points in Space

As points are stored within voxels in an implicit spatially organised data structure, moving points in space requires re-bucketing the data.

@subsection sPointAdvect Advecting Points

Advection uses a specified integration order (4 = runge-kutta 4th) as well as delta time and time-step parameters
to advect the points in-place using the supplied velocity grid.

@code
// Create an empty velocity grid with gravity as background value
auto gravity = openvdb::Vec3SGrid::create(openvdb::Vec3s(0, -9.81, 0));

// Advect points in-place using gravity velocity grid
openvdb::points::advectPoints(*points, *gravity,
    /*integrationOrder=*/4, /*dt=*/1.0/24.0, /*timeSteps=*/1);
@endcode

@subsection sPointCustomDeformer Moving Points with a Custom Deformer

A custom deformer generates the new position of each existing point in a point set. This can use any number of
mechanisms to achieve this such as a static value, a hard-coded list of positions, a function that uses the
existing position to compute the new one or a function that uses the index of the point within the leaf array in
some other way. This example simply takes the input position and adds a Y offset. Note that it is also possible
to configure a custom deformer to operate in index-space.

@code
// This custom deformer is also used in the TestPointMove unit tests.
struct OffsetDeformer
{
    OffsetDeformer(const openvdb::Vec3d& _offset)
        : offset(_offset){ }

    template <typename LeafIterT>
    void reset(const LeafIterT&) { }

    template <typename IndexIterT>
    void apply(openvdb::Vec3d& position, const IndexIterT&) const
    {
        position += offset;
    }

    openvdb::Vec3d offset;
};

// Create an OffsetDeformer that moves the points downwards in Y by 10 world-space units.
openvdb::Vec3d offset(0, -10, 0);
OffsetDeformer deformer(offset);

// Move the points using this deformer
openvdb::points::movePoints(*points, deformer);
@endcode

*/