File: TestDense.cc

package info (click to toggle)
openvdb 2.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 5,000 kB
  • ctags: 11,167
  • sloc: cpp: 69,246; makefile: 677; python: 451; ansic: 298
file content (838 lines) | stat: -rw-r--r-- 30,188 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2013 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

//#define BENCHMARK_TEST

#include <openvdb/openvdb.h>
#include <cppunit/extensions/HelperMacros.h>
#include <openvdb/tools/LevelSetSphere.h>
#include <openvdb/tools/Dense.h>
#include <openvdb/Exceptions.h>
#include <sstream>
#ifdef BENCHMARK_TEST
#include "util.h" // for CpuTimer
#endif


class TestDense: public CppUnit::TestCase
{
public:
    CPPUNIT_TEST_SUITE(TestDense);

    CPPUNIT_TEST(testDenseZYX);
    CPPUNIT_TEST(testDenseXYZ);
    
    CPPUNIT_TEST(testCopyZYX);
    CPPUNIT_TEST(testCopyXYZ);

    CPPUNIT_TEST(testCopyBoolZYX);
    CPPUNIT_TEST(testCopyBoolXYZ);

    CPPUNIT_TEST(testCopyFromDenseWithOffsetZYX);
    CPPUNIT_TEST(testCopyFromDenseWithOffsetXYZ);
    
    CPPUNIT_TEST(testDense2SparseZYX);
    CPPUNIT_TEST(testDense2SparseXYZ);
    
    CPPUNIT_TEST(testDense2Sparse2ZYX);
    CPPUNIT_TEST(testDense2Sparse2XYZ);
    
    CPPUNIT_TEST(testInvalidBBoxZYX);
    CPPUNIT_TEST(testInvalidBBoxXYZ);
    
    CPPUNIT_TEST(testDense2Sparse2DenseZYX);
    CPPUNIT_TEST(testDense2Sparse2DenseXYZ);
    CPPUNIT_TEST_SUITE_END();

    void testDenseZYX();
    void testDenseXYZ();
    
    template <openvdb::tools::MemoryLayout Layout>
    void testCopy();
    void testCopyZYX() { this->testCopy<openvdb::tools::LayoutZYX>(); }
    void testCopyXYZ() { this->testCopy<openvdb::tools::LayoutXYZ>(); }

    template <openvdb::tools::MemoryLayout Layout>
    void testCopyBool();
    void testCopyBoolZYX() { this->testCopyBool<openvdb::tools::LayoutZYX>(); }
    void testCopyBoolXYZ() { this->testCopyBool<openvdb::tools::LayoutXYZ>(); }

    template <openvdb::tools::MemoryLayout Layout>
    void testCopyFromDenseWithOffset();
    void testCopyFromDenseWithOffsetZYX() {
        this->testCopyFromDenseWithOffset<openvdb::tools::LayoutZYX>();
    }
    void testCopyFromDenseWithOffsetXYZ() {
        this->testCopyFromDenseWithOffset<openvdb::tools::LayoutXYZ>();
    }

    template <openvdb::tools::MemoryLayout Layout>
    void testDense2Sparse();
    void testDense2SparseZYX() { this->testDense2Sparse<openvdb::tools::LayoutZYX>(); }
    void testDense2SparseXYZ() { this->testDense2Sparse<openvdb::tools::LayoutXYZ>(); }

    template <openvdb::tools::MemoryLayout Layout>
    void testDense2Sparse2();
    void testDense2Sparse2ZYX() { this->testDense2Sparse2<openvdb::tools::LayoutZYX>(); }
    void testDense2Sparse2XYZ() { this->testDense2Sparse2<openvdb::tools::LayoutXYZ>(); }

    template <openvdb::tools::MemoryLayout Layout>
    void testInvalidBBox();
    void testInvalidBBoxZYX() { this->testInvalidBBox<openvdb::tools::LayoutZYX>(); }
    void testInvalidBBoxXYZ() { this->testInvalidBBox<openvdb::tools::LayoutXYZ>(); }

    template <openvdb::tools::MemoryLayout Layout>
    void testDense2Sparse2Dense();
    void testDense2Sparse2DenseZYX() { this->testDense2Sparse2Dense<openvdb::tools::LayoutZYX>(); }
    void testDense2Sparse2DenseXYZ() { this->testDense2Sparse2Dense<openvdb::tools::LayoutXYZ>(); }
};

CPPUNIT_TEST_SUITE_REGISTRATION(TestDense);


void
TestDense::testDenseZYX()
{
    const openvdb::CoordBBox bbox(openvdb::Coord(-40,-5, 6),
                                  openvdb::Coord(-11, 7,22));
    openvdb::tools::Dense<float> dense(bbox);//LayoutZYX is the default

    // Check Dense::valueCount
    const int size = dense.valueCount();
    CPPUNIT_ASSERT_EQUAL(30*13*17, size);

    // Check Dense::fill(float) and Dense::getValue(size_t)
    const float v = 0.234f;
    dense.fill(v);
    for (int i=0; i<size; ++i) {
        CPPUNIT_ASSERT_DOUBLES_EQUAL(v, dense.getValue(i),/*tolerance=*/0.0001);
    }

    // Check Dense::data() and Dense::getValue(Coord, float)
    float* a = dense.data();
    int s = size;
    while(s--) CPPUNIT_ASSERT_DOUBLES_EQUAL(v, *a++, /*tolerance=*/0.0001);

    for (openvdb::Coord P(bbox.min()); P[0] <= bbox.max()[0]; ++P[0]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[2] = bbox.min()[2]; P[2] <= bbox.max()[2]; ++P[2]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(v, dense.getValue(P), /*tolerance=*/0.0001);
            }
        }
    }

    // Check Dense::setValue(Coord, float)
    const openvdb::Coord C(-30, 3,12);
    const float v1 = 3.45f;
    dense.setValue(C, v1);
    for (openvdb::Coord P(bbox.min()); P[0] <= bbox.max()[0]; ++P[0]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[2] = bbox.min()[2]; P[2] <= bbox.max()[2]; ++P[2]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(P==C ? v1 : v, dense.getValue(P),
                    /*tolerance=*/0.0001);
            }
        }
    }

    // Check Dense::setValue(size_t, size_t, size_t, float)
    dense.setValue(C, v);
    const openvdb::Coord L(1,2,3), C1 = bbox.min() + L;
    dense.setValue(L[0], L[1], L[2], v1);
    for (openvdb::Coord P(bbox.min()); P[0] <= bbox.max()[0]; ++P[0]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[2] = bbox.min()[2]; P[2] <= bbox.max()[2]; ++P[2]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(P==C1 ? v1 : v, dense.getValue(P),
                    /*tolerance=*/0.0001);
            }
        }
    }

}

void
TestDense::testDenseXYZ()
{
    const openvdb::CoordBBox bbox(openvdb::Coord(-40,-5, 6),
                                  openvdb::Coord(-11, 7,22));
    openvdb::tools::Dense<float, openvdb::tools::LayoutXYZ> dense(bbox);

    // Check Dense::valueCount
    const int size = dense.valueCount();
    CPPUNIT_ASSERT_EQUAL(30*13*17, size);

    // Check Dense::fill(float) and Dense::getValue(size_t)
    const float v = 0.234f;
    dense.fill(v);
    for (int i=0; i<size; ++i) {
        CPPUNIT_ASSERT_DOUBLES_EQUAL(v, dense.getValue(i),/*tolerance=*/0.0001);
    }

    // Check Dense::data() and Dense::getValue(Coord, float)
    float* a = dense.data();
    int s = size;
    while(s--) CPPUNIT_ASSERT_DOUBLES_EQUAL(v, *a++, /*tolerance=*/0.0001);

    for (openvdb::Coord P(bbox.min()); P[2] <= bbox.max()[2]; ++P[2]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[0] = bbox.min()[0]; P[0] <= bbox.max()[0]; ++P[0]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(v, dense.getValue(P), /*tolerance=*/0.0001);
            }
        }
    }

    // Check Dense::setValue(Coord, float)
    const openvdb::Coord C(-30, 3,12);
    const float v1 = 3.45f;
    dense.setValue(C, v1);
    for (openvdb::Coord P(bbox.min()); P[2] <= bbox.max()[2]; ++P[2]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[0] = bbox.min()[0]; P[0] <= bbox.max()[0]; ++P[0]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(P==C ? v1 : v, dense.getValue(P),
                    /*tolerance=*/0.0001);
            }
        }
    }

    // Check Dense::setValue(size_t, size_t, size_t, float)
    dense.setValue(C, v);
    const openvdb::Coord L(1,2,3), C1 = bbox.min() + L;
    dense.setValue(L[0], L[1], L[2], v1);
    for (openvdb::Coord P(bbox.min()); P[2] <= bbox.max()[2]; ++P[2]) {
        for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
            for (P[0] = bbox.min()[0]; P[0] <= bbox.max()[0]; ++P[0]) {
                CPPUNIT_ASSERT_DOUBLES_EQUAL(P==C1 ? v1 : v, dense.getValue(P),
                    /*tolerance=*/0.0001);
            }
        }
    }

}


// The check is so slow that we're going to multi-thread it :)
template <typename TreeT,
          typename DenseT = openvdb::tools::Dense<typename TreeT::ValueType,
                                                  openvdb::tools::LayoutZYX> >
class CheckDense
{
public:
    typedef typename TreeT::ValueType ValueT;

    CheckDense() : mTree(NULL), mDense(NULL)
    {
        CPPUNIT_ASSERT(DenseT::memoryLayout() == openvdb::tools::LayoutZYX ||
                       DenseT::memoryLayout() == openvdb::tools::LayoutXYZ );
    }

    void check(const TreeT& tree, const DenseT& dense)
    {
        mTree  = &tree;
        mDense = &dense;
        tbb::parallel_for(dense.bbox(), *this);
    }
    void operator()(const openvdb::CoordBBox& bbox) const
    {
        openvdb::tree::ValueAccessor<const TreeT> acc(*mTree);

        if (DenseT::memoryLayout() == openvdb::tools::LayoutZYX) {//resolved at compiletime
            for (openvdb::Coord P(bbox.min()); P[0] <= bbox.max()[0]; ++P[0]) {
                for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
                    for (P[2] = bbox.min()[2]; P[2] <= bbox.max()[2]; ++P[2]) {
                        CPPUNIT_ASSERT_DOUBLES_EQUAL(acc.getValue(P), mDense->getValue(P),
                                                     /*tolerance=*/0.0001);
                    }
                }
            }
        } else {
             for (openvdb::Coord P(bbox.min()); P[2] <= bbox.max()[2]; ++P[2]) {
                for (P[1] = bbox.min()[1]; P[1] <= bbox.max()[1]; ++P[1]) {
                    for (P[0] = bbox.min()[0]; P[0] <= bbox.max()[0]; ++P[0]) {
                        CPPUNIT_ASSERT_DOUBLES_EQUAL(acc.getValue(P), mDense->getValue(P),
                                                     /*tolerance=*/0.0001);
                    }
                }
            }
        }
    }
private:
    const TreeT*  mTree;
    const DenseT* mDense;
};// CheckDense

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testCopy()
{
    using namespace openvdb;
    
    //std::cerr << "\nTesting testCopy with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
    
    typedef tools::Dense<float, Layout> DenseT;
    CheckDense<FloatTree, DenseT> checkDense;
    const float radius = 10.0f, tolerance = 0.00001f;
    const Vec3f center(0.0f);
    // decrease the voxelSize to test larger grids
#ifdef BENCHMARK_TEST
    const float voxelSize = 0.05f, width = 5.0f;
#else
    const float voxelSize = 0.5f, width = 5.0f;
#endif

    // Create a VDB containing a level set of a sphere
    FloatGrid::Ptr grid =
        tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, width);
    FloatTree& tree0 = grid->tree();

    // Create an empty dense grid
    DenseT dense(grid->evalActiveVoxelBoundingBox());
#ifdef BENCHMARK_TEST
    std::cerr << "\nBBox = " << grid->evalActiveVoxelBoundingBox() << std::endl;
#endif

    {//check Dense::fill
        dense.fill(voxelSize);
#ifndef BENCHMARK_TEST
        checkDense.check(FloatTree(voxelSize), dense);
#endif
    }

    {// parallel convert to dense
#ifdef BENCHMARK_TEST
        unittest_util::CpuTimer ts;
        ts.start("CopyToDense");
#endif
        tools::copyToDense(*grid, dense);
#ifdef BENCHMARK_TEST
        ts.stop();
#else
        checkDense.check(tree0, dense);
#endif
    }

    {// Parallel create from dense
#ifdef BENCHMARK_TEST
        unittest_util::CpuTimer ts;
        ts.start("CopyFromDense");
#endif
        FloatTree tree1(tree0.background());
        tools::copyFromDense(dense, tree1, tolerance);
#ifdef BENCHMARK_TEST
        ts.stop();
#else
        checkDense.check(tree1, dense);
#endif
    }
}

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testCopyBool()
{
    using namespace openvdb;
    
    //std::cerr << "\nTesting testCopyBool with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;

    const Coord bmin(-1), bmax(8);
    const CoordBBox bbox(bmin, bmax);

    BoolGrid::Ptr grid = createGrid<BoolGrid>(false);
    BoolGrid::ConstAccessor acc = grid->getConstAccessor();

    typedef openvdb::tools::Dense<bool, Layout> DenseT;
    DenseT dense(bbox);
    dense.fill(false);

    // Start with sparse and dense grids both filled with false.
    Coord xyz;
    int &x = xyz[0], &y = xyz[1], &z = xyz[2];
    for (x = bmin.x(); x <= bmax.x(); ++x) {
        for (y = bmin.y(); y <= bmax.y(); ++y) {
            for (z = bmin.z(); z <= bmax.z(); ++z) {
                CPPUNIT_ASSERT_EQUAL(false, dense.getValue(xyz));
                CPPUNIT_ASSERT_EQUAL(false, acc.getValue(xyz));
            }
        }
    }

    // Fill the dense grid with true.
    dense.fill(true);
    // Copy the contents of the dense grid to the sparse grid.
    tools::copyFromDense(dense, *grid, /*tolerance=*/false);

    // Verify that both sparse and dense grids are now filled with true.
    for (x = bmin.x(); x <= bmax.x(); ++x) {
        for (y = bmin.y(); y <= bmax.y(); ++y) {
            for (z = bmin.z(); z <= bmax.z(); ++z) {
                CPPUNIT_ASSERT_EQUAL(true, dense.getValue(xyz));
                CPPUNIT_ASSERT_EQUAL(true, acc.getValue(xyz));
            }
        }
    }

    // Fill the dense grid with false.
    dense.fill(false);
    // Copy the contents (= true) of the sparse grid to the dense grid.
    tools::copyToDense(*grid, dense);

    // Verify that the dense grid is now filled with true.
    for (x = bmin.x(); x <= bmax.x(); ++x) {
        for (y = bmin.y(); y <= bmax.y(); ++y) {
            for (z = bmin.z(); z <= bmax.z(); ++z) {
                CPPUNIT_ASSERT_EQUAL(true, dense.getValue(xyz));
            }
        }
    }
}


// Test copying from a dense grid to a sparse grid with various bounding boxes.
template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testCopyFromDenseWithOffset()
{
    using namespace openvdb;
    
    //std::cerr << "\nTesting testCopyFromDenseWithOffset with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
   
    typedef openvdb::tools::Dense<float, Layout> DenseT;

    const int DIM = 20, COUNT = DIM * DIM * DIM;
    const float FOREGROUND = 99.0f, BACKGROUND = 5000.0f;

    const int OFFSET[] = { 1, -1, 1001, -1001 };
    for (int offsetIdx = 0; offsetIdx < 4; ++offsetIdx) {

        const int offset = OFFSET[offsetIdx];
        const CoordBBox bbox = CoordBBox::createCube(Coord(offset), DIM);

        DenseT dense(bbox, FOREGROUND);
        CPPUNIT_ASSERT_EQUAL(bbox, dense.bbox());

        FloatGrid grid(BACKGROUND);
        tools::copyFromDense(dense, grid, /*tolerance=*/0.0);

        const CoordBBox gridBBox = grid.evalActiveVoxelBoundingBox();
        CPPUNIT_ASSERT_EQUAL(bbox, gridBBox);
        CPPUNIT_ASSERT_EQUAL(COUNT, int(grid.activeVoxelCount()));

        FloatGrid::ConstAccessor acc = grid.getConstAccessor();
        for (int i = gridBBox.min()[0], ie = gridBBox.max()[0]; i < ie; ++i) {
            for (int j = gridBBox.min()[1], je = gridBBox.max()[1]; j < je; ++j) {
                for (int k = gridBBox.min()[2], ke = gridBBox.max()[2]; k < ke; ++k) {
                    const Coord ijk(i, j, k);
                    CPPUNIT_ASSERT_DOUBLES_EQUAL(
                        FOREGROUND, acc.getValue(ijk), /*tolerance=*/0.0);
                    CPPUNIT_ASSERT(acc.isValueOn(ijk));
                }
            }
        }
    }
}

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testDense2Sparse()
{
    // The following test revealed a bug in v2.0.0b2
    using namespace openvdb;
    
    //std::cerr << "\nTesting testDense2Sparse with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
   
    typedef tools::Dense<float, Layout> DenseT;

    // Test Domain Resolution
    size_t sizeX = 8;
    size_t sizeY = 8;
    size_t sizeZ = 9;

    // Define a dense grid
    DenseT dense(Coord(sizeX, sizeY, sizeZ));
    const CoordBBox bboxD = dense.bbox();
    // std::cerr <<  "\nDense bbox" << bboxD << std::endl;

    // Verify that the CoordBBox is truely used as [inclusive, inclusive]
    CPPUNIT_ASSERT(dense.valueCount() == sizeX * sizeY * sizeZ );

    // Fill the dense grid with constant value 1.
    dense.fill(1.0f);

    // Create two empty float grids
    FloatGrid::Ptr gridS = FloatGrid::create(0.0f /*background*/);
    FloatGrid::Ptr gridP = FloatGrid::create(0.0f /*background*/);

    // Convert in serial and parallel modes
    tools::copyFromDense(dense, *gridS, /*tolerance*/0.0f, /*serial = */ true);
    tools::copyFromDense(dense, *gridP, /*tolerance*/0.0f, /*serial = */ false);

    float minS, maxS;
    float minP, maxP;

    gridS->evalMinMax(minS, maxS);
    gridP->evalMinMax(minP, maxP);

    const float tolerance = 0.0001;

    CPPUNIT_ASSERT_DOUBLES_EQUAL(minS, minP, tolerance);
    CPPUNIT_ASSERT_DOUBLES_EQUAL(maxS, maxP, tolerance);
    CPPUNIT_ASSERT_EQUAL(gridP->activeVoxelCount(), Index64(sizeX * sizeY * sizeZ));

    const FloatTree& treeS = gridS->tree();
    const FloatTree& treeP = gridP->tree();

    // Values in Test Domain are correct
    for (Coord ijk(bboxD.min()); ijk[0] <= bboxD.max()[0]; ++ijk[0]) {
        for (ijk[1] = bboxD.min()[1]; ijk[1] <= bboxD.max()[1]; ++ijk[1]) {
            for (ijk[2] = bboxD.min()[2]; ijk[2] <= bboxD.max()[2]; ++ijk[2]) {

                const float expected = bboxD.isInside(ijk) ? 1.f : 0.f;
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, 1.f, tolerance);

                const float& vS = treeS.getValue(ijk);
                const float& vP = treeP.getValue(ijk);

                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vS, tolerance);
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vP, tolerance);
            }
        }
    }

    CoordBBox bboxP = gridP->evalActiveVoxelBoundingBox();
    const Index64 voxelCountP = gridP->activeVoxelCount();
    //std::cerr <<  "\nParallel: bbox=" << bboxP << " voxels=" << voxelCountP << std::endl;
    CPPUNIT_ASSERT( bboxP == bboxD );
    CPPUNIT_ASSERT_EQUAL( dense.valueCount(), voxelCountP);

    CoordBBox bboxS = gridS->evalActiveVoxelBoundingBox();
    const Index64 voxelCountS = gridS->activeVoxelCount();
    //std::cerr <<  "\nSerial: bbox=" << bboxS << " voxels=" << voxelCountS << std::endl;
    CPPUNIT_ASSERT( bboxS == bboxD );
    CPPUNIT_ASSERT_EQUAL( dense.valueCount(), voxelCountS);

    // Topology
    CPPUNIT_ASSERT( bboxS.isInside(bboxS) );
    CPPUNIT_ASSERT( bboxP.isInside(bboxP) );
    CPPUNIT_ASSERT( bboxS.isInside(bboxP) );
    CPPUNIT_ASSERT( bboxP.isInside(bboxS) );

    /// Check that the two grids agree
    for (Coord ijk(bboxS.min()); ijk[0] <= bboxS.max()[0]; ++ijk[0]) {
        for (ijk[1] = bboxS.min()[1]; ijk[1] <= bboxS.max()[1]; ++ijk[1]) {
            for (ijk[2] = bboxS.min()[2]; ijk[2] <= bboxS.max()[2]; ++ijk[2]) {

                const float& vS = treeS.getValue(ijk);
                const float& vP = treeP.getValue(ijk);

                CPPUNIT_ASSERT_DOUBLES_EQUAL(vS, vP, tolerance);

                // the value we should get based on the original domain
                const float expected = bboxD.isInside(ijk) ? 1.f : 0.f;

                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vP, tolerance);
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vS, tolerance);
            }
        }
    }


    // Verify the tree topology matches.

    CPPUNIT_ASSERT_EQUAL(gridP->activeVoxelCount(), gridS->activeVoxelCount());
    CPPUNIT_ASSERT(gridP->evalActiveVoxelBoundingBox() == gridS->evalActiveVoxelBoundingBox());
    CPPUNIT_ASSERT(treeP.hasSameTopology(treeS) );

}

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testDense2Sparse2()
{
    // The following tests copying a dense grid into a VDB tree with
    // existing values outside the bbox of the dense grid.

    using namespace openvdb;
    
    //std::cerr << "\nTesting testDense2Sparse2 with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
   
    typedef tools::Dense<float, Layout> DenseT;

    // Test Domain Resolution
    size_t sizeX = 8;
    size_t sizeY = 8;
    size_t sizeZ = 9;
    const Coord magicVoxel(sizeX, sizeY, sizeZ);

    // Define a dense grid
    DenseT dense(Coord(sizeX, sizeY, sizeZ));
    const CoordBBox bboxD = dense.bbox();
    //std::cerr <<  "\nDense bbox" << bboxD << std::endl;

    // Verify that the CoordBBox is truely used as [inclusive, inclusive]
    CPPUNIT_ASSERT(dense.valueCount() == sizeX * sizeY * sizeZ );

    // Fill the dense grid with constant value 1.
    dense.fill(1.0f);

    // Create two empty float grids
    FloatGrid::Ptr gridS = FloatGrid::create(0.0f /*background*/);
    FloatGrid::Ptr gridP = FloatGrid::create(0.0f /*background*/);
    gridS->tree().setValue(magicVoxel, 5.0f);
    gridP->tree().setValue(magicVoxel, 5.0f);

    // Convert in serial and parallel modes
    tools::copyFromDense(dense, *gridS, /*tolerance*/0.0f, /*serial = */ true);
    tools::copyFromDense(dense, *gridP, /*tolerance*/0.0f, /*serial = */ false);

    float minS, maxS;
    float minP, maxP;

    gridS->evalMinMax(minS, maxS);
    gridP->evalMinMax(minP, maxP);

    const float tolerance = 0.0001;

    CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0f, minP, tolerance);
    CPPUNIT_ASSERT_DOUBLES_EQUAL(1.0f, minS, tolerance);
    CPPUNIT_ASSERT_DOUBLES_EQUAL(5.0f, maxP, tolerance);
    CPPUNIT_ASSERT_DOUBLES_EQUAL(5.0f, maxS, tolerance);
    CPPUNIT_ASSERT_EQUAL(gridP->activeVoxelCount(), Index64(1 + sizeX * sizeY * sizeZ));

    const FloatTree& treeS = gridS->tree();
    const FloatTree& treeP = gridP->tree();

    // Values in Test Domain are correct
    for (Coord ijk(bboxD.min()); ijk[0] <= bboxD.max()[0]; ++ijk[0]) {
        for (ijk[1] = bboxD.min()[1]; ijk[1] <= bboxD.max()[1]; ++ijk[1]) {
            for (ijk[2] = bboxD.min()[2]; ijk[2] <= bboxD.max()[2]; ++ijk[2]) {

                const float expected = bboxD.isInside(ijk) ? 1.0f : 0.0f;
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, 1.0f, tolerance);

                const float& vS = treeS.getValue(ijk);
                const float& vP = treeP.getValue(ijk);

                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vS, tolerance);
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vP, tolerance);
            }
        }
    }

    CoordBBox bboxP = gridP->evalActiveVoxelBoundingBox();
    const Index64 voxelCountP = gridP->activeVoxelCount();
    //std::cerr <<  "\nParallel: bbox=" << bboxP << " voxels=" << voxelCountP << std::endl;
    CPPUNIT_ASSERT( bboxP != bboxD );
    CPPUNIT_ASSERT( bboxP == CoordBBox(Coord(0,0,0), magicVoxel) );
    CPPUNIT_ASSERT_EQUAL( dense.valueCount()+1, voxelCountP);

    CoordBBox bboxS = gridS->evalActiveVoxelBoundingBox();
    const Index64 voxelCountS = gridS->activeVoxelCount();
    //std::cerr <<  "\nSerial: bbox=" << bboxS << " voxels=" << voxelCountS << std::endl;
    CPPUNIT_ASSERT( bboxS != bboxD );
    CPPUNIT_ASSERT( bboxS == CoordBBox(Coord(0,0,0), magicVoxel) );
    CPPUNIT_ASSERT_EQUAL( dense.valueCount()+1, voxelCountS);

    // Topology
    CPPUNIT_ASSERT( bboxS.isInside(bboxS) );
    CPPUNIT_ASSERT( bboxP.isInside(bboxP) );
    CPPUNIT_ASSERT( bboxS.isInside(bboxP) );
    CPPUNIT_ASSERT( bboxP.isInside(bboxS) );

    /// Check that the two grids agree
    for (Coord ijk(bboxS.min()); ijk[0] <= bboxS.max()[0]; ++ijk[0]) {
        for (ijk[1] = bboxS.min()[1]; ijk[1] <= bboxS.max()[1]; ++ijk[1]) {
            for (ijk[2] = bboxS.min()[2]; ijk[2] <= bboxS.max()[2]; ++ijk[2]) {

                const float& vS = treeS.getValue(ijk);
                const float& vP = treeP.getValue(ijk);

                CPPUNIT_ASSERT_DOUBLES_EQUAL(vS, vP, tolerance);

                // the value we should get based on the original domain
                const float expected = bboxD.isInside(ijk) ? 1.0f
                    : ijk == magicVoxel ? 5.0f : 0.0f;

                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vP, tolerance);
                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, vS, tolerance);
            }
        }
    }

    // Verify the tree topology matches.

    CPPUNIT_ASSERT_EQUAL(gridP->activeVoxelCount(), gridS->activeVoxelCount());
    CPPUNIT_ASSERT(gridP->evalActiveVoxelBoundingBox() == gridS->evalActiveVoxelBoundingBox());
    CPPUNIT_ASSERT(treeP.hasSameTopology(treeS) );

}

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testInvalidBBox()
{
    using namespace openvdb;
    
    //std::cerr << "\nTesting testInvalidBBox with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
   
    typedef tools::Dense<float, Layout> DenseT;
    const CoordBBox badBBox(Coord(1, 1, 1), Coord(-1, 2, 2));

    CPPUNIT_ASSERT(badBBox.empty());
    CPPUNIT_ASSERT_THROW(DenseT dense(badBBox), ValueError);
}

template <openvdb::tools::MemoryLayout Layout>
void
TestDense::testDense2Sparse2Dense()
{
    using namespace openvdb;

    //std::cerr << "\nTesting testDense2Sparse2Dense with "
    //          << (Layout == tools::LayoutXYZ ? "XYZ" : "ZYX") << " memory layout"
    //          << std::endl;
   
    typedef tools::Dense<float, Layout> DenseT;
    
    const CoordBBox bboxBig(Coord(-12, 7, -32), Coord(12, 14, -15));
    const CoordBBox bboxSmall(Coord(-10, 8, -31), Coord(10, 12, -20));


    // A larger bbox
    CoordBBox bboxBigger = bboxBig;
    bboxBigger.expand(Coord(10));


    // Small is in big
    CPPUNIT_ASSERT(bboxBig.isInside(bboxSmall));

    // Big is in Bigger
    CPPUNIT_ASSERT(bboxBigger.isInside(bboxBig));

    // Construct a small dense grid
    DenseT denseSmall(bboxSmall, 0.f);
    {
        // insert non-const values
        const int n = denseSmall.valueCount();
        float* d = denseSmall.data();
        for (int i = 0; i < n; ++i) { d[i] = i; }
    }
    // Construct large dense grid
    DenseT denseBig(bboxBig, 0.f);
    {
        // insert non-const values
        const int n = denseBig.valueCount();
        float* d = denseBig.data();
        for (int i = 0; i < n; ++i) { d[i] = i; }
    }

    // Make a sparse grid to copy this data into
    FloatGrid::Ptr grid = FloatGrid::create(3.3f /*background*/);
    tools::copyFromDense(denseBig, *grid, /*tolerance*/0.0f, /*serial = */ true);
    tools::copyFromDense(denseSmall, *grid, /*tolerance*/0.0f, /*serial = */ false);

    const FloatTree& tree = grid->tree();
    //
    CPPUNIT_ASSERT_EQUAL(bboxBig.volume(), grid->activeVoxelCount());

    // iterate over the Bigger
    for (Coord ijk(bboxBigger.min()); ijk[0] <= bboxBigger.max()[0]; ++ijk[0]) {
        for (ijk[1] = bboxBigger.min()[1]; ijk[1] <= bboxBigger.max()[1]; ++ijk[1]) {
            for (ijk[2] = bboxBigger.min()[2]; ijk[2] <= bboxBigger.max()[2]; ++ijk[2]) {

                float expected = 3.3f;
                if (bboxSmall.isInside(ijk)) {
                    expected = denseSmall.getValue(ijk);
                } else if (bboxBig.isInside(ijk)) {
                    expected = denseBig.getValue(ijk);
                }

                const float& value = tree.getValue(ijk);

                CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, value, 0.0001);

            }
        }
    }

    // Convert to Dense in small bbox
    {
        DenseT denseSmall2(bboxSmall);
        tools::copyToDense(*grid, denseSmall2, true /* serial */);

        // iterate over the Bigger
        for (Coord ijk(bboxSmall.min()); ijk[0] <= bboxSmall.max()[0]; ++ijk[0]) {
            for (ijk[1] = bboxSmall.min()[1]; ijk[1] <= bboxSmall.max()[1]; ++ijk[1]) {
                for (ijk[2] = bboxSmall.min()[2]; ijk[2] <= bboxSmall.max()[2]; ++ijk[2]) {

                    const float& expected = denseSmall.getValue(ijk);
                    const float& value = denseSmall2.getValue(ijk);
                    CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, value, 0.0001);
                }
            }
        }
    }
    // Convert to Dense in large bbox
    {
        DenseT denseBig2(bboxBig);

        tools::copyToDense(*grid, denseBig2, false /* serial */);
         // iterate over the Bigger
        for (Coord ijk(bboxBig.min()); ijk[0] <= bboxBig.max()[0]; ++ijk[0]) {
            for (ijk[1] = bboxBig.min()[1]; ijk[1] <= bboxBig.max()[1]; ++ijk[1]) {
                for (ijk[2] = bboxBig.min()[2]; ijk[2] <= bboxBig.max()[2]; ++ijk[2]) {

                    float expected = -1.f; // should never be this
                    if (bboxSmall.isInside(ijk)) {
                        expected = denseSmall.getValue(ijk);
                    } else if (bboxBig.isInside(ijk)) {
                        expected = denseBig.getValue(ijk);
                    }
                    const float& value = denseBig2.getValue(ijk);
                    CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, value, 0.0001);
                }
            }
        }
    }
}
#undef BENCHMARK_TEST

// Copyright (c) 2012-2013 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )