1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#include "Proximity.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
OPENVDB_API Vec3d
closestPointOnTriangleToPoint(
const Vec3d& a, const Vec3d& b, const Vec3d& c, const Vec3d& p, Vec3d& uvw)
{
uvw.setZero();
// degenerate triangle, singular
if ((isApproxEqual(a, b) && isApproxEqual(a, c))) {
uvw[0] = 1.0;
return a;
}
Vec3d ab = b - a, ac = c - a, ap = p - a;
double d1 = ab.dot(ap), d2 = ac.dot(ap);
// degenerate triangle edges
if (isApproxEqual(a, b)) {
double t = 0.0;
Vec3d cp = closestPointOnSegmentToPoint(a, c, p, t);
uvw[0] = 1.0 - t;
uvw[2] = t;
return cp;
} else if (isApproxEqual(a, c) || isApproxEqual(b, c)) {
double t = 0.0;
Vec3d cp = closestPointOnSegmentToPoint(a, b, p, t);
uvw[0] = 1.0 - t;
uvw[1] = t;
return cp;
}
if (d1 <= 0.0 && d2 <= 0.0) {
uvw[0] = 1.0;
return a; // barycentric coordinates (1,0,0)
}
// Check if P in vertex region outside B
Vec3d bp = p - b;
double d3 = ab.dot(bp), d4 = ac.dot(bp);
if (d3 >= 0.0 && d4 <= d3) {
uvw[1] = 1.0;
return b; // barycentric coordinates (0,1,0)
}
// Check if P in edge region of AB, if so return projection of P onto AB
double vc = d1 * d4 - d3 * d2;
if (vc <= 0.0 && d1 >= 0.0 && d3 <= 0.0) {
uvw[1] = d1 / (d1 - d3);
uvw[0] = 1.0 - uvw[1];
return a + uvw[1] * ab; // barycentric coordinates (1-v,v,0)
}
// Check if P in vertex region outside C
Vec3d cp = p - c;
double d5 = ab.dot(cp), d6 = ac.dot(cp);
if (d6 >= 0.0 && d5 <= d6) {
uvw[2] = 1.0;
return c; // barycentric coordinates (0,0,1)
}
// Check if P in edge region of AC, if so return projection of P onto AC
double vb = d5 * d2 - d1 * d6;
if (vb <= 0.0 && d2 >= 0.0 && d6 <= 0.0) {
uvw[2] = d2 / (d2 - d6);
uvw[0] = 1.0 - uvw[2];
return a + uvw[2] * ac; // barycentric coordinates (1-w,0,w)
}
// Check if P in edge region of BC, if so return projection of P onto BC
double va = d3*d6 - d5*d4;
if (va <= 0.0 && (d4 - d3) >= 0.0 && (d5 - d6) >= 0.0) {
uvw[2] = (d4 - d3) / ((d4 - d3) + (d5 - d6));
uvw[1] = 1.0 - uvw[2];
return b + uvw[2] * (c - b); // barycentric coordinates (0,1-w,w)
}
// P inside face region. Compute Q through its barycentric coordinates (u,v,w)
double denom = 1.0 / (va + vb + vc);
uvw[2] = vc * denom;
uvw[1] = vb * denom;
uvw[0] = 1.0 - uvw[1] - uvw[2];
return a + ab*uvw[1] + ac*uvw[2]; // = u*a + v*b + w*c , u= va*denom = 1.0-v-w
}
OPENVDB_API Vec3d
closestPointOnSegmentToPoint(const Vec3d& a, const Vec3d& b, const Vec3d& p, double& t)
{
Vec3d ab = b - a;
t = (p - a).dot(ab);
if (t <= 0.0) {
// c projects outside the [a,b] interval, on the a side.
t = 0.0;
return a;
} else {
// always nonnegative since denom = ||ab||^2
double denom = ab.dot(ab);
if (t >= denom) {
// c projects outside the [a,b] interval, on the b side.
t = 1.0;
return b;
} else {
// c projects inside the [a,b] interval.
t = t / denom;
return a + (ab * t);
}
}
}
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|