File: InternalNode.h

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (3303 lines) | stat: -rw-r--r-- 129,972 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file InternalNode.h
///
/// @brief Internal table nodes for OpenVDB trees

#ifndef OPENVDB_TREE_INTERNALNODE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_INTERNALNODE_HAS_BEEN_INCLUDED

#include <openvdb/Platform.h>
#include <openvdb/util/NodeMasks.h>
#include <openvdb/io/Compression.h> // for io::readCompressedValues(), etc.
#include <openvdb/math/Math.h> // for math::isExactlyEqual(), etc.
#include <openvdb/version.h>
#include <openvdb/Types.h>
#include "Iterator.h"
#include "NodeUnion.h"
#include <tbb/parallel_for.h>
#include <memory>
#include <type_traits>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

template<typename, Index, typename> struct SameInternalConfig; // forward declaration


template<typename _ChildNodeType, Index Log2Dim>
class InternalNode
{
public:
    using ChildNodeType = _ChildNodeType;
    using LeafNodeType = typename ChildNodeType::LeafNodeType;
    using ValueType = typename ChildNodeType::ValueType;
    using BuildType = typename ChildNodeType::BuildType;
    using UnionType = NodeUnion<ValueType, ChildNodeType>;
    using NodeMaskType = util::NodeMask<Log2Dim>;

    static const Index
        LOG2DIM      = Log2Dim,                        // log2 of tile count in one dimension
        TOTAL        = Log2Dim + ChildNodeType::TOTAL, // log2 of voxel count in one dimension
        DIM          = 1 << TOTAL,                     // total voxel count in one dimension
        NUM_VALUES   = 1 << (3 * Log2Dim),             // total voxel count represented by this node
        LEVEL        = 1 + ChildNodeType::LEVEL;       // level 0 = leaf
    static const Index64
        NUM_VOXELS   = uint64_t(1) << (3 * TOTAL);     // total voxel count represented by this node

    /// @brief ValueConverter<T>::Type is the type of an InternalNode having the same
    /// child hierarchy and dimensions as this node but a different value type, T.
    template<typename OtherValueType>
    struct ValueConverter {
        using Type = InternalNode<typename ChildNodeType::template ValueConverter<
            OtherValueType>::Type, Log2Dim>;
    };

    /// @brief SameConfiguration<OtherNodeType>::value is @c true if and only if OtherNodeType
    /// is the type of an InternalNode with the same dimensions as this node and whose
    /// ChildNodeType has the same configuration as this node's ChildNodeType.
    template<typename OtherNodeType>
    struct SameConfiguration {
        static const bool value =
            SameInternalConfig<ChildNodeType, Log2Dim, OtherNodeType>::value;
    };


    /// @brief Default constructor
    /// @warning The resulting InternalNode is uninitialized
    InternalNode() {}

    /// @brief Constructor of an InternalNode with dense inactive tiles of the specified value.
    /// @param offValue Background value used for inactive values
    explicit InternalNode(const ValueType& offValue);

    /// @brief Constructs an InternalNode with dense tiles
    /// @param origin    The location in index space of the fist tile value
    /// @param fillValue Value assigned to all the tiles
    /// @param active    State assigned to all the tiles
    InternalNode(const Coord& origin, const ValueType& fillValue, bool active = false);

#if OPENVDB_ABI_VERSION_NUMBER >= 3
    InternalNode(PartialCreate, const Coord&, const ValueType& fillValue, bool active = false);
#endif

    /// @brief Deep copy constructor
    ///
    /// @note This method is multi-threaded!
    InternalNode(const InternalNode&);

    /// @brief Value conversion copy constructor
    ///
    /// @note This method is multi-threaded!
    template<typename OtherChildNodeType>
    explicit InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other);

    /// @brief Topology copy constructor
    ///
    /// @note This method is multi-threaded!
    template<typename OtherChildNodeType>
    InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                 const ValueType& background, TopologyCopy);

    /// @brief Topology copy constructor
    ///
    /// @note This method is multi-threaded!
    template<typename OtherChildNodeType>
    InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                 const ValueType& offValue, const ValueType& onValue, TopologyCopy);

#if OPENVDB_ABI_VERSION_NUMBER < 5
    virtual ~InternalNode();
#else
    ~InternalNode();
#endif

protected:
    using MaskOnIterator = typename NodeMaskType::OnIterator;
    using MaskOffIterator = typename NodeMaskType::OffIterator;
    using MaskDenseIterator = typename NodeMaskType::DenseIterator;

    // Type tags to disambiguate template instantiations
    struct ValueOn {}; struct ValueOff {}; struct ValueAll {};
    struct ChildOn {}; struct ChildOff {}; struct ChildAll {};

    // The following class templates implement the iterator interfaces specified in Iterator.h
    // by providing getItem(), setItem() and/or modifyItem() methods.

    // Sparse iterator that visits child nodes of an InternalNode
    template<typename NodeT, typename ChildT, typename MaskIterT, typename TagT>
    struct ChildIter: public SparseIteratorBase<
        MaskIterT, ChildIter<NodeT, ChildT, MaskIterT, TagT>, NodeT, ChildT>
    {
        ChildIter() {}
        ChildIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
            MaskIterT, ChildIter<NodeT, ChildT, MaskIterT, TagT>, NodeT, ChildT>(iter, parent) {}

        ChildT& getItem(Index pos) const
        {
            assert(this->parent().isChildMaskOn(pos));
            return *(this->parent().getChildNode(pos));
        }

        // Note: setItem() can't be called on const iterators.
        void setItem(Index pos, const ChildT& c) const { this->parent().resetChildNode(pos, &c); }

        // Note: modifyItem() isn't implemented, since it's not useful for child node pointers.
    };// ChildIter

    // Sparse iterator that visits tile values of an InternalNode
    template<typename NodeT, typename ValueT, typename MaskIterT, typename TagT>
    struct ValueIter: public SparseIteratorBase<
        MaskIterT, ValueIter<NodeT, ValueT, MaskIterT, TagT>, NodeT, ValueT>
    {
        ValueIter() {}
        ValueIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
            MaskIterT, ValueIter<NodeT, ValueT, MaskIterT, TagT>, NodeT, ValueT>(iter, parent) {}

        const ValueT& getItem(Index pos) const { return this->parent().mNodes[pos].getValue(); }

        // Note: setItem() can't be called on const iterators.
        void setItem(Index pos, const ValueT& v) const { this->parent().mNodes[pos].setValue(v); }

        // Note: modifyItem() can't be called on const iterators.
        template<typename ModifyOp>
        void modifyItem(Index pos, const ModifyOp& op) const
        {
            op(this->parent().mNodes[pos].getValue());
        }
    };// ValueIter

    // Dense iterator that visits both tiles and child nodes of an InternalNode
    template<typename NodeT, typename ChildT, typename ValueT, typename TagT>
    struct DenseIter: public DenseIteratorBase<
        MaskDenseIterator, DenseIter<NodeT, ChildT, ValueT, TagT>, NodeT, ChildT, ValueT>
    {
        using BaseT = DenseIteratorBase<MaskDenseIterator, DenseIter, NodeT, ChildT, ValueT>;
        using NonConstValueT = typename BaseT::NonConstValueType;

        DenseIter() {}
        DenseIter(const MaskDenseIterator& iter, NodeT* parent):
            DenseIteratorBase<MaskDenseIterator, DenseIter, NodeT, ChildT, ValueT>(iter, parent) {}

        bool getItem(Index pos, ChildT*& child, NonConstValueT& value) const
        {
            if (this->parent().isChildMaskOn(pos)) {
                child = this->parent().getChildNode(pos);
                return true;
            }
            child = nullptr;
            value = this->parent().mNodes[pos].getValue();
            return false;
        }

        // Note: setItem() can't be called on const iterators.
        void setItem(Index pos, ChildT* child) const
        {
            this->parent().resetChildNode(pos, child);
        }

        // Note: unsetItem() can't be called on const iterators.
        void unsetItem(Index pos, const ValueT& value) const
        {
            this->parent().unsetChildNode(pos, value);
        }
    };// DenseIter

public:
    // Iterators (see Iterator.h for usage)
    using ChildOnIter = ChildIter<InternalNode, ChildNodeType, MaskOnIterator, ChildOn>;
    using ChildOnCIter = ChildIter<const InternalNode,const ChildNodeType,MaskOnIterator,ChildOn>;
    using ChildOffIter = ValueIter<InternalNode, const ValueType, MaskOffIterator, ChildOff>;
    using ChildOffCIter = ValueIter<const InternalNode,const ValueType,MaskOffIterator,ChildOff>;
    using ChildAllIter = DenseIter<InternalNode, ChildNodeType, ValueType, ChildAll>;
    using ChildAllCIter = DenseIter<const InternalNode,const ChildNodeType, ValueType, ChildAll>;

    using ValueOnIter = ValueIter<InternalNode, const ValueType, MaskOnIterator, ValueOn>;
    using ValueOnCIter = ValueIter<const InternalNode, const ValueType, MaskOnIterator, ValueOn>;
    using ValueOffIter = ValueIter<InternalNode, const ValueType, MaskOffIterator, ValueOff>;
    using ValueOffCIter = ValueIter<const InternalNode,const ValueType,MaskOffIterator,ValueOff>;
    using ValueAllIter = ValueIter<InternalNode, const ValueType, MaskOffIterator, ValueAll>;
    using ValueAllCIter = ValueIter<const InternalNode,const ValueType,MaskOffIterator,ValueAll>;

    ChildOnCIter  cbeginChildOn()  const { return ChildOnCIter(mChildMask.beginOn(), this); }
    ChildOffCIter cbeginChildOff() const { return ChildOffCIter(mChildMask.beginOff(), this); }
    ChildAllCIter cbeginChildAll() const { return ChildAllCIter(mChildMask.beginDense(), this); }
    ChildOnCIter   beginChildOn()  const { return cbeginChildOn(); }
    ChildOffCIter  beginChildOff() const { return cbeginChildOff(); }
    ChildAllCIter  beginChildAll() const { return cbeginChildAll(); }
    ChildOnIter    beginChildOn()  { return ChildOnIter(mChildMask.beginOn(), this); }
    ChildOffIter   beginChildOff() { return ChildOffIter(mChildMask.beginOff(), this); }
    ChildAllIter   beginChildAll() { return ChildAllIter(mChildMask.beginDense(), this); }

    ValueOnCIter  cbeginValueOn()  const { return ValueOnCIter(mValueMask.beginOn(), this); }
    /// @warning This iterator will also visit child nodes so use isChildMaskOn to skip them!
    ValueOffCIter cbeginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
    ValueAllCIter cbeginValueAll() const { return ValueAllCIter(mChildMask.beginOff(), this); }
    ValueOnCIter   beginValueOn()  const { return cbeginValueOn(); }
    /// @warning This iterator will also visit child nodes so use isChildMaskOn to skip them!
    ValueOffCIter  beginValueOff() const { return cbeginValueOff(); }
    ValueAllCIter  beginValueAll() const { return cbeginValueAll(); }
    ValueOnIter    beginValueOn()  { return ValueOnIter(mValueMask.beginOn(), this); }
    /// @warning This iterator will also visit child nodes so use isChildMaskOn to skip them!
    ValueOffIter   beginValueOff() { return ValueOffIter(mValueMask.beginOff(), this); }
    ValueAllIter   beginValueAll() { return ValueAllIter(mChildMask.beginOff(), this); }


    /// @return The dimension of this InternalNode
    /// @details The number of voxels in one coordinate direction covered by this node
    static Index dim() { return DIM; }
    /// @return The level of this node
    /// @details Level 0 is by definition the level of the leaf nodes
    static Index getLevel() { return LEVEL; }
    /// @brief Populated an stil::vector with the dimension of all the
    /// nodes in the branch starting with this node.
    static void getNodeLog2Dims(std::vector<Index>& dims);
    /// @return The dimension of the child nodes of this node.
    /// @details The number of voxels in one coordinate direction
    /// covered by a child node of this node.
    static Index getChildDim() { return ChildNodeType::DIM; }

    /// Return the linear table offset of the given global or local coordinates.
    static Index coordToOffset(const Coord& xyz);
    /// @brief Return the local coordinates for a linear table offset,
    /// where offset 0 has coordinates (0, 0, 0).
    static void offsetToLocalCoord(Index n, Coord& xyz);
    /// Return the global coordinates for a linear table offset.
    Coord offsetToGlobalCoord(Index n) const;

    /// Return the grid index coordinates of this node's local origin.
    const Coord& origin() const { return mOrigin; }
    /// Set the grid index coordinates of this node's local origin.
    void setOrigin(const Coord& origin) { mOrigin = origin; }

    Index32 leafCount() const;
    Index32 nonLeafCount() const;
    Index64 onVoxelCount() const;
    Index64 offVoxelCount() const;
    Index64 onLeafVoxelCount() const;
    Index64 offLeafVoxelCount() const;
    Index64 onTileCount() const;

    /// Return the total amount of memory in bytes occupied by this node and its children.
    Index64 memUsage() const;

    /// @brief Expand the specified bounding box so that it includes the active tiles
    /// of this internal node as well as all the active values in its child nodes.
    /// If visitVoxels is false LeafNodes will be approximated as dense, i.e. with all
    /// voxels active. Else the individual active voxels are visited to produce a tight bbox.
    void evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels = true) const;

    /// @brief Return the bounding box of this node, i.e., the full index space
    /// spanned by the node regardless of its content.
    CoordBBox getNodeBoundingBox() const { return CoordBBox::createCube(mOrigin, DIM); }

    /// @return True if this node contains no child nodes.
    bool isEmpty() const { return mChildMask.isOff(); }

    /// Return @c true if all of this node's table entries have the same active state
    /// and the same constant value to within the given tolerance,
    /// and return that value in @a firstValue and the active state in @a state.
    ///
    /// @note This method also returns @c false if this node contains any child nodes.
    bool isConstant(ValueType& firstValue, bool& state,
                    const ValueType& tolerance = zeroVal<ValueType>()) const;

    /// Return @c true if all of this node's tables entries have
    /// the same active @a state and the range of its values satisfy
    /// (@a maxValue - @a minValue) <= @a tolerance.
    ///
    /// @param minValue  Is updated with the minimum of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param maxValue  Is updated with the maximum of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param state     Is updated with the state of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param tolerance The tolerance used to determine if values are
    ///                  approximatly constant.
    ///
    /// @note This method also returns @c false if this node contains any child nodes.
    bool isConstant(ValueType& minValue, ValueType& maxValue,
                    bool& state, const ValueType& tolerance = zeroVal<ValueType>()) const;

    /// Return @c true if this node has no children and only contains inactive values.
    bool isInactive() const { return this->isChildMaskOff() && this->isValueMaskOff(); }

    /// Return @c true if the voxel at the given coordinates is active.
    bool isValueOn(const Coord& xyz) const;
    /// Return @c true if the voxel at the given offset is active.
    bool isValueOn(Index offset) const { return mValueMask.isOn(offset); }

    /// Return @c true if this node or any of its child nodes have any active tiles.
    bool hasActiveTiles() const;

    const ValueType& getValue(const Coord& xyz) const;
    bool probeValue(const Coord& xyz, ValueType& value) const;

    /// @brief Return the level of the tree (0 = leaf) at which the value
    /// at the given coordinates resides.
    Index getValueLevel(const Coord& xyz) const;

    /// @brief If the first entry in this node's table is a tile, return the tile's value.
    /// Otherwise, return the result of calling getFirstValue() on the child.
    const ValueType& getFirstValue() const;
    /// @brief If the last entry in this node's table is a tile, return the tile's value.
    /// Otherwise, return the result of calling getLastValue() on the child.
    const ValueType& getLastValue() const;

    /// Set the active state of the voxel at the given coordinates but don't change its value.
    void setActiveState(const Coord& xyz, bool on);
    /// Set the value of the voxel at the given coordinates but don't change its active state.
    void setValueOnly(const Coord& xyz, const ValueType& value);
    /// Mark the voxel at the given coordinates as active but don't change its value.
    void setValueOn(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValueOn(const Coord& xyz, const ValueType& value);
    /// Mark the voxel at the given coordinates as inactive but don't change its value.
    void setValueOff(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
    void setValueOff(const Coord& xyz, const ValueType& value);

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    template<typename ModifyOp>
    void modifyValue(const Coord& xyz, const ModifyOp& op);
    /// Apply a functor to the voxel at the given coordinates.
    template<typename ModifyOp>
    void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);

    /// Return the value of the voxel at the given coordinates and, if necessary, update
    /// the accessor with pointers to the nodes along the path from the root node to
    /// the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    const ValueType& getValueAndCache(const Coord& xyz, AccessorT&) const;

    /// Return @c true if the voxel at the given coordinates is active and, if necessary,
    /// update the accessor with pointers to the nodes along the path from the root node
    /// to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool isValueOnAndCache(const Coord& xyz, AccessorT&) const;

    /// Change the value of the voxel at the given coordinates and mark it as active.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueAndCache(const Coord& xyz, const ValueType& value, AccessorT&);

    /// Set the value of the voxel at the given coordinate but preserves its active state.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOnlyAndCache(const Coord& xyz, const ValueType& value, AccessorT&);

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&);

    /// Apply a functor to the voxel at the given coordinates.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&);

    /// Change the value of the voxel at the given coordinates and mark it as inactive.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT&);

    /// Set the active state of the voxel at the given coordinates without changing its value.
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&);

    /// Return, in @a value, the value of the voxel at the given coordinates and,
    /// if necessary, update the accessor with pointers to the nodes along
    /// the path from the root node to the node containing the voxel.
    /// @return @c true if the voxel at the given coordinates is active
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool probeValueAndCache(const Coord& xyz, ValueType& value, AccessorT&) const;

    /// @brief Return the level of the tree (0 = leaf) at which the value
    /// at the given coordinates resides.
    ///
    /// If necessary, update the accessor with pointers to the nodes along the path
    /// from the root node to the node containing the voxel.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    Index getValueLevelAndCache(const Coord& xyz, AccessorT&) const;

    /// Mark all values (both tiles and voxels) as active.
    void setValuesOn();

    //
    // I/O
    //
    void writeTopology(std::ostream&, bool toHalf = false) const;
    void readTopology(std::istream&, bool fromHalf = false);
    void writeBuffers(std::ostream&, bool toHalf = false) const;
    void readBuffers(std::istream&, bool fromHalf = false);
    void readBuffers(std::istream&, const CoordBBox&, bool fromHalf = false);


    //
    // Aux methods
    //

    /// Change the sign of all the values represented in this node and its child nodes.
    void negate();

    /// @brief Set all voxels within a given axis-aligned box to a constant value.
    /// @param bbox    inclusive coordinates of opposite corners of an axis-aligned box
    /// @param value   the value to which to set voxels within the box
    /// @param active  if true, mark voxels within the box as active,
    ///                otherwise mark them as inactive
    /// @note This operation generates a sparse, but not always optimally sparse,
    /// representation of the filled box. Follow fill operations with a prune()
    /// operation for optimal sparseness.
    void fill(const CoordBBox& bbox, const ValueType& value, bool active = true);

    /// @brief Set all voxels within a given axis-aligned box to a constant value
    /// and ensure that those voxels are all represented at the leaf level.
    /// @param bbox    inclusive coordinates of opposite corners of an axis-aligned box.
    /// @param value   the value to which to set voxels within the box.
    /// @param active  if true, mark voxels within the box as active,
    ///                otherwise mark them as inactive.
    /// @sa voxelizeActiveTiles()
    void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);

    /// @brief Densify active tiles, i.e., replace them with leaf-level active voxels.
    /// @param threaded if true, this operation is multi-threaded (over the internal nodes).
    /// @sa denseFill()
    void voxelizeActiveTiles(bool threaded = true);

    /// @brief Copy into a dense grid the values of the voxels that lie within
    /// a given bounding box.
    /// @param bbox   inclusive bounding box of the voxels to be copied into the dense grid
    /// @param dense  dense grid with a stride in @e z of one (see tools::Dense
    ///               in tools/Dense.h for the required API)
    /// @note @a bbox is assumed to be identical to or contained in the coordinate domains
    /// of both the dense grid and this node, i.e., no bounds checking is performed.
    template<typename DenseT>
    void copyToDense(const CoordBBox& bbox, DenseT& dense) const;

    /// @brief Efficiently merge another tree into this tree using one of several schemes.
    /// @warning This operation cannibalizes the other tree.
    template<MergePolicy Policy>
    void merge(InternalNode& other, const ValueType& background, const ValueType& otherBackground);

    /// @brief Merge, using one of several schemes, this node (and its descendants)
    /// with a tile of the same dimensions and the given value and active state.
    template<MergePolicy Policy> void merge(const ValueType& tileValue, bool tileActive);

    /// @brief Union this branch's set of active values with the other branch's
    /// active values.  The value type of the other branch can be different.
    /// @details The resulting state of a value is active if the corresponding value
    /// was already active OR if it is active in the other tree.  Also, a resulting
    /// value maps to a voxel if the corresponding value already mapped to a voxel
    /// OR if it is a voxel in the other tree.  Thus, a resulting value can only
    /// map to a tile if the corresponding value already mapped to a tile
    /// AND if it is a tile value in other tree.
    ///
    /// Specifically, active tiles and voxels in this branch are not changed, and
    /// tiles or voxels that were inactive in this branch but active in the other branch
    /// are marked as active in this branch but left with their original values.
    template<typename OtherChildNodeType>
    void topologyUnion(const InternalNode<OtherChildNodeType, Log2Dim>& other);

    /// @brief Intersects this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different.
    /// @details The resulting state of a value is active only if the corresponding
    /// value was already active AND if it is active in the other tree. Also, a
    /// resulting value maps to a voxel if the corresponding value
    /// already mapped to an active voxel in either of the two grids
    /// and it maps to an active tile or voxel in the other grid.
    ///
    /// @note This operation can delete branches in this grid if they
    /// overlap with inactive tiles in the other grid. Likewise active
    /// voxels can be turned into unactive voxels resulting in leaf
    /// nodes with no active values. Thus, it is recommended to
    /// subsequently call prune.
    template<typename OtherChildNodeType>
    void topologyIntersection(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                              const ValueType& background);

    /// @brief Difference this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if the original voxel is
    /// active in this node and inactive in the other node.
    ///
    /// @details The last dummy argument is required to match the signature
    /// for InternalNode::topologyDifference.
    ///
    /// @note This operation modifies only active states, not
    /// values. Also note that this operation can result in all voxels
    /// being inactive so consider subsequnetly calling prune.
    template<typename OtherChildNodeType>
    void topologyDifference(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                            const ValueType& background);

    template<typename CombineOp>
    void combine(InternalNode& other, CombineOp&);
    template<typename CombineOp>
    void combine(const ValueType& value, bool valueIsActive, CombineOp&);

    template<typename CombineOp, typename OtherNodeType /*= InternalNode*/>
    void combine2(const InternalNode& other0, const OtherNodeType& other1, CombineOp&);
    template<typename CombineOp, typename OtherNodeType /*= InternalNode*/>
    void combine2(const ValueType& value, const OtherNodeType& other, bool valIsActive, CombineOp&);
    template<typename CombineOp, typename OtherValueType>
    void combine2(const InternalNode& other, const OtherValueType&, bool valIsActive, CombineOp&);

    /// @brief Calls the templated functor BBoxOp with bounding box
    /// information for all active tiles and leaf nodes in this node.
    /// An additional level argument is provided for each callback.
    ///
    /// @note The bounding boxes are guarenteed to be non-overlapping.
    template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;

    template<typename VisitorOp> void visit(VisitorOp&);
    template<typename VisitorOp> void visit(VisitorOp&) const;

    template<typename OtherNodeType, typename VisitorOp>
    void visit2Node(OtherNodeType& other, VisitorOp&);
    template<typename OtherNodeType, typename VisitorOp>
    void visit2Node(OtherNodeType& other, VisitorOp&) const;
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false);
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false) const;

    /// Set all voxels that lie outside the given axis-aligned box to the background.
    void clip(const CoordBBox&, const ValueType& background);

    /// @brief Reduce the memory footprint of this tree by replacing with tiles
    /// any nodes whose values are all the same (optionally to within a tolerance)
    /// and have the same active state.
    void prune(const ValueType& tolerance = zeroVal<ValueType>());

    /// @brief Add the specified leaf to this node, possibly creating a child branch
    /// in the process.  If the leaf node already exists, replace it.
    void addLeaf(LeafNodeType* leaf);

    /// @brief Same as addLeaf() except, if necessary, update the accessor with pointers
    /// to the nodes along the path from the root node to the node containing the coordinate.
    template<typename AccessorT>
    void addLeafAndCache(LeafNodeType* leaf, AccessorT&);

    /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
    /// and replace it with a tile of the specified value and state.
    /// If no such node exists, leave the tree unchanged and return @c nullptr.
    ///
    /// @note The caller takes ownership of the node and is responsible for deleting it.
    ///
    /// @warning Since this method potentially removes nodes and branches of the tree,
    /// it is important to clear the caches of all ValueAccessors associated with this tree.
    template<typename NodeT>
    NodeT* stealNode(const Coord& xyz, const ValueType& value, bool state);

    /// @brief Add a tile at the specified tree level that contains voxel (x, y, z),
    /// possibly creating a parent branch or deleting a child branch in the process.
    void addTile(Index level, const Coord& xyz, const ValueType& value, bool state);

    /// @brief Delete any existing child branch at the specified offset and add a tile.
    void addTile(Index offset, const ValueType& value, bool state);

    /// @brief Same as addTile() except, if necessary, update the accessor with pointers
    /// to the nodes along the path from the root node to the node containing (x, y, z).
    template<typename AccessorT>
    void addTileAndCache(Index level, const Coord& xyz, const ValueType&, bool state, AccessorT&);

    //@{
    /// @brief Return a pointer to the node that contains voxel (x, y, z).
    /// If no such node exists, return nullptr.
    template<typename NodeType> NodeType* probeNode(const Coord& xyz);
    template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
    //@}

    //@{
    /// @brief Same as probeNode() except, if necessary, update the accessor with pointers
    /// to the nodes along the path from the root node to the node containing (x, y, z).
    template<typename NodeType, typename AccessorT>
    NodeType* probeNodeAndCache(const Coord& xyz, AccessorT&);
    template<typename NodeType, typename AccessorT>
    const NodeType* probeConstNodeAndCache(const Coord& xyz, AccessorT&) const;
    //@}

    //@{
    /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
    /// If no such node exists, return @c nullptr.
    LeafNodeType* probeLeaf(const Coord& xyz);
    const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
    const LeafNodeType* probeLeaf(const Coord& xyz) const;
    //@}

    //@{
    /// @brief Same as probeLeaf() except, if necessary, update the accessor with pointers
    /// to the nodes along the path from the root node to the node containing (x, y, z).
    template<typename AccessorT>
    LeafNodeType* probeLeafAndCache(const Coord& xyz, AccessorT& acc);
    template<typename AccessorT>
    const LeafNodeType* probeConstLeafAndCache(const Coord& xyz, AccessorT& acc) const;
    template<typename AccessorT>
    const LeafNodeType* probeLeafAndCache(const Coord& xyz, AccessorT& acc) const;
    //@}

    /// @brief Return the leaf node that contains voxel (x, y, z).
    /// If no such node exists, create one, but preserve the values and
    /// active states of all voxels.
    ///
    /// @details Use this method to preallocate a static tree topology
    /// over which to safely perform multithreaded processing.
    LeafNodeType* touchLeaf(const Coord& xyz);

    /// @brief Same as touchLeaf() except, if necessary, update the accessor with pointers
    /// to the nodes along the path from the root node to the node containing the coordinate.
    template<typename AccessorT>
    LeafNodeType* touchLeafAndCache(const Coord& xyz, AccessorT&);

    //@{
    /// @brief Adds all nodes of a certain type to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    using value_type = ...;// defines the type of nodes to be added to the array
    ///    void push_back(value_type nodePtr);// method that add nodes to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    using value_type = LeafType*;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.getNodes(array);
    /// @endcode
    template<typename ArrayT>
    void getNodes(ArrayT& array);
    template<typename ArrayT>
    void getNodes(ArrayT& array) const;
    //@}

    /// @brief Steals all nodes of a certain type from the tree and
    /// adds them to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    using value_type = ...;// defines the type of nodes to be added to the array
    ///    void push_back(value_type nodePtr);// method that add nodes to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    using value_type = LeafType*;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.stealNodes(array);
    /// @endcode
    template<typename ArrayT>
    void stealNodes(ArrayT& array, const ValueType& value, bool state);

    /// @brief Change inactive tiles or voxels with value oldBackground to newBackground
    /// or -oldBackground to -newBackground. Active values are unchanged.
    void resetBackground(const ValueType& oldBackground, const ValueType& newBackground);

    /// @brief Return @c true if the given tree branch has the same node and active value
    /// topology as this tree branch (but possibly a different @c ValueType).
    template<typename OtherChildNodeType, Index OtherLog2Dim>
    bool hasSameTopology(const InternalNode<OtherChildNodeType, OtherLog2Dim>* other) const;

protected:
    //@{
    /// Allow iterators to call mask accessor methods (setValueMask(), setChildMask(), etc.).
    /// @todo Make mask accessors public?
    friend class IteratorBase<MaskOnIterator, InternalNode>;
    friend class IteratorBase<MaskOffIterator, InternalNode>;
    friend class IteratorBase<MaskDenseIterator, InternalNode>;
    //@}

    /// @brief During topology-only construction, access is needed
    /// to protected/private members of other template instances.
    template<typename, Index> friend class InternalNode;

    // Mask accessors
public:
    bool isValueMaskOn(Index n) const { return mValueMask.isOn(n); }
    bool isValueMaskOn() const { return mValueMask.isOn(); }
    bool isValueMaskOff(Index n) const { return mValueMask.isOff(n); }
    bool isValueMaskOff() const { return mValueMask.isOff(); }
    bool isChildMaskOn(Index n) const { return mChildMask.isOn(n); }
    bool isChildMaskOff(Index n) const { return mChildMask.isOff(n); }
    bool isChildMaskOff() const { return mChildMask.isOff(); }
    const NodeMaskType& getValueMask() const { return mValueMask; }
    const NodeMaskType& getChildMask() const { return mChildMask; }
    NodeMaskType getValueOffMask() const
    {
        NodeMaskType mask = mValueMask;
        mask |= mChildMask;
        mask.toggle();
        return mask;
    }
    const UnionType* getTable() const { return mNodes; }
protected:
    //@{
    /// Use a mask accessor to ensure consistency between the child and value masks;
    /// i.e., the value mask should always be off wherever the child mask is on.
    void setValueMask(Index n, bool on) { mValueMask.set(n, mChildMask.isOn(n) ? false : on); }
    //@}

    void makeChildNodeEmpty(Index n, const ValueType& value);
    void setChildNode(  Index i, ChildNodeType* child);//assumes a tile
    void resetChildNode(Index i, ChildNodeType* child);//checks for an existing child
    ChildNodeType* unsetChildNode(Index i, const ValueType& value);

    template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
    static inline void doVisit(NodeT&, VisitorOp&);

    template<typename NodeT, typename OtherNodeT, typename VisitorOp,
        typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2Node(NodeT&, OtherNodeT&, VisitorOp&);

    template<typename NodeT, typename VisitorOp,
        typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2(NodeT&, OtherChildAllIterT&, VisitorOp&, bool otherIsLHS);

    ///@{
    /// @brief Returns a pointer to the child node at the linear offset n.
    /// @warning This protected method assumes that a child node exists at
    /// the specified linear offset!
    ChildNodeType* getChildNode(Index n);
    const ChildNodeType* getChildNode(Index n) const;
    ///@}

    ///@{
    /// @brief Protected member classes for recursive multi-threading
    struct VoxelizeActiveTiles;
    template<typename OtherInternalNode> struct DeepCopy;
    template<typename OtherInternalNode> struct TopologyCopy1;
    template<typename OtherInternalNode> struct TopologyCopy2;
    template<typename OtherInternalNode> struct TopologyUnion;
    template<typename OtherInternalNode> struct TopologyDifference;
    template<typename OtherInternalNode> struct TopologyIntersection;
    ///@}

    UnionType mNodes[NUM_VALUES];
    NodeMaskType mChildMask, mValueMask;
    /// Global grid index coordinates (x,y,z) of the local origin of this node
    Coord mOrigin;
}; // class InternalNode


////////////////////////////////////////


//@{
/// Helper metafunction used to implement InternalNode::SameConfiguration
/// (which, as an inner class, can't be independently specialized)
template<typename ChildT1, Index Dim1, typename NodeT2>
struct SameInternalConfig {
    static const bool value = false;
};

template<typename ChildT1, Index Dim1, typename ChildT2>
struct SameInternalConfig<ChildT1, Dim1, InternalNode<ChildT2, Dim1> > {
    static const bool value = ChildT1::template SameConfiguration<ChildT2>::value;
};
//@}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const ValueType& background)
{
    for (Index i = 0; i < NUM_VALUES; ++i) mNodes[i].setValue(background);
}


template<typename ChildT, Index Log2Dim>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const Coord& origin, const ValueType& val, bool active):
    mOrigin(origin[0] & ~(DIM - 1), // zero out the low-order bits
            origin[1] & ~(DIM - 1),
            origin[2] & ~(DIM - 1))
{
    if (active) mValueMask.setOn();
    for (Index i = 0; i < NUM_VALUES; ++i) mNodes[i].setValue(val);
}


#if OPENVDB_ABI_VERSION_NUMBER >= 3
// For InternalNodes, the PartialCreate constructor is identical to its
// non-PartialCreate counterpart.
template<typename ChildT, Index Log2Dim>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(PartialCreate,
    const Coord& origin, const ValueType& val, bool active)
    : mOrigin(origin[0] & ~(DIM-1), origin[1] & ~(DIM-1), origin[2] & ~(DIM-1))
{
    if (active) mValueMask.setOn();
    for (Index i = 0; i < NUM_VALUES; ++i) mNodes[i].setValue(val);
}
#endif

template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::DeepCopy
{
    DeepCopy(const OtherInternalNode* source, InternalNode* target) : s(source), t(target) {
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//serial
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (s->mChildMask.isOff(i)) {
                t->mNodes[i].setValue(ValueType(s->mNodes[i].getValue()));
            } else {
                t->mNodes[i].setChild(new ChildNodeType(*(s->mNodes[i].getChild())));
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
};// DeepCopy

template<typename ChildT, Index Log2Dim>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const InternalNode& other):
    mChildMask(other.mChildMask),
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
    DeepCopy<InternalNode<ChildT, Log2Dim> > tmp(&other, this);
}


// Copy-construct from a node with the same configuration but a different ValueType.
template<typename ChildT, Index Log2Dim>
template<typename OtherChildNodeType>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other)
    : mChildMask(other.mChildMask)
    , mValueMask(other.mValueMask)
    , mOrigin(other.mOrigin)
{
    DeepCopy<InternalNode<OtherChildNodeType, Log2Dim> > tmp(&other, this);
}

template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::TopologyCopy1
{
    TopologyCopy1(const OtherInternalNode* source, InternalNode* target,
                  const ValueType& background) : s(source), t(target), b(background) {
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//serial
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (s->isChildMaskOn(i)) {
                t->mNodes[i].setChild(new ChildNodeType(*(s->mNodes[i].getChild()),
                                                        b, TopologyCopy()));
            } else {
                t->mNodes[i].setValue(b);
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
    const ValueType &b;
};// TopologyCopy1

template<typename ChildT, Index Log2Dim>
template<typename OtherChildNodeType>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                                            const ValueType& background, TopologyCopy):
    mChildMask(other.mChildMask),
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
    TopologyCopy1<InternalNode<OtherChildNodeType, Log2Dim> > tmp(&other, this, background);
}

template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::TopologyCopy2
{
    TopologyCopy2(const OtherInternalNode* source, InternalNode* target,
                  const ValueType& offValue, const ValueType& onValue)
        : s(source), t(target), offV(offValue), onV(onValue) {
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (s->isChildMaskOn(i)) {
                t->mNodes[i].setChild(new ChildNodeType(*(s->mNodes[i].getChild()),
                                                        offV, onV, TopologyCopy()));
            } else {
                t->mNodes[i].setValue(s->isValueMaskOn(i) ? onV : offV);
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
    const ValueType &offV, &onV;
 };// TopologyCopy2

template<typename ChildT, Index Log2Dim>
template<typename OtherChildNodeType>
inline
InternalNode<ChildT, Log2Dim>::InternalNode(const InternalNode<OtherChildNodeType, Log2Dim>& other,
                                            const ValueType& offValue,
                                            const ValueType& onValue, TopologyCopy):
    mChildMask(other.mChildMask),
    mValueMask(other.mValueMask),
    mOrigin(other.mOrigin)
{
    TopologyCopy2<InternalNode<OtherChildNodeType, Log2Dim> > tmp(&other, this, offValue, onValue);
}


template<typename ChildT, Index Log2Dim>
inline
InternalNode<ChildT, Log2Dim>::~InternalNode()
{
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        delete mNodes[iter.pos()].getChild();
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline Index32
InternalNode<ChildT, Log2Dim>::leafCount() const
{
    if (ChildNodeType::getLevel() == 0) return mChildMask.countOn();
    Index32 sum = 0;
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        sum += iter->leafCount();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline Index32
InternalNode<ChildT, Log2Dim>::nonLeafCount() const
{
    Index32 sum = 1;
    if (ChildNodeType::getLevel() == 0) return sum;
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        sum += iter->nonLeafCount();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::onVoxelCount() const
{
    Index64 sum = ChildT::NUM_VOXELS * mValueMask.countOn();
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        sum += iter->onVoxelCount();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::offVoxelCount() const
{
    Index64 sum = ChildT::NUM_VOXELS * (NUM_VALUES-mValueMask.countOn()-mChildMask.countOn());
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        sum += iter->offVoxelCount();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::onLeafVoxelCount() const
{
    Index64 sum = 0;
    for (ChildOnCIter iter = this->beginChildOn(); iter; ++iter) {
        sum += mNodes[iter.pos()].getChild()->onLeafVoxelCount();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::offLeafVoxelCount() const
{
    Index64 sum = 0;
    for (ChildOnCIter iter = this->beginChildOn(); iter; ++iter) {
        sum += mNodes[iter.pos()].getChild()->offLeafVoxelCount();
    }
    return sum;
}

template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::onTileCount() const
{
    Index64 sum = mValueMask.countOn();
    for (ChildOnCIter iter = this->cbeginChildOn(); LEVEL>1 && iter; ++iter) {
        sum += iter->onTileCount();
    }
    return sum;
}

template<typename ChildT, Index Log2Dim>
inline Index64
InternalNode<ChildT, Log2Dim>::memUsage() const
{
    Index64 sum = NUM_VALUES * sizeof(UnionType) + mChildMask.memUsage()
                + mValueMask.memUsage() + sizeof(mOrigin);
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        sum += iter->memUsage();
    }
    return sum;
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
    if (bbox.isInside(this->getNodeBoundingBox())) return;

    for (ValueOnCIter i = this->cbeginValueOn(); i; ++i) {
        bbox.expand(i.getCoord(), ChildT::DIM);
    }
    for (ChildOnCIter i = this->cbeginChildOn(); i; ++i) {
        i->evalActiveBoundingBox(bbox, visitVoxels);
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::prune(const ValueType& tolerance)
{
    bool state = false;
    ValueType value = zeroVal<ValueType>();
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        const Index i = iter.pos();
        ChildT* child = mNodes[i].getChild();
        child->prune(tolerance);
        if (child->isConstant(value, state, tolerance)) {
            delete child;
            mChildMask.setOff(i);
            mValueMask.set(i, state);
            mNodes[i].setValue(value);
        }
     }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename NodeT>
inline NodeT*
InternalNode<ChildT, Log2Dim>::stealNode(const Coord& xyz, const ValueType& value, bool state)
{
    if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
         NodeT::LEVEL >  ChildT::LEVEL) return nullptr;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) return nullptr;
    ChildT* child = mNodes[n].getChild();
    if (std::is_same<NodeT, ChildT>::value) {
        mChildMask.setOff(n);
        mValueMask.set(n, state);
        mNodes[n].setValue(value);
    }
    return (std::is_same<NodeT, ChildT>::value)
        ? reinterpret_cast<NodeT*>(child)
        : child->template stealNode<NodeT>(xyz, value, state);
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename NodeT>
inline NodeT*
InternalNode<ChildT, Log2Dim>::probeNode(const Coord& xyz)
{
    if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
         NodeT::LEVEL >  ChildT::LEVEL) return nullptr;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) return nullptr;
    ChildT* child = mNodes[n].getChild();
    return (std::is_same<NodeT, ChildT>::value)
           ? reinterpret_cast<NodeT*>(child)
           : child->template probeNode<NodeT>(xyz);
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename ChildT, Index Log2Dim>
template<typename NodeT, typename AccessorT>
inline NodeT*
InternalNode<ChildT, Log2Dim>::probeNodeAndCache(const Coord& xyz, AccessorT& acc)
{
    if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
         NodeT::LEVEL >  ChildT::LEVEL) return nullptr;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) return nullptr;
    ChildT* child = mNodes[n].getChild();
    acc.insert(xyz, child);
    return (std::is_same<NodeT, ChildT>::value)
           ? reinterpret_cast<NodeT*>(child)
           : child->template probeNodeAndCache<NodeT>(xyz, acc);
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename ChildT, Index Log2Dim>
template<typename NodeT>
inline const NodeT*
InternalNode<ChildT, Log2Dim>::probeConstNode(const Coord& xyz) const
{
    if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
         NodeT::LEVEL >  ChildT::LEVEL) return nullptr;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) return nullptr;
    const ChildT* child = mNodes[n].getChild();
    return (std::is_same<NodeT, ChildT>::value)
            ? reinterpret_cast<const NodeT*>(child)
            : child->template probeConstNode<NodeT>(xyz);
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename ChildT, Index Log2Dim>
template<typename NodeT, typename AccessorT>
inline const NodeT*
InternalNode<ChildT, Log2Dim>::probeConstNodeAndCache(const Coord& xyz, AccessorT& acc) const
{
    if ((NodeT::LEVEL == ChildT::LEVEL && !(std::is_same<NodeT, ChildT>::value)) ||
         NodeT::LEVEL >  ChildT::LEVEL) return nullptr;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) return nullptr;
    const ChildT* child = mNodes[n].getChild();
    acc.insert(xyz, child);
    return (std::is_same<NodeT, ChildT>::value)
            ? reinterpret_cast<const NodeT*>(child)
            : child->template probeConstNodeAndCache<NodeT>(xyz, acc);
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::probeLeaf(const Coord& xyz)
{
    return this->template probeNode<LeafNodeType>(xyz);
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::probeLeafAndCache(const Coord& xyz, AccessorT& acc)
{
    return this->template probeNodeAndCache<LeafNodeType>(xyz, acc);
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline const typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::probeLeafAndCache(const Coord& xyz, AccessorT& acc) const
{
    return this->probeConstLeafAndCache(xyz, acc);
}


template<typename ChildT, Index Log2Dim>
inline const typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::probeConstLeaf(const Coord& xyz) const
{
    return this->template probeConstNode<LeafNodeType>(xyz);
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline const typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::probeConstLeafAndCache(const Coord& xyz, AccessorT& acc) const
{
    return this->template probeConstNodeAndCache<LeafNodeType>(xyz, acc);
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::addLeaf(LeafNodeType* leaf)
{
    assert(leaf != nullptr);
    const Coord& xyz = leaf->origin();
    const Index n = this->coordToOffset(xyz);
    ChildT* child = nullptr;
    if (mChildMask.isOff(n)) {
        if (ChildT::LEVEL>0) {
            child = new ChildT(xyz, mNodes[n].getValue(), mValueMask.isOn(n));
        } else {
            child = reinterpret_cast<ChildT*>(leaf);
        }
        this->setChildNode(n, child);
    } else {
        if (ChildT::LEVEL>0) {
            child = mNodes[n].getChild();
        } else {
            delete mNodes[n].getChild();
            child = reinterpret_cast<ChildT*>(leaf);
            mNodes[n].setChild(child);
        }
    }
    child->addLeaf(leaf);
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::addLeafAndCache(LeafNodeType* leaf, AccessorT& acc)
{
    assert(leaf != nullptr);
    const Coord& xyz = leaf->origin();
    const Index n = this->coordToOffset(xyz);
    ChildT* child = nullptr;
    if (mChildMask.isOff(n)) {
        if (ChildT::LEVEL>0) {
            child = new ChildT(xyz, mNodes[n].getValue(), mValueMask.isOn(n));
            acc.insert(xyz, child);//we only cache internal nodes
        } else {
            child = reinterpret_cast<ChildT*>(leaf);
        }
        this->setChildNode(n, child);
    } else {
        if (ChildT::LEVEL>0) {
            child = mNodes[n].getChild();
            acc.insert(xyz, child);//we only cache internal nodes
        } else {
            delete mNodes[n].getChild();
            child = reinterpret_cast<ChildT*>(leaf);
            mNodes[n].setChild(child);
        }
    }
    child->addLeafAndCache(leaf, acc);
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::addTile(Index n, const ValueType& value, bool state)
{
    assert(n < NUM_VALUES);
    this->makeChildNodeEmpty(n, value);
    mValueMask.set(n, state);
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::addTile(Index level, const Coord& xyz,
                                       const ValueType& value, bool state)
{
    if (LEVEL >= level) {
        const Index n = this->coordToOffset(xyz);
        if (mChildMask.isOff(n)) {// tile case
            if (LEVEL > level) {
                ChildT* child = new ChildT(xyz, mNodes[n].getValue(), mValueMask.isOn(n));
                this->setChildNode(n, child);
                child->addTile(level, xyz, value, state);
            } else {
                mValueMask.set(n, state);
                mNodes[n].setValue(value);
            }
        } else {// child branch case
            ChildT* child = mNodes[n].getChild();
            if (LEVEL > level) {
                child->addTile(level, xyz, value, state);
            } else {
                delete child;
                mChildMask.setOff(n);
                mValueMask.set(n, state);
                mNodes[n].setValue(value);
            }
        }
    }
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::addTileAndCache(Index level, const Coord& xyz,
    const ValueType& value, bool state, AccessorT& acc)
{
    if (LEVEL >= level) {
        const Index n = this->coordToOffset(xyz);
        if (mChildMask.isOff(n)) {// tile case
            if (LEVEL > level) {
                ChildT* child = new ChildT(xyz, mNodes[n].getValue(), mValueMask.isOn(n));
                this->setChildNode(n, child);
                acc.insert(xyz, child);
                child->addTileAndCache(level, xyz, value, state, acc);
            } else {
                mValueMask.set(n, state);
                mNodes[n].setValue(value);
            }
        } else {// child branch case
            ChildT* child = mNodes[n].getChild();
            if (LEVEL > level) {
                acc.insert(xyz, child);
                child->addTileAndCache(level, xyz, value, state, acc);
            } else {
                delete child;
                mChildMask.setOff(n);
                mValueMask.set(n, state);
                mNodes[n].setValue(value);
            }
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::touchLeaf(const Coord& xyz)
{
    const Index n = this->coordToOffset(xyz);
    ChildT* child = nullptr;
    if (mChildMask.isOff(n)) {
        child = new ChildT(xyz, mNodes[n].getValue(), mValueMask.isOn(n));
        this->setChildNode(n, child);
    } else {
        child = mNodes[n].getChild();
    }
    return child->touchLeaf(xyz);
}


template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline typename ChildT::LeafNodeType*
InternalNode<ChildT, Log2Dim>::touchLeafAndCache(const Coord& xyz, AccessorT& acc)
{
    const Index n = this->coordToOffset(xyz);
    if (mChildMask.isOff(n)) {
        this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), mValueMask.isOn(n)));
    }
    acc.insert(xyz, mNodes[n].getChild());
    return mNodes[n].getChild()->touchLeafAndCache(xyz, acc);
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::isConstant(ValueType& firstValue, bool& state,
                                          const ValueType& tolerance) const
{
    if (!mChildMask.isOff() || !mValueMask.isConstant(state)) return false;// early termination

    firstValue = mNodes[0].getValue();
    for (Index i = 1; i < NUM_VALUES; ++i) {
        if (!math::isApproxEqual(mNodes[i].getValue(), firstValue, tolerance)) {
            return false; // early termination
        }
    }
    return true;
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::isConstant(ValueType& minValue,
                                          ValueType& maxValue,
                                          bool& state,
                                          const ValueType& tolerance) const
{

    if (!mChildMask.isOff() || !mValueMask.isConstant(state)) return false;// early termination
    minValue = maxValue = mNodes[0].getValue();
    for (Index i = 1; i < NUM_VALUES; ++i) {
        const ValueType& v = mNodes[i].getValue();
        if (v < minValue) {
            if ((maxValue - v) > tolerance) return false;// early termination
            minValue = v;
        } else if (v > maxValue) {
            if ((v - minValue) > tolerance) return false;// early termination
            maxValue = v;
        }
    }
    return true;
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::hasActiveTiles() const
{
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    const bool anyActiveTiles = !mValueMask.isOff();
    if (LEVEL==1 || anyActiveTiles) return anyActiveTiles;
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        if (iter->hasActiveTiles()) return true;
    }
    return false;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename ChildT, Index Log2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::isValueOn(const Coord& xyz) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOff(n)) return this->isValueMaskOn(n);
    return mNodes[n].getChild()->isValueOn(xyz);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline bool
InternalNode<ChildT, Log2Dim>::isValueOnAndCache(const Coord& xyz, AccessorT& acc) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOff(n)) return this->isValueMaskOn(n);
    acc.insert(xyz, mNodes[n].getChild());
    return mNodes[n].getChild()->isValueOnAndCache(xyz, acc);
}


template<typename ChildT, Index Log2Dim>
inline const typename ChildT::ValueType&
InternalNode<ChildT, Log2Dim>::getValue(const Coord& xyz) const
{
    const Index n = this->coordToOffset(xyz);
    return this->isChildMaskOff(n) ? mNodes[n].getValue()
        :  mNodes[n].getChild()->getValue(xyz);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline const typename ChildT::ValueType&
InternalNode<ChildT, Log2Dim>::getValueAndCache(const Coord& xyz, AccessorT& acc) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOn(n)) {
        acc.insert(xyz, mNodes[n].getChild());
        return mNodes[n].getChild()->getValueAndCache(xyz, acc);
    }
    return mNodes[n].getValue();
}


template<typename ChildT, Index Log2Dim>
inline Index
InternalNode<ChildT, Log2Dim>::getValueLevel(const Coord& xyz) const
{
    const Index n = this->coordToOffset(xyz);
    return this->isChildMaskOff(n) ? LEVEL : mNodes[n].getChild()->getValueLevel(xyz);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline Index
InternalNode<ChildT, Log2Dim>::getValueLevelAndCache(const Coord& xyz, AccessorT& acc) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOn(n)) {
        acc.insert(xyz, mNodes[n].getChild());
        return mNodes[n].getChild()->getValueLevelAndCache(xyz, acc);
    }
    return LEVEL;
}


template<typename ChildT, Index Log2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::probeValue(const Coord& xyz, ValueType& value) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOff(n)) {
        value = mNodes[n].getValue();
        return this->isValueMaskOn(n);
    }
    return mNodes[n].getChild()->probeValue(xyz, value);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline bool
InternalNode<ChildT, Log2Dim>::probeValueAndCache(const Coord& xyz,
    ValueType& value, AccessorT& acc) const
{
    const Index n = this->coordToOffset(xyz);
    if (this->isChildMaskOn(n)) {
        acc.insert(xyz, mNodes[n].getChild());
        return mNodes[n].getChild()->probeValueAndCache(xyz, value, acc);
    }
    value = mNodes[n].getValue();
    return this->isValueMaskOn(n);
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValueOff(const Coord& xyz)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild && this->isValueMaskOn(n)) {
        // If the voxel belongs to a constant tile that is active,
        // a child subtree must be constructed.
        hasChild = true;
        this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), /*active=*/true));
    }
    if (hasChild) mNodes[n].getChild()->setValueOff(xyz);
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValueOn(const Coord& xyz)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild && !this->isValueMaskOn(n)) {
        // If the voxel belongs to a constant tile that is inactive,
        // a child subtree must be constructed.
        hasChild = true;
        this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), /*active=*/false));
    }
    if (hasChild) mNodes[n].getChild()->setValueOn(xyz);
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValueOff(const Coord& xyz, const ValueType& value)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool active = this->isValueMaskOn(n);
        if (active || !math::isExactlyEqual(mNodes[n].getValue(), value)) {
            // If the voxel belongs to a tile that is either active or that
            // has a constant value that is different from the one provided,
            // a child subtree must be constructed.
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) mNodes[n].getChild()->setValueOff(xyz, value);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::setValueOffAndCache(const Coord& xyz,
    const ValueType& value, AccessorT& acc)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool active = this->isValueMaskOn(n);
        if (active || !math::isExactlyEqual(mNodes[n].getValue(), value)) {
            // If the voxel belongs to a tile that is either active or that
            // has a constant value that is different from the one provided,
            // a child subtree must be constructed.
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) {
        ChildT* child = mNodes[n].getChild();
        acc.insert(xyz, child);
        child->setValueOffAndCache(xyz, value, acc);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValueOn(const Coord& xyz, const ValueType& value)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool active = this->isValueMaskOn(n); // tile's active state
        if (!active || !math::isExactlyEqual(mNodes[n].getValue(), value)) {
            // If the voxel belongs to a tile that is either inactive or that
            // has a constant value that is different from the one provided,
            // a child subtree must be constructed.
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) mNodes[n].getChild()->setValueOn(xyz, value);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::setValueAndCache(const Coord& xyz,
    const ValueType& value, AccessorT& acc)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool active = this->isValueMaskOn(n);
        if (!active || !math::isExactlyEqual(mNodes[n].getValue(), value)) {
            // If the voxel belongs to a tile that is either inactive or that
            // has a constant value that is different from the one provided,
            // a child subtree must be constructed.
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) {
        acc.insert(xyz, mNodes[n].getChild());
        mNodes[n].getChild()->setValueAndCache(xyz, value, acc);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValueOnly(const Coord& xyz, const ValueType& value)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild && !math::isExactlyEqual(mNodes[n].getValue(), value)) {
        // If the voxel has a tile value that is different from the one provided,
        // a child subtree must be constructed.
        const bool active = this->isValueMaskOn(n);
        hasChild = true;
        this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
    }
    if (hasChild) mNodes[n].getChild()->setValueOnly(xyz, value);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::setValueOnlyAndCache(const Coord& xyz,
                                                    const ValueType& value, AccessorT& acc)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild && !math::isExactlyEqual(mNodes[n].getValue(), value)) {
        // If the voxel has a tile value that is different from the one provided,
        // a child subtree must be constructed.
        const bool active = this->isValueMaskOn(n);
        hasChild = true;
        this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
    }
    if (hasChild) {
        acc.insert(xyz, mNodes[n].getChild());
        mNodes[n].getChild()->setValueOnlyAndCache(xyz, value, acc);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setActiveState(const Coord& xyz, bool on)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        if (on != this->isValueMaskOn(n)) {
            // If the voxel belongs to a tile with the wrong active state,
            // then a child subtree must be constructed.
            // 'on' is the voxel's new state, therefore '!on' is the tile's current state
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), !on));
        }
    }
    if (hasChild) mNodes[n].getChild()->setActiveState(xyz, on);
}

template<typename ChildT, Index Log2Dim>
template<typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::setActiveStateAndCache(const Coord& xyz, bool on, AccessorT& acc)
{
    const Index n = this->coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        if (on != this->isValueMaskOn(n)) {
            // If the voxel belongs to a tile with the wrong active state,
            // then a child subtree must be constructed.
            // 'on' is the voxel's new state, therefore '!on' is the tile's current state
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), !on));
        }
    }
    if (hasChild) {
        ChildT* child = mNodes[n].getChild();
        acc.insert(xyz, child);
        child->setActiveStateAndCache(xyz, on, acc);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setValuesOn()
{
    mValueMask = !mChildMask;
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        mNodes[iter.pos()].getChild()->setValuesOn();
    }
}


template<typename ChildT, Index Log2Dim>
template<typename ModifyOp>
inline void
InternalNode<ChildT, Log2Dim>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        // Need to create a child if the tile is inactive,
        // in order to activate voxel (x, y, z).
        const bool active = this->isValueMaskOn(n);
        bool createChild = !active;
        if (!createChild) {
            // Need to create a child if applying the functor
            // to the tile value produces a different value.
            const ValueType& tileVal = mNodes[n].getValue();
            ValueType modifiedVal = tileVal;
            op(modifiedVal);
            createChild = !math::isExactlyEqual(tileVal, modifiedVal);
        }
        if (createChild) {
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) mNodes[n].getChild()->modifyValue(xyz, op);
}

template<typename ChildT, Index Log2Dim>
template<typename ModifyOp, typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::modifyValueAndCache(const Coord& xyz, const ModifyOp& op,
    AccessorT& acc)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        // Need to create a child if the tile is inactive,
        // in order to activate voxel (x, y, z).
        const bool active = this->isValueMaskOn(n);
        bool createChild = !active;
        if (!createChild) {
            // Need to create a child if applying the functor
            // to the tile value produces a different value.
            const ValueType& tileVal = mNodes[n].getValue();
            ValueType modifiedVal = tileVal;
            op(modifiedVal);
            createChild = !math::isExactlyEqual(tileVal, modifiedVal);
        }
        if (createChild) {
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, mNodes[n].getValue(), active));
        }
    }
    if (hasChild) {
        ChildNodeType* child = mNodes[n].getChild();
        acc.insert(xyz, child);
        child->modifyValueAndCache(xyz, op, acc);
    }
}


template<typename ChildT, Index Log2Dim>
template<typename ModifyOp>
inline void
InternalNode<ChildT, Log2Dim>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool tileState = this->isValueMaskOn(n);
        const ValueType& tileVal = mNodes[n].getValue();
        bool modifiedState = !tileState;
        ValueType modifiedVal = tileVal;
        op(modifiedVal, modifiedState);
        // Need to create a child if applying the functor to the tile
        // produces a different value or active state.
        if (modifiedState != tileState || !math::isExactlyEqual(modifiedVal, tileVal)) {
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, tileVal, tileState));
        }
    }
    if (hasChild) mNodes[n].getChild()->modifyValueAndActiveState(xyz, op);
}

template<typename ChildT, Index Log2Dim>
template<typename ModifyOp, typename AccessorT>
inline void
InternalNode<ChildT, Log2Dim>::modifyValueAndActiveStateAndCache(
    const Coord& xyz, const ModifyOp& op, AccessorT& acc)
{
    const Index n = InternalNode::coordToOffset(xyz);
    bool hasChild = this->isChildMaskOn(n);
    if (!hasChild) {
        const bool tileState = this->isValueMaskOn(n);
        const ValueType& tileVal = mNodes[n].getValue();
        bool modifiedState = !tileState;
        ValueType modifiedVal = tileVal;
        op(modifiedVal, modifiedState);
        // Need to create a child if applying the functor to the tile
        // produces a different value or active state.
        if (modifiedState != tileState || !math::isExactlyEqual(modifiedVal, tileVal)) {
            hasChild = true;
            this->setChildNode(n, new ChildNodeType(xyz, tileVal, tileState));
        }
    }
    if (hasChild) {
        ChildNodeType* child = mNodes[n].getChild();
        acc.insert(xyz, child);
        child->modifyValueAndActiveStateAndCache(xyz, op, acc);
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::clip(const CoordBBox& clipBBox, const ValueType& background)
{
    CoordBBox nodeBBox = this->getNodeBoundingBox();
    if (!clipBBox.hasOverlap(nodeBBox)) {
        // This node lies completely outside the clipping region.  Fill it with background tiles.
        this->fill(nodeBBox, background, /*active=*/false);
    } else if (clipBBox.isInside(nodeBBox)) {
        // This node lies completely inside the clipping region.  Leave it intact.
        return;
    }

    // This node isn't completely contained inside the clipping region.
    // Clip tiles and children, and replace any that lie outside the region
    // with background tiles.

    for (Index pos = 0; pos < NUM_VALUES; ++pos) {
        const Coord xyz = this->offsetToGlobalCoord(pos); // tile or child origin
        CoordBBox tileBBox(xyz, xyz.offsetBy(ChildT::DIM - 1)); // tile or child bounds
        if (!clipBBox.hasOverlap(tileBBox)) {
            // This table entry lies completely outside the clipping region.
            // Replace it with a background tile.
            this->makeChildNodeEmpty(pos, background);
            mValueMask.setOff(pos);
        } else if (!clipBBox.isInside(tileBBox)) {
            // This table entry does not lie completely inside the clipping region
            // and must be clipped.
            if (this->isChildMaskOn(pos)) {
                mNodes[pos].getChild()->clip(clipBBox, background);
            } else {
                // Replace this tile with a background tile, then fill the clip region
                // with the tile's original value.  (This might create a child branch.)
                tileBBox.intersect(clipBBox);
                const ValueType val = mNodes[pos].getValue();
                const bool on = this->isValueMaskOn(pos);
                mNodes[pos].setValue(background);
                mValueMask.setOff(pos);
                this->fill(tileBBox, val, on);
            }
        } else {
            // This table entry lies completely inside the clipping region.  Leave it intact.
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    auto clippedBBox = this->getNodeBoundingBox();
    clippedBBox.intersect(bbox);
    if (!clippedBBox) return;

    // Iterate over the fill region in axis-aligned, tile-sized chunks.
    // (The first and last chunks along each axis might be smaller than a tile.)
    Coord xyz, tileMin, tileMax;
    for (int x = clippedBBox.min().x(); x <= clippedBBox.max().x(); x = tileMax.x() + 1) {
        xyz.setX(x);
        for (int y = clippedBBox.min().y(); y <= clippedBBox.max().y(); y = tileMax.y() + 1) {
            xyz.setY(y);
            for (int z = clippedBBox.min().z(); z <= clippedBBox.max().z(); z = tileMax.z() + 1) {
                xyz.setZ(z);

                // Get the bounds of the tile that contains voxel (x, y, z).
                const Index n = this->coordToOffset(xyz);
                tileMin = this->offsetToGlobalCoord(n);
                tileMax = tileMin.offsetBy(ChildT::DIM - 1);

                if (xyz != tileMin || Coord::lessThan(clippedBBox.max(), tileMax)) {
                    // If the box defined by (xyz, clippedBBox.max()) doesn't completely enclose
                    // the tile to which xyz belongs, create a child node (or retrieve
                    // the existing one).
                    ChildT* child = nullptr;
                    if (this->isChildMaskOff(n)) {
                        // Replace the tile with a newly-created child that is initialized
                        // with the tile's value and active state.
                        child = new ChildT{xyz, mNodes[n].getValue(), this->isValueMaskOn(n)};
                        this->setChildNode(n, child);
                    } else {
                        child = mNodes[n].getChild();
                    }

                    // Forward the fill request to the child.
                    if (child) {
                        const Coord tmp = Coord::minComponent(clippedBBox.max(), tileMax);
                        child->fill(CoordBBox(xyz, tmp), value, active);
                    }

                } else {
                    // If the box given by (xyz, clippedBBox.max()) completely encloses
                    // the tile to which xyz belongs, create the tile (if it
                    // doesn't already exist) and give it the fill value.
                    this->makeChildNodeEmpty(n, value);
                    mValueMask.set(n, active);
                }
            }
        }
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::denseFill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    auto clippedBBox = this->getNodeBoundingBox();
    clippedBBox.intersect(bbox);
    if (!clippedBBox) return;

    // Iterate over the fill region in axis-aligned, tile-sized chunks.
    // (The first and last chunks along each axis might be smaller than a tile.)
    Coord xyz, tileMin, tileMax;
    for (int x = clippedBBox.min().x(); x <= clippedBBox.max().x(); x = tileMax.x() + 1) {
        xyz.setX(x);
        for (int y = clippedBBox.min().y(); y <= clippedBBox.max().y(); y = tileMax.y() + 1) {
            xyz.setY(y);
            for (int z = clippedBBox.min().z(); z <= clippedBBox.max().z(); z = tileMax.z() + 1) {
                xyz.setZ(z);

                // Get the table index of the tile that contains voxel (x, y, z).
                const auto n = this->coordToOffset(xyz);

                // Retrieve the child node at index n, or replace the tile at index n with a child.
                ChildT* child = nullptr;
                if (this->isChildMaskOn(n)) {
                    child = mNodes[n].getChild();
                } else {
                    // Replace the tile with a newly-created child that is filled
                    // with the tile's value and active state.
                    child = new ChildT{xyz, mNodes[n].getValue(), this->isValueMaskOn(n)};
                    this->setChildNode(n, child);
                }

                // Get the bounds of the tile that contains voxel (x, y, z).
                tileMin = this->offsetToGlobalCoord(n);
                tileMax = tileMin.offsetBy(ChildT::DIM - 1);

                // Forward the fill request to the child.
                child->denseFill(CoordBBox{xyz, clippedBBox.max()}, value, active);
            }
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename DenseT>
inline void
InternalNode<ChildT, Log2Dim>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
    using DenseValueType = typename DenseT::ValueType;

    const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
    const Coord& min = dense.bbox().min();
    for (Coord xyz = bbox.min(), max; xyz[0] <= bbox.max()[0]; xyz[0] = max[0] + 1) {
        for (xyz[1] = bbox.min()[1]; xyz[1] <= bbox.max()[1]; xyz[1] = max[1] + 1) {
            for (xyz[2] = bbox.min()[2]; xyz[2] <= bbox.max()[2]; xyz[2] = max[2] + 1) {
                const Index n = this->coordToOffset(xyz);
                // Get max coordinates of the child node that contains voxel xyz.
                max = this->offsetToGlobalCoord(n).offsetBy(ChildT::DIM-1);

                // Get the bbox of the interection of bbox and the child node
                CoordBBox sub(xyz, Coord::minComponent(bbox.max(), max));

                if (this->isChildMaskOn(n)) {//is a child
                    mNodes[n].getChild()->copyToDense(sub, dense);
                } else {//a tile value
                    const ValueType value = mNodes[n].getValue();
                    sub.translate(-min);
                    DenseValueType* a0 = dense.data() + zStride*sub.min()[2];
                    for (Int32 x=sub.min()[0], ex=sub.max()[0]+1; x<ex; ++x) {
                        DenseValueType* a1 = a0 + x*xStride;
                        for (Int32 y=sub.min()[1], ey=sub.max()[1]+1; y<ey; ++y) {
                            DenseValueType* a2 = a1 + y*yStride;
                            for (Int32 z = sub.min()[2], ez = sub.max()[2]+1;
                                z < ez; ++z, a2 += zStride)
                            {
                                *a2 = DenseValueType(value);
                            }
                        }
                    }
                }
            }
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::writeTopology(std::ostream& os, bool toHalf) const
{
    mChildMask.save(os);
    mValueMask.save(os);

    {
        // Copy all of this node's values into an array.
        std::unique_ptr<ValueType[]> valuePtr(new ValueType[NUM_VALUES]);
        ValueType* values = valuePtr.get();
        const ValueType zero = zeroVal<ValueType>();
        for (Index i = 0; i < NUM_VALUES; ++i) {
            values[i] = (mChildMask.isOff(i) ? mNodes[i].getValue() : zero);
        }
        // Compress (optionally) and write out the contents of the array.
        io::writeCompressedValues(os, values, NUM_VALUES, mValueMask, mChildMask, toHalf);
    }
    // Write out the child nodes in order.
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        iter->writeTopology(os, toHalf);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::readTopology(std::istream& is, bool fromHalf)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    const ValueType background = (!io::getGridBackgroundValuePtr(is) ? zeroVal<ValueType>()
        : *static_cast<const ValueType*>(io::getGridBackgroundValuePtr(is)));
#endif

    mChildMask.load(is);
    mValueMask.load(is);

    if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_INTERNALNODE_COMPRESSION) {
        for (Index i = 0; i < NUM_VALUES; ++i) {
            if (this->isChildMaskOn(i)) {
                ChildNodeType* child =
#if OPENVDB_ABI_VERSION_NUMBER <= 2
                    new ChildNodeType(offsetToGlobalCoord(i), zeroVal<ValueType>());
#else
                    new ChildNodeType(PartialCreate(), offsetToGlobalCoord(i), background);
#endif
                mNodes[i].setChild(child);
                child->readTopology(is);
            } else {
                ValueType value;
                is.read(reinterpret_cast<char*>(&value), sizeof(ValueType));
                mNodes[i].setValue(value);
            }
        }
    } else {
        const bool oldVersion =
            (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION);
        const Index numValues = (oldVersion ? mChildMask.countOff() : NUM_VALUES);
        {
            // Read in (and uncompress, if necessary) all of this node's values
            // into a contiguous array.
            std::unique_ptr<ValueType[]> valuePtr(new ValueType[numValues]);
            ValueType* values = valuePtr.get();
            io::readCompressedValues(is, values, numValues, mValueMask, fromHalf);

            // Copy values from the array into this node's table.
            if (oldVersion) {
                Index n = 0;
                for (ValueAllIter iter = this->beginValueAll(); iter; ++iter) {
                    mNodes[iter.pos()].setValue(values[n++]);
                }
                assert(n == numValues);
            } else {
                for (ValueAllIter iter = this->beginValueAll(); iter; ++iter) {
                    mNodes[iter.pos()].setValue(values[iter.pos()]);
                }
            }
        }
        // Read in all child nodes and insert them into the table at their proper locations.
        for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
#if OPENVDB_ABI_VERSION_NUMBER <= 2
            ChildNodeType* child = new ChildNodeType(iter.getCoord(), zeroVal<ValueType>());
#else
            ChildNodeType* child = new ChildNodeType(PartialCreate(), iter.getCoord(), background);
#endif
            mNodes[iter.pos()].setChild(child);
            child->readTopology(is, fromHalf);
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline const typename ChildT::ValueType&
InternalNode<ChildT, Log2Dim>::getFirstValue() const
{
    return (this->isChildMaskOn(0) ? mNodes[0].getChild()->getFirstValue() : mNodes[0].getValue());
}


template<typename ChildT, Index Log2Dim>
inline const typename ChildT::ValueType&
InternalNode<ChildT, Log2Dim>::getLastValue() const
{
    const Index n = NUM_VALUES - 1;
    return (this->isChildMaskOn(n) ? mNodes[n].getChild()->getLastValue() : mNodes[n].getValue());
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::negate()
{
    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (this->isChildMaskOn(i)) {
            mNodes[i].getChild()->negate();
        } else {
            mNodes[i].setValue(math::negative(mNodes[i].getValue()));
        }
    }

}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
struct InternalNode<ChildT, Log2Dim>::VoxelizeActiveTiles
{
    VoxelizeActiveTiles(InternalNode &node) : mNode(&node) {
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//single thread for debugging
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);

        node.mChildMask |= node.mValueMask;
        node.mValueMask.setOff();
    }
    void operator()(const tbb::blocked_range<Index> &r) const
    {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (mNode->mChildMask.isOn(i)) {// Loop over node's child nodes
                mNode->mNodes[i].getChild()->voxelizeActiveTiles(true);
            } else if (mNode->mValueMask.isOn(i)) {// Loop over node's active tiles
                const Coord &ijk = mNode->offsetToGlobalCoord(i);
                ChildNodeType *child = new ChildNodeType(ijk, mNode->mNodes[i].getValue(), true);
                child->voxelizeActiveTiles(true);
                mNode->mNodes[i].setChild(child);
            }
        }
    }
    InternalNode* mNode;
};// VoxelizeActiveTiles

template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::voxelizeActiveTiles(bool threaded)
{
    if (threaded) {
        VoxelizeActiveTiles tmp(*this);
    } else {
        for (ValueOnIter iter = this->beginValueOn(); iter; ++iter) {
            this->setChildNode(iter.pos(),
                new ChildNodeType(iter.getCoord(), iter.getValue(), true));
        }
        for (ChildOnIter iter = this->beginChildOn(); iter; ++iter)
            iter->voxelizeActiveTiles(false);
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<MergePolicy Policy>
inline void
InternalNode<ChildT, Log2Dim>::merge(InternalNode& other,
    const ValueType& background, const ValueType& otherBackground)
{
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN

    switch (Policy) {

    case MERGE_ACTIVE_STATES:
    default:
    {
        for (ChildOnIter iter = other.beginChildOn(); iter; ++iter) {
            const Index n = iter.pos();
            if (mChildMask.isOn(n)) {
                // Merge this node's child with the other node's child.
                mNodes[n].getChild()->template merge<MERGE_ACTIVE_STATES>(*iter,
                    background, otherBackground);
            } else if (mValueMask.isOff(n)) {
                // Replace this node's inactive tile with the other node's child
                // and replace the other node's child with a tile of undefined value
                // (which is okay since the other tree is assumed to be cannibalized
                // in the process of merging).
                ChildNodeType* child = other.mNodes[n].getChild();
                other.mChildMask.setOff(n);
                child->resetBackground(otherBackground, background);
                this->setChildNode(n, child);
            }
        }

        // Copy active tile values.
        for (ValueOnCIter iter = other.cbeginValueOn(); iter; ++iter) {
            const Index n = iter.pos();
            if (mValueMask.isOff(n)) {
                // Replace this node's child or inactive tile with the other node's active tile.
                this->makeChildNodeEmpty(n, iter.getValue());
                mValueMask.setOn(n);
            }
        }
        break;
    }

    case MERGE_NODES:
    {
        for (ChildOnIter iter = other.beginChildOn(); iter; ++iter) {
            const Index n = iter.pos();
            if (mChildMask.isOn(n)) {
                // Merge this node's child with the other node's child.
                mNodes[n].getChild()->template merge<Policy>(*iter, background, otherBackground);
            } else {
                // Replace this node's tile (regardless of its active state) with
                // the other node's child and replace the other node's child with
                // a tile of undefined value (which is okay since the other tree
                // is assumed to be cannibalized in the process of merging).
                ChildNodeType* child = other.mNodes[n].getChild();
                other.mChildMask.setOff(n);
                child->resetBackground(otherBackground, background);
                this->setChildNode(n, child);
            }
        }
        break;
    }

    case MERGE_ACTIVE_STATES_AND_NODES:
    {
        // Transfer children from the other tree to this tree.
        for (ChildOnIter iter = other.beginChildOn(); iter; ++iter) {
            const Index n = iter.pos();
            if (mChildMask.isOn(n)) {
                // Merge this node's child with the other node's child.
                mNodes[n].getChild()->template merge<Policy>(*iter, background, otherBackground);
            } else {
                // Replace this node's tile with the other node's child, leaving the other
                // node with an inactive tile of undefined value (which is okay since
                // the other tree is assumed to be cannibalized in the process of merging).
                ChildNodeType* child = other.mNodes[n].getChild();
                other.mChildMask.setOff(n);
                child->resetBackground(otherBackground, background);
                if (mValueMask.isOn(n)) {
                    // Merge the child with this node's active tile.
                    child->template merge<Policy>(mNodes[n].getValue(), /*on=*/true);
                    mValueMask.setOff(n);
                }
                mChildMask.setOn(n);
                mNodes[n].setChild(child);
            }
        }

        // Merge active tiles into this tree.
        for (ValueOnCIter iter = other.cbeginValueOn(); iter; ++iter) {
            const Index n = iter.pos();
            if (mChildMask.isOn(n)) {
                // Merge the other node's active tile into this node's child.
                mNodes[n].getChild()->template merge<Policy>(iter.getValue(), /*on=*/true);
            } else if (mValueMask.isOff(n)) {
                // Replace this node's inactive tile with the other node's active tile.
                mNodes[n].setValue(iter.getValue());
                mValueMask.setOn(n);
            }
        }
        break;
    }

    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename ChildT, Index Log2Dim>
template<MergePolicy Policy>
inline void
InternalNode<ChildT, Log2Dim>::merge(const ValueType& tileValue, bool tileActive)
{
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN

    if (Policy != MERGE_ACTIVE_STATES_AND_NODES) return;

    // For MERGE_ACTIVE_STATES_AND_NODES, inactive tiles in the other tree are ignored.
    if (!tileActive) return;

    // Iterate over this node's children and inactive tiles.
    for (ValueOffIter iter = this->beginValueOff(); iter; ++iter) {
        const Index n = iter.pos();
        if (mChildMask.isOn(n)) {
            // Merge the other node's active tile into this node's child.
            mNodes[n].getChild()->template merge<Policy>(tileValue, /*on=*/true);
        } else {
            // Replace this node's inactive tile with the other node's active tile.
            iter.setValue(tileValue);
            mValueMask.setOn(n);
        }
    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::TopologyUnion
{
    using W = typename NodeMaskType::Word;
    struct A { inline void operator()(W &tV, const W& sV, const W& tC) const
        { tV = (tV | sV) & ~tC; }
    };
    TopologyUnion(const OtherInternalNode* source, InternalNode* target) : s(source), t(target) {
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//single thread for debugging
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);

        // Bit processing is done in a single thread!
        t->mChildMask |= s->mChildMask;//serial but very fast bitwise post-process
        A op;
        t->mValueMask.foreach(s->mValueMask, t->mChildMask, op);
        assert((t->mValueMask & t->mChildMask).isOff());//no overlapping active tiles or child nodes
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (s->mChildMask.isOn(i)) {// Loop over other node's child nodes
                const typename OtherInternalNode::ChildNodeType& other = *(s->mNodes[i].getChild());
                if (t->mChildMask.isOn(i)) {//this has a child node
                    t->mNodes[i].getChild()->topologyUnion(other);
                } else {// this is a tile so replace it with a child branch with identical topology
                    ChildT* child = new ChildT(other, t->mNodes[i].getValue(), TopologyCopy());
                    if (t->mValueMask.isOn(i)) child->setValuesOn();//activate all values
                    t->mNodes[i].setChild(child);
                }
            } else if (s->mValueMask.isOn(i) && t->mChildMask.isOn(i)) {
                t->mNodes[i].getChild()->setValuesOn();
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
};// TopologyUnion

template<typename ChildT, Index Log2Dim>
template<typename OtherChildT>
inline void
InternalNode<ChildT, Log2Dim>::topologyUnion(const InternalNode<OtherChildT, Log2Dim>& other)
{
    TopologyUnion<InternalNode<OtherChildT, Log2Dim> > tmp(&other, this);
}

template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::TopologyIntersection
{
    using W = typename NodeMaskType::Word;
    struct A { inline void operator()(W &tC, const W& sC, const W& sV, const W& tV) const
        { tC = (tC & (sC | sV)) | (tV & sC); }
    };
    TopologyIntersection(const OtherInternalNode* source, InternalNode* target,
                         const ValueType& background) : s(source), t(target), b(background) {
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//single thread for debugging
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);

        // Bit processing is done in a single thread!
        A op;
        t->mChildMask.foreach(s->mChildMask, s->mValueMask, t->mValueMask, op);

        t->mValueMask &= s->mValueMask;
        assert((t->mValueMask & t->mChildMask).isOff());//no overlapping active tiles or child nodes
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (t->mChildMask.isOn(i)) {// Loop over this node's child nodes
                ChildT* child = t->mNodes[i].getChild();
                if (s->mChildMask.isOn(i)) {//other also has a child node
                    child->topologyIntersection(*(s->mNodes[i].getChild()), b);
                } else if (s->mValueMask.isOff(i)) {//other is an inactive tile
                    delete child;//convert child to an inactive tile
                    t->mNodes[i].setValue(b);
                }
            } else if (t->mValueMask.isOn(i) && s->mChildMask.isOn(i)) {//active tile -> a branch
                t->mNodes[i].setChild(new ChildT(*(s->mNodes[i].getChild()),
                                                 t->mNodes[i].getValue(), TopologyCopy()));
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
    const ValueType& b;
};// TopologyIntersection

template<typename ChildT, Index Log2Dim>
template<typename OtherChildT>
inline void
InternalNode<ChildT, Log2Dim>::topologyIntersection(
    const InternalNode<OtherChildT, Log2Dim>& other, const ValueType& background)
{
    TopologyIntersection<InternalNode<OtherChildT, Log2Dim> > tmp(&other, this, background);
}

template<typename ChildT, Index Log2Dim>
template<typename OtherInternalNode>
struct InternalNode<ChildT, Log2Dim>::TopologyDifference
{
    using W = typename NodeMaskType::Word;
    struct A {inline void operator()(W &tC, const W& sC, const W& sV, const W& tV) const
        { tC = (tC & (sC | ~sV)) | (tV & sC); }
    };
    struct B {inline void operator()(W &tV, const W& sC, const W& sV, const W& tC) const
        { tV &= ~((tC & sV) | (sC | sV)); }
    };
    TopologyDifference(const OtherInternalNode* source, InternalNode* target,
                       const ValueType& background) : s(source), t(target), b(background) {
        //(*this)(tbb::blocked_range<Index>(0, NUM_VALUES));//single thread for debugging
        tbb::parallel_for(tbb::blocked_range<Index>(0, NUM_VALUES), *this);

        // Bit processing is done in a single thread!
        const NodeMaskType oldChildMask(t->mChildMask);//important to avoid cross pollution
        A op1;
        t->mChildMask.foreach(s->mChildMask, s->mValueMask, t->mValueMask, op1);

        B op2;
        t->mValueMask.foreach(t->mChildMask, s->mValueMask, oldChildMask, op2);
        assert((t->mValueMask & t->mChildMask).isOff());//no overlapping active tiles or child nodes
    }
    void operator()(const tbb::blocked_range<Index> &r) const {
        for (Index i = r.begin(), end=r.end(); i!=end; ++i) {
            if (t->mChildMask.isOn(i)) {// Loop over this node's child nodes
                ChildT* child = t->mNodes[i].getChild();
                if (s->mChildMask.isOn(i)) {
                    child->topologyDifference(*(s->mNodes[i].getChild()), b);
                } else if (s->mValueMask.isOn(i)) {
                    delete child;//convert child to an inactive tile
                    t->mNodes[i].setValue(b);
                }
            } else if (t->mValueMask.isOn(i)) {//this is an active tile
                if (s->mChildMask.isOn(i)) {
                    const typename OtherInternalNode::ChildNodeType& other =
                        *(s->mNodes[i].getChild());
                    ChildT* child = new ChildT(other.origin(), t->mNodes[i].getValue(), true);
                    child->topologyDifference(other, b);
                    t->mNodes[i].setChild(child);//replace the active tile with a child branch
                }
            }
        }
    }
    const OtherInternalNode* s;
    InternalNode* t;
    const ValueType& b;
};// TopologyDifference

template<typename ChildT, Index Log2Dim>
template<typename OtherChildT>
inline void
InternalNode<ChildT, Log2Dim>::topologyDifference(const InternalNode<OtherChildT, Log2Dim>& other,
                                                  const ValueType& background)
{
    TopologyDifference<InternalNode<OtherChildT, Log2Dim> > tmp(&other, this, background);
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename CombineOp>
inline void
InternalNode<ChildT, Log2Dim>::combine(InternalNode& other, CombineOp& op)
{
    const ValueType zero = zeroVal<ValueType>();

    CombineArgs<ValueType> args;

    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (this->isChildMaskOff(i) && other.isChildMaskOff(i)) {
            // Both this node and the other node have constant values (tiles).
            // Combine the two values and store the result as this node's new tile value.
            op(args.setARef(mNodes[i].getValue())
                .setAIsActive(isValueMaskOn(i))
                .setBRef(other.mNodes[i].getValue())
               .setBIsActive(other.isValueMaskOn(i)));
            mNodes[i].setValue(args.result());
            mValueMask.set(i, args.resultIsActive());
        } else if (this->isChildMaskOn(i) && other.isChildMaskOff(i)) {
            // Combine this node's child with the other node's constant value.
            ChildNodeType* child = mNodes[i].getChild();
            assert(child);
            if (child) {
                child->combine(other.mNodes[i].getValue(), other.isValueMaskOn(i), op);
            }
        } else if (this->isChildMaskOff(i) && other.isChildMaskOn(i)) {
            // Combine this node's constant value with the other node's child.
            ChildNodeType* child = other.mNodes[i].getChild();
            assert(child);
            if (child) {
                // Combine this node's constant value with the other node's child,
                // but use a new functor in which the A and B values are swapped,
                // since the constant value is the A value, not the B value.
                SwappedCombineOp<ValueType, CombineOp> swappedOp(op);
                child->combine(mNodes[i].getValue(), isValueMaskOn(i), swappedOp);

                // Steal the other node's child.
                other.mChildMask.setOff(i);
                other.mNodes[i].setValue(zero);
                this->setChildNode(i, child);
            }

        } else /*if (isChildMaskOn(i) && other.isChildMaskOn(i))*/ {
            // Combine this node's child with the other node's child.
            ChildNodeType
                *child = mNodes[i].getChild(),
                *otherChild = other.mNodes[i].getChild();
            assert(child);
            assert(otherChild);
            if (child && otherChild) {
                child->combine(*otherChild, op);
            }
        }
    }
}


template<typename ChildT, Index Log2Dim>
template<typename CombineOp>
inline void
InternalNode<ChildT, Log2Dim>::combine(const ValueType& value, bool valueIsActive, CombineOp& op)
{
    CombineArgs<ValueType> args;

    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (this->isChildMaskOff(i)) {
            // Combine this node's constant value with the given constant value.
            op(args.setARef(mNodes[i].getValue())
               .setAIsActive(isValueMaskOn(i))
               .setBRef(value)
               .setBIsActive(valueIsActive));
            mNodes[i].setValue(args.result());
            mValueMask.set(i, args.resultIsActive());
        } else /*if (isChildMaskOn(i))*/ {
            // Combine this node's child with the given constant value.
            ChildNodeType* child = mNodes[i].getChild();
            assert(child);
            if (child) child->combine(value, valueIsActive, op);
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename CombineOp, typename OtherNodeType>
inline void
InternalNode<ChildT, Log2Dim>::combine2(const InternalNode& other0, const OtherNodeType& other1,
    CombineOp& op)
{
    CombineArgs<ValueType, typename OtherNodeType::ValueType> args;

    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (other0.isChildMaskOff(i) && other1.isChildMaskOff(i)) {
            op(args.setARef(other0.mNodes[i].getValue())
                .setAIsActive(other0.isValueMaskOn(i))
                .setBRef(other1.mNodes[i].getValue())
                .setBIsActive(other1.isValueMaskOn(i)));
            // Replace child i with a constant value.
            this->makeChildNodeEmpty(i, args.result());
            mValueMask.set(i, args.resultIsActive());
        } else {
            if (this->isChildMaskOff(i)) {
                // Add a new child with the same coordinates, etc. as the other node's child.
                const Coord& childOrigin = other0.isChildMaskOn(i)
                    ? other0.mNodes[i].getChild()->origin()
                    : other1.mNodes[i].getChild()->origin();
                this->setChildNode(i, new ChildNodeType(childOrigin, mNodes[i].getValue()));
            }

            if (other0.isChildMaskOff(i)) {
                // Combine node1's child with node0's constant value
                // and write the result into child i.
                mNodes[i].getChild()->combine2(other0.mNodes[i].getValue(),
                    *other1.mNodes[i].getChild(), other0.isValueMaskOn(i), op);
            } else if (other1.isChildMaskOff(i)) {
                // Combine node0's child with node1's constant value
                // and write the result into child i.
                mNodes[i].getChild()->combine2(*other0.mNodes[i].getChild(),
                    other1.mNodes[i].getValue(), other1.isValueMaskOn(i), op);
            } else {
                // Combine node0's child with node1's child
                // and write the result into child i.
                mNodes[i].getChild()->combine2(*other0.mNodes[i].getChild(),
                    *other1.mNodes[i].getChild(), op);
            }
        }
    }
}


template<typename ChildT, Index Log2Dim>
template<typename CombineOp, typename OtherNodeType>
inline void
InternalNode<ChildT, Log2Dim>::combine2(const ValueType& value, const OtherNodeType& other,
    bool valueIsActive, CombineOp& op)
{
    CombineArgs<ValueType, typename OtherNodeType::ValueType> args;

    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (other.isChildMaskOff(i)) {
            op(args.setARef(value)
                .setAIsActive(valueIsActive)
                .setBRef(other.mNodes[i].getValue())
                .setBIsActive(other.isValueMaskOn(i)));
            // Replace child i with a constant value.
            this->makeChildNodeEmpty(i, args.result());
            mValueMask.set(i, args.resultIsActive());
        } else {
            typename OtherNodeType::ChildNodeType* otherChild = other.mNodes[i].getChild();
            assert(otherChild);
            if (this->isChildMaskOff(i)) {
                // Add a new child with the same coordinates, etc.
                // as the other node's child.
                this->setChildNode(i, new ChildNodeType(*otherChild));
            }
            // Combine the other node's child with a constant value
            // and write the result into child i.
            mNodes[i].getChild()->combine2(value, *otherChild, valueIsActive, op);
        }
    }
}


template<typename ChildT, Index Log2Dim>
template<typename CombineOp, typename OtherValueType>
inline void
InternalNode<ChildT, Log2Dim>::combine2(const InternalNode& other, const OtherValueType& value,
    bool valueIsActive, CombineOp& op)
{
    CombineArgs<ValueType, OtherValueType> args;

    for (Index i = 0; i < NUM_VALUES; ++i) {
        if (other.isChildMaskOff(i)) {
            op(args.setARef(other.mNodes[i].getValue())
                .setAIsActive(other.isValueMaskOn(i))
                .setBRef(value)
                .setBIsActive(valueIsActive));
            // Replace child i with a constant value.
            this->makeChildNodeEmpty(i, args.result());
            mValueMask.set(i, args.resultIsActive());
        } else {
            ChildNodeType* otherChild = other.mNodes[i].getChild();
            assert(otherChild);
            if (this->isChildMaskOff(i)) {
                // Add a new child with the same coordinates, etc. as the other node's child.
                this->setChildNode(i,
                    new ChildNodeType(otherChild->origin(), mNodes[i].getValue()));
            }
            // Combine the other node's child with a constant value
            // and write the result into child i.
            mNodes[i].getChild()->combine2(*otherChild, value, valueIsActive, op);
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename BBoxOp>
inline void
InternalNode<ChildT, Log2Dim>::visitActiveBBox(BBoxOp& op) const
{
    for (ValueOnCIter i = this->cbeginValueOn(); i; ++i) {
#ifdef _MSC_VER
        op.operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), ChildNodeType::DIM));
#else
        op.template operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), ChildNodeType::DIM));
#endif
    }
    if (op.template descent<LEVEL>()) {
        for (ChildOnCIter i = this->cbeginChildOn(); i; ++i) i->visitActiveBBox(op);
    } else {
        for (ChildOnCIter i = this->cbeginChildOn(); i; ++i) {
#ifdef _MSC_VER
            op.operator()<LEVEL>(i->getNodeBoundingBox());
#else
            op.template operator()<LEVEL>(i->getNodeBoundingBox());
#endif
        }
    }
}


template<typename ChildT, Index Log2Dim>
template<typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit(VisitorOp& op)
{
    doVisit<InternalNode, VisitorOp, ChildAllIter>(*this, op);
}


template<typename ChildT, Index Log2Dim>
template<typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit(VisitorOp& op) const
{
    doVisit<const InternalNode, VisitorOp, ChildAllCIter>(*this, op);
}


template<typename ChildT, Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
inline void
InternalNode<ChildT, Log2Dim>::doVisit(NodeT& self, VisitorOp& op)
{
    typename NodeT::ValueType val;
    for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
        if (op(iter)) continue;
        if (typename ChildAllIterT::ChildNodeType* child = iter.probeChild(val)) {
            child->visit(op);
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename OtherNodeType, typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit2Node(OtherNodeType& other, VisitorOp& op)
{
    doVisit2Node<InternalNode, OtherNodeType, VisitorOp, ChildAllIter,
        typename OtherNodeType::ChildAllIter>(*this, other, op);
}


template<typename ChildT, Index Log2Dim>
template<typename OtherNodeType, typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit2Node(OtherNodeType& other, VisitorOp& op) const
{
    doVisit2Node<const InternalNode, OtherNodeType, VisitorOp, ChildAllCIter,
        typename OtherNodeType::ChildAllCIter>(*this, other, op);
}


template<typename ChildT, Index Log2Dim>
template<
    typename NodeT,
    typename OtherNodeT,
    typename VisitorOp,
    typename ChildAllIterT,
    typename OtherChildAllIterT>
inline void
InternalNode<ChildT, Log2Dim>::doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp& op)
{
    // Allow the two nodes to have different ValueTypes, but not different dimensions.
    static_assert(OtherNodeT::NUM_VALUES == NodeT::NUM_VALUES,
        "visit2() requires nodes to have the same dimensions");
    static_assert(OtherNodeT::LEVEL == NodeT::LEVEL,
        "visit2() requires nodes to be at the same tree level");

    typename NodeT::ValueType val;
    typename OtherNodeT::ValueType otherVal;

    ChildAllIterT iter = self.beginChildAll();
    OtherChildAllIterT otherIter = other.beginChildAll();

    for ( ; iter && otherIter; ++iter, ++otherIter)
    {
        const size_t skipBranch = static_cast<size_t>(op(iter, otherIter));

        typename ChildAllIterT::ChildNodeType* child =
            (skipBranch & 1U) ? nullptr : iter.probeChild(val);
        typename OtherChildAllIterT::ChildNodeType* otherChild =
            (skipBranch & 2U) ? nullptr : otherIter.probeChild(otherVal);

        if (child != nullptr && otherChild != nullptr) {
            child->visit2Node(*otherChild, op);
        } else if (child != nullptr) {
            child->visit2(otherIter, op);
        } else if (otherChild != nullptr) {
            otherChild->visit2(iter, op, /*otherIsLHS=*/true);
        }
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename OtherChildAllIterType, typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit2(OtherChildAllIterType& otherIter,
    VisitorOp& op, bool otherIsLHS)
{
    doVisit2<InternalNode, VisitorOp, ChildAllIter, OtherChildAllIterType>(
        *this, otherIter, op, otherIsLHS);
}


template<typename ChildT, Index Log2Dim>
template<typename OtherChildAllIterType, typename VisitorOp>
inline void
InternalNode<ChildT, Log2Dim>::visit2(OtherChildAllIterType& otherIter,
    VisitorOp& op, bool otherIsLHS) const
{
    doVisit2<const InternalNode, VisitorOp, ChildAllCIter, OtherChildAllIterType>(
        *this, otherIter, op, otherIsLHS);
}


template<typename ChildT, Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT, typename OtherChildAllIterT>
inline void
InternalNode<ChildT, Log2Dim>::doVisit2(NodeT& self, OtherChildAllIterT& otherIter,
    VisitorOp& op, bool otherIsLHS)
{
    if (!otherIter) return;

    const size_t skipBitMask = (otherIsLHS ? 2U : 1U);

    typename NodeT::ValueType val;
    for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
        const size_t skipBranch = static_cast<size_t>(
            otherIsLHS ? op(otherIter, iter) : op(iter, otherIter));

        typename ChildAllIterT::ChildNodeType* child =
            (skipBranch & skipBitMask) ? nullptr : iter.probeChild(val);

        if (child != nullptr) child->visit2(otherIter, op, otherIsLHS);
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::writeBuffers(std::ostream& os, bool toHalf) const
{
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        iter->writeBuffers(os, toHalf);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::readBuffers(std::istream& is, bool fromHalf)
{
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        iter->readBuffers(is, fromHalf);
    }
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::readBuffers(std::istream& is,
    const CoordBBox& clipBBox, bool fromHalf)
{
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        // Stream in the branch rooted at this child.
        // (We can't skip over children that lie outside the clipping region,
        // because buffers are serialized in depth-first order and need to be
        // unserialized in the same order.)
        iter->readBuffers(is, clipBBox, fromHalf);
    }

    // Get this tree's background value.
    ValueType background = zeroVal<ValueType>();
    if (const void* bgPtr = io::getGridBackgroundValuePtr(is)) {
        background = *static_cast<const ValueType*>(bgPtr);
    }
    this->clip(clipBBox, background);
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
void
InternalNode<ChildT, Log2Dim>::getNodeLog2Dims(std::vector<Index>& dims)
{
    dims.push_back(Log2Dim);
    ChildNodeType::getNodeLog2Dims(dims);
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::offsetToLocalCoord(Index n, Coord &xyz)
{
    assert(n<(1<<3*Log2Dim));
    xyz.setX(n >> 2*Log2Dim);
    n &= ((1<<2*Log2Dim)-1);
    xyz.setY(n >> Log2Dim);
    xyz.setZ(n & ((1<<Log2Dim)-1));
}


template<typename ChildT, Index Log2Dim>
inline Index
InternalNode<ChildT, Log2Dim>::coordToOffset(const Coord& xyz)
{
    return (((xyz[0] & (DIM-1u)) >> ChildNodeType::TOTAL) << 2*Log2Dim)
        +  (((xyz[1] & (DIM-1u)) >> ChildNodeType::TOTAL) <<   Log2Dim)
        +   ((xyz[2] & (DIM-1u)) >> ChildNodeType::TOTAL);
}


template<typename ChildT, Index Log2Dim>
inline Coord
InternalNode<ChildT, Log2Dim>::offsetToGlobalCoord(Index n) const
{
    Coord local;
    this->offsetToLocalCoord(n, local);
    local <<= ChildT::TOTAL;
    return local + this->origin();
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename ArrayT>
inline void
InternalNode<ChildT, Log2Dim>::getNodes(ArrayT& array)
{
    using T = typename ArrayT::value_type;
    static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
    using ArrayChildT = typename std::conditional<
        std::is_const<typename std::remove_pointer<T>::type>::value, const ChildT, ChildT>::type;
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (std::is_same<T, ArrayChildT*>::value) {
            array.push_back(reinterpret_cast<T>(mNodes[iter.pos()].getChild()));
        } else {
            iter->getNodes(array);//descent
        }
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
}

template<typename ChildT, Index Log2Dim>
template<typename ArrayT>
inline void
InternalNode<ChildT, Log2Dim>::getNodes(ArrayT& array) const
{
    using T = typename ArrayT::value_type;
    static_assert(std::is_pointer<T>::value, "argument to getNodes() must be a pointer array");
    static_assert(std::is_const<typename std::remove_pointer<T>::type>::value,
        "argument to getNodes() must be an array of const node pointers");
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (std::is_same<T, const ChildT*>::value) {
            array.push_back(reinterpret_cast<T>(mNodes[iter.pos()].getChild()));
        } else {
            iter->getNodes(array);//descent
        }
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
template<typename ArrayT>
inline void
InternalNode<ChildT, Log2Dim>::stealNodes(ArrayT& array, const ValueType& value, bool state)
{
    using T = typename ArrayT::value_type;
    static_assert(std::is_pointer<T>::value, "argument to stealNodes() must be a pointer array");
    using ArrayChildT = typename std::conditional<
        std::is_const<typename std::remove_pointer<T>::type>::value, const ChildT, ChildT>::type;
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    for (ChildOnIter iter = this->beginChildOn(); iter; ++iter) {
        const Index n = iter.pos();
        if (std::is_same<T, ArrayChildT*>::value) {
            array.push_back(reinterpret_cast<T>(mNodes[n].getChild()));
            mValueMask.set(n, state);
            mNodes[n].setValue(value);
        } else {
            iter->stealNodes(array, value, state);//descent
        }
    }
    if (std::is_same<T, ArrayChildT*>::value) mChildMask.setOff();
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


////////////////////////////////////////


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::resetBackground(const ValueType& oldBackground,
                                               const ValueType& newBackground)
{
    if (math::isExactlyEqual(oldBackground, newBackground)) return;
    for (Index i = 0; i < NUM_VALUES; ++i) {
       if (this->isChildMaskOn(i)) {
           mNodes[i].getChild()->resetBackground(oldBackground, newBackground);
       } else if (this->isValueMaskOff(i)) {
           if (math::isApproxEqual(mNodes[i].getValue(), oldBackground)) {
               mNodes[i].setValue(newBackground);
           } else if (math::isApproxEqual(mNodes[i].getValue(), math::negative(oldBackground))) {
               mNodes[i].setValue(math::negative(newBackground));
           }
       }
    }
}

template<typename ChildT, Index Log2Dim>
template<typename OtherChildNodeType, Index OtherLog2Dim>
inline bool
InternalNode<ChildT, Log2Dim>::hasSameTopology(
    const InternalNode<OtherChildNodeType, OtherLog2Dim>* other) const
{
    if (Log2Dim != OtherLog2Dim || mChildMask != other->mChildMask ||
        mValueMask != other->mValueMask) return false;
    for (ChildOnCIter iter = this->cbeginChildOn(); iter; ++iter) {
        if (!iter->hasSameTopology(other->mNodes[iter.pos()].getChild())) return false;
    }
    return true;
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::resetChildNode(Index i, ChildNodeType* child)
{
    assert(child);
    if (this->isChildMaskOn(i)) {
        delete mNodes[i].getChild();
    } else {
        mChildMask.setOn(i);
        mValueMask.setOff(i);
    }
    mNodes[i].setChild(child);
}

template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::setChildNode(Index i, ChildNodeType* child)
{
    assert(child);
    assert(mChildMask.isOff(i));
    mChildMask.setOn(i);
    mValueMask.setOff(i);
    mNodes[i].setChild(child);
}


template<typename ChildT, Index Log2Dim>
inline ChildT*
InternalNode<ChildT, Log2Dim>::unsetChildNode(Index i, const ValueType& value)
{
    if (this->isChildMaskOff(i)) {
        mNodes[i].setValue(value);
        return nullptr;
    }
    ChildNodeType* child = mNodes[i].getChild();
    mChildMask.setOff(i);
    mNodes[i].setValue(value);
    return child;
}


template<typename ChildT, Index Log2Dim>
inline void
InternalNode<ChildT, Log2Dim>::makeChildNodeEmpty(Index n, const ValueType& value)
{
    delete this->unsetChildNode(n, value);
}

template<typename ChildT, Index Log2Dim>
inline ChildT*
InternalNode<ChildT, Log2Dim>::getChildNode(Index n)
{
    assert(this->isChildMaskOn(n));
    return mNodes[n].getChild();
}


template<typename ChildT, Index Log2Dim>
inline const ChildT*
InternalNode<ChildT, Log2Dim>::getChildNode(Index n) const
{
    assert(this->isChildMaskOn(n));
    return mNodes[n].getChild();
}

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TREE_INTERNALNODE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )