File: LeafNode.h

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (2041 lines) | stat: -rw-r--r-- 77,285 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/util/NodeMasks.h>
#include <openvdb/io/Compression.h> // for io::readData(), etc.
#include "Iterator.h"
#include "LeafBuffer.h"
#include <algorithm> // for std::nth_element()
#include <iostream>
#include <memory>
#include <sstream>
#include <string>
#include <type_traits>
#include <vector>


class TestLeaf;
template<typename> class TestLeafIO;

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

template<Index, typename> struct SameLeafConfig; // forward declaration


/// @brief Templated block class to hold specific data types and a fixed
/// number of values determined by Log2Dim. The actual coordinate
/// dimension of the block is 2^Log2Dim, i.e. Log2Dim=3 corresponds to
/// a LeafNode that spans a 8^3 block.
template<typename T, Index Log2Dim>
class LeafNode
{
public:
    using BuildType = T;
    using ValueType = T;
    using Buffer = LeafBuffer<ValueType, Log2Dim>;
    using LeafNodeType = LeafNode<ValueType, Log2Dim>;
    using NodeMaskType = util::NodeMask<Log2Dim>;
    using Ptr = SharedPtr<LeafNode>;

    static const Index
        LOG2DIM     = Log2Dim,      // needed by parent nodes
        TOTAL       = Log2Dim,      // needed by parent nodes
        DIM         = 1 << TOTAL,   // dimension along one coordinate direction
        NUM_VALUES  = 1 << 3 * Log2Dim,
        NUM_VOXELS  = NUM_VALUES,   // total number of voxels represented by this node
        SIZE        = NUM_VALUES,
        LEVEL       = 0;            // level 0 = leaf

    /// @brief ValueConverter<T>::Type is the type of a LeafNode having the same
    /// dimensions as this node but a different value type, T.
    template<typename OtherValueType>
    struct ValueConverter { using Type = LeafNode<OtherValueType, Log2Dim>; };

    /// @brief SameConfiguration<OtherNodeType>::value is @c true if and only if
    /// OtherNodeType is the type of a LeafNode with the same dimensions as this node.
    template<typename OtherNodeType>
    struct SameConfiguration {
        static const bool value = SameLeafConfig<LOG2DIM, OtherNodeType>::value;
    };


    /// Default constructor
    LeafNode();

    /// @brief Constructor
    /// @param coords  the grid index coordinates of a voxel
    /// @param value   a value with which to fill the buffer
    /// @param active  the active state to which to initialize all voxels
    explicit LeafNode(const Coord& coords,
                      const ValueType& value = zeroVal<ValueType>(),
                      bool active = false);


#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// @brief "Partial creation" constructor used during file input
    /// @param coords  the grid index coordinates of a voxel
    /// @param value   a value with which to fill the buffer
    /// @param active  the active state to which to initialize all voxels
    /// @details This constructor does not allocate memory for voxel values.
    LeafNode(PartialCreate,
             const Coord& coords,
             const ValueType& value = zeroVal<ValueType>(),
             bool active = false);
#endif

    /// Deep copy constructor
    LeafNode(const LeafNode&);

    /// Deep assignment operator
    LeafNode& operator=(const LeafNode&) = default;

    /// Value conversion copy constructor
    template<typename OtherValueType>
    explicit LeafNode(const LeafNode<OtherValueType, Log2Dim>& other);

    /// Topology copy constructor
    template<typename OtherValueType>
    LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
             const ValueType& offValue, const ValueType& onValue, TopologyCopy);

    /// Topology copy constructor
    template<typename OtherValueType>
    LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
             const ValueType& background, TopologyCopy);

    /// Destructor.
    ~LeafNode();

    //
    // Statistics
    //
    /// Return log2 of the dimension of this LeafNode, e.g. 3 if dimensions are 8^3
    static Index log2dim() { return Log2Dim; }
    /// Return the number of voxels in each coordinate dimension.
    static Index dim() { return DIM; }
    /// Return the total number of voxels represented by this LeafNode
    static Index size() { return SIZE; }
    /// Return the total number of voxels represented by this LeafNode
    static Index numValues() { return SIZE; }
    /// Return the level of this node, which by definition is zero for LeafNodes
    static Index getLevel() { return LEVEL; }
    /// Append the Log2Dim of this LeafNode to the specified vector
    static void getNodeLog2Dims(std::vector<Index>& dims) { dims.push_back(Log2Dim); }
    /// Return the dimension of child nodes of this LeafNode, which is one for voxels.
    static Index getChildDim() { return 1; }
    /// Return the leaf count for this node, which is one.
    static Index32 leafCount() { return 1; }
    /// Return the non-leaf count for this node, which is zero.
    static Index32 nonLeafCount() { return 0; }

    /// Return the number of voxels marked On.
    Index64 onVoxelCount() const { return mValueMask.countOn(); }
    /// Return the number of voxels marked Off.
    Index64 offVoxelCount() const { return mValueMask.countOff(); }
    Index64 onLeafVoxelCount() const { return onVoxelCount(); }
    Index64 offLeafVoxelCount() const { return offVoxelCount(); }
    static Index64 onTileCount()  { return 0; }
    static Index64 offTileCount() { return 0; }
    /// Return @c true if this node has no active voxels.
    bool isEmpty() const { return mValueMask.isOff(); }
    /// Return @c true if this node contains only active voxels.
    bool isDense() const { return mValueMask.isOn(); }

#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// Return @c true if memory for this node's buffer has been allocated.
    bool isAllocated() const { return !mBuffer.isOutOfCore() && !mBuffer.empty(); }
    /// Allocate memory for this node's buffer if it has not already been allocated.
    bool allocate() { return mBuffer.allocate(); }
#endif

    /// Return the memory in bytes occupied by this node.
    Index64 memUsage() const;

    /// Expand the given bounding box so that it includes this leaf node's active voxels.
    /// If visitVoxels is false this LeafNode will be approximated as dense, i.e. with all
    /// voxels active. Else the individual active voxels are visited to produce a tight bbox.
    void evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels = true) const;

    /// @brief Return the bounding box of this node, i.e., the full index space
    /// spanned by this leaf node.
    CoordBBox getNodeBoundingBox() const { return CoordBBox::createCube(mOrigin, DIM); }

    /// Set the grid index coordinates of this node's local origin.
    void setOrigin(const Coord& origin) { mOrigin = origin; }
    //@{
    /// Return the grid index coordinates of this node's local origin.
    const Coord& origin() const { return mOrigin; }
    void getOrigin(Coord& origin) const { origin = mOrigin; }
    void getOrigin(Int32& x, Int32& y, Int32& z) const { mOrigin.asXYZ(x, y, z); }
    //@}

    /// Return the linear table offset of the given global or local coordinates.
    static Index coordToOffset(const Coord& xyz);
    /// @brief Return the local coordinates for a linear table offset,
    /// where offset 0 has coordinates (0, 0, 0).
    static Coord offsetToLocalCoord(Index n);
    /// Return the global coordinates for a linear table offset.
    Coord offsetToGlobalCoord(Index n) const;

    /// Return a string representation of this node.
    std::string str() const;

    /// @brief Return @c true if the given node (which may have a different @c ValueType
    /// than this node) has the same active value topology as this node.
    template<typename OtherType, Index OtherLog2Dim>
    bool hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const;

    /// Check for buffer, state and origin equivalence.
    bool operator==(const LeafNode& other) const;
    bool operator!=(const LeafNode& other) const { return !(other == *this); }

protected:
    using MaskOnIterator = typename NodeMaskType::OnIterator;
    using MaskOffIterator = typename NodeMaskType::OffIterator;
    using MaskDenseIterator = typename NodeMaskType::DenseIterator;

    // Type tags to disambiguate template instantiations
    struct ValueOn {}; struct ValueOff {}; struct ValueAll {};
    struct ChildOn {}; struct ChildOff {}; struct ChildAll {};

    template<typename MaskIterT, typename NodeT, typename ValueT, typename TagT>
    struct ValueIter:
        // Derives from SparseIteratorBase, but can also be used as a dense iterator,
        // if MaskIterT is a dense mask iterator type.
        public SparseIteratorBase<
            MaskIterT, ValueIter<MaskIterT, NodeT, ValueT, TagT>, NodeT, ValueT>
    {
        using BaseT = SparseIteratorBase<MaskIterT, ValueIter, NodeT, ValueT>;

        ValueIter() {}
        ValueIter(const MaskIterT& iter, NodeT* parent): BaseT(iter, parent) {}

        ValueT& getItem(Index pos) const { return this->parent().getValue(pos); }
        ValueT& getValue() const { return this->parent().getValue(this->pos()); }

        // Note: setItem() can't be called on const iterators.
        void setItem(Index pos, const ValueT& value) const
        {
            this->parent().setValueOnly(pos, value);
        }
        // Note: setValue() can't be called on const iterators.
        void setValue(const ValueT& value) const
        {
            this->parent().setValueOnly(this->pos(), value);
        }

        // Note: modifyItem() can't be called on const iterators.
        template<typename ModifyOp>
        void modifyItem(Index n, const ModifyOp& op) const { this->parent().modifyValue(n, op); }
        // Note: modifyValue() can't be called on const iterators.
        template<typename ModifyOp>
        void modifyValue(const ModifyOp& op) const { this->parent().modifyValue(this->pos(), op); }
    };

    /// Leaf nodes have no children, so their child iterators have no get/set accessors.
    template<typename MaskIterT, typename NodeT, typename TagT>
    struct ChildIter:
        public SparseIteratorBase<MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>
    {
        ChildIter() {}
        ChildIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
            MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>(iter, parent) {}
    };

    template<typename NodeT, typename ValueT, typename TagT>
    struct DenseIter: public DenseIteratorBase<
        MaskDenseIterator, DenseIter<NodeT, ValueT, TagT>, NodeT, /*ChildT=*/void, ValueT>
    {
        using BaseT = DenseIteratorBase<MaskDenseIterator, DenseIter, NodeT, void, ValueT>;
        using NonConstValueT = typename BaseT::NonConstValueType;

        DenseIter() {}
        DenseIter(const MaskDenseIterator& iter, NodeT* parent): BaseT(iter, parent) {}

        bool getItem(Index pos, void*& child, NonConstValueT& value) const
        {
            value = this->parent().getValue(pos);
            child = nullptr;
            return false; // no child
        }

        // Note: setItem() can't be called on const iterators.
        //void setItem(Index pos, void* child) const {}

        // Note: unsetItem() can't be called on const iterators.
        void unsetItem(Index pos, const ValueT& value) const
        {
            this->parent().setValueOnly(pos, value);
        }
    };

public:
    using ValueOnIter = ValueIter<MaskOnIterator, LeafNode, const ValueType, ValueOn>;
    using ValueOnCIter = ValueIter<MaskOnIterator, const LeafNode, const ValueType, ValueOn>;
    using ValueOffIter = ValueIter<MaskOffIterator, LeafNode, const ValueType, ValueOff>;
    using ValueOffCIter = ValueIter<MaskOffIterator,const LeafNode,const ValueType,ValueOff>;
    using ValueAllIter = ValueIter<MaskDenseIterator, LeafNode, const ValueType, ValueAll>;
    using ValueAllCIter = ValueIter<MaskDenseIterator,const LeafNode,const ValueType,ValueAll>;
    using ChildOnIter = ChildIter<MaskOnIterator, LeafNode, ChildOn>;
    using ChildOnCIter = ChildIter<MaskOnIterator, const LeafNode, ChildOn>;
    using ChildOffIter = ChildIter<MaskOffIterator, LeafNode, ChildOff>;
    using ChildOffCIter = ChildIter<MaskOffIterator, const LeafNode, ChildOff>;
    using ChildAllIter = DenseIter<LeafNode, ValueType, ChildAll>;
    using ChildAllCIter = DenseIter<const LeafNode, const ValueType, ChildAll>;

    ValueOnCIter  cbeginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
    ValueOnCIter   beginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
    ValueOnIter    beginValueOn() { return ValueOnIter(mValueMask.beginOn(), this); }
    ValueOffCIter cbeginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
    ValueOffCIter  beginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
    ValueOffIter   beginValueOff() { return ValueOffIter(mValueMask.beginOff(), this); }
    ValueAllCIter cbeginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
    ValueAllCIter  beginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
    ValueAllIter   beginValueAll() { return ValueAllIter(mValueMask.beginDense(), this); }

    ValueOnCIter  cendValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
    ValueOnCIter   endValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
    ValueOnIter    endValueOn() { return ValueOnIter(mValueMask.endOn(), this); }
    ValueOffCIter cendValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
    ValueOffCIter  endValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
    ValueOffIter   endValueOff() { return ValueOffIter(mValueMask.endOff(), this); }
    ValueAllCIter cendValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
    ValueAllCIter  endValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
    ValueAllIter   endValueAll() { return ValueAllIter(mValueMask.endDense(), this); }

    // Note that [c]beginChildOn() and [c]beginChildOff() actually return end iterators,
    // because leaf nodes have no children.
    ChildOnCIter  cbeginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnCIter   beginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnIter    beginChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
    ChildOffCIter cbeginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffCIter  beginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffIter   beginChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
    ChildAllCIter cbeginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
    ChildAllCIter  beginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
    ChildAllIter   beginChildAll() { return ChildAllIter(mValueMask.beginDense(), this); }

    ChildOnCIter  cendChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnCIter   endChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
    ChildOnIter    endChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
    ChildOffCIter cendChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffCIter  endChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
    ChildOffIter   endChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
    ChildAllCIter cendChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
    ChildAllCIter  endChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
    ChildAllIter   endChildAll() { return ChildAllIter(mValueMask.endDense(), this); }

    //
    // Buffer management
    //
    /// @brief Exchange this node's data buffer with the given data buffer
    /// without changing the active states of the values.
    void swap(Buffer& other) { mBuffer.swap(other); }
    const Buffer& buffer() const { return mBuffer; }
    Buffer& buffer() { return mBuffer; }

    //
    // I/O methods
    //
    /// @brief Read in just the topology.
    /// @param is        the stream from which to read
    /// @param fromHalf  if true, floating-point input values are assumed to be 16-bit
    void readTopology(std::istream& is, bool fromHalf = false);
    /// @brief Write out just the topology.
    /// @param os      the stream to which to write
    /// @param toHalf  if true, output floating-point values as 16-bit half floats
    void writeTopology(std::ostream& os, bool toHalf = false) const;

    /// @brief Read buffers from a stream.
    /// @param is        the stream from which to read
    /// @param fromHalf  if true, floating-point input values are assumed to be 16-bit
    void readBuffers(std::istream& is, bool fromHalf = false);
    /// @brief Read buffers that intersect the given bounding box.
    /// @param is        the stream from which to read
    /// @param bbox      an index-space bounding box
    /// @param fromHalf  if true, floating-point input values are assumed to be 16-bit
    void readBuffers(std::istream& is, const CoordBBox& bbox, bool fromHalf = false);
    /// @brief Write buffers to a stream.
    /// @param os      the stream to which to write
    /// @param toHalf  if true, output floating-point values as 16-bit half floats
    void writeBuffers(std::ostream& os, bool toHalf = false) const;

    size_t streamingSize(bool toHalf = false) const;

    //
    // Accessor methods
    //
    /// Return the value of the voxel at the given coordinates.
    const ValueType& getValue(const Coord& xyz) const;
    /// Return the value of the voxel at the given linear offset.
    const ValueType& getValue(Index offset) const;

    /// @brief Return @c true if the voxel at the given coordinates is active.
    /// @param xyz       the coordinates of the voxel to be probed
    /// @param[out] val  the value of the voxel at the given coordinates
    bool probeValue(const Coord& xyz, ValueType& val) const;
    /// @brief Return @c true if the voxel at the given offset is active.
    /// @param offset    the linear offset of the voxel to be probed
    /// @param[out] val  the value of the voxel at the given coordinates
    bool probeValue(Index offset, ValueType& val) const;

    /// Return the level (i.e., 0) at which leaf node values reside.
    static Index getValueLevel(const Coord&) { return LEVEL; }

    /// Set the active state of the voxel at the given coordinates but don't change its value.
    void setActiveState(const Coord& xyz, bool on);
    /// Set the active state of the voxel at the given offset but don't change its value.
    void setActiveState(Index offset, bool on) { assert(offset<SIZE); mValueMask.set(offset, on); }

    /// Set the value of the voxel at the given coordinates but don't change its active state.
    void setValueOnly(const Coord& xyz, const ValueType& val);
    /// Set the value of the voxel at the given offset but don't change its active state.
    void setValueOnly(Index offset, const ValueType& val);

    /// Mark the voxel at the given coordinates as inactive but don't change its value.
    void setValueOff(const Coord& xyz) { mValueMask.setOff(LeafNode::coordToOffset(xyz)); }
    /// Mark the voxel at the given offset as inactive but don't change its value.
    void setValueOff(Index offset) { assert(offset < SIZE); mValueMask.setOff(offset); }

    /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
    void setValueOff(const Coord& xyz, const ValueType& val);
    /// Set the value of the voxel at the given offset and mark the voxel as inactive.
    void setValueOff(Index offset, const ValueType& val);

    /// Mark the voxel at the given coordinates as active but don't change its value.
    void setValueOn(const Coord& xyz) { mValueMask.setOn(LeafNode::coordToOffset(xyz)); }
    /// Mark the voxel at the given offset as active but don't change its value.
    void setValueOn(Index offset) { assert(offset < SIZE); mValueMask.setOn(offset); }
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValueOn(const Coord& xyz, const ValueType& val) {
        this->setValueOn(LeafNode::coordToOffset(xyz), val);
    }
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValue(const Coord& xyz, const ValueType& val) { this->setValueOn(xyz, val); }
    /// Set the value of the voxel at the given offset and mark the voxel as active.
    void setValueOn(Index offset, const ValueType& val) {
        mBuffer.setValue(offset, val);
        mValueMask.setOn(offset);
    }

    /// @brief Apply a functor to the value of the voxel at the given offset
    /// and mark the voxel as active.
    template<typename ModifyOp>
    void modifyValue(Index offset, const ModifyOp& op)
    {
        ValueType val = mBuffer[offset];
        op(val);
        mBuffer.setValue(offset, val);
        mValueMask.setOn(offset);
    }
    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    template<typename ModifyOp>
    void modifyValue(const Coord& xyz, const ModifyOp& op)
    {
        this->modifyValue(this->coordToOffset(xyz), op);
    }

    /// Apply a functor to the voxel at the given coordinates.
    template<typename ModifyOp>
    void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
    {
        const Index offset = this->coordToOffset(xyz);
        bool state = mValueMask.isOn(offset);
        ValueType val = mBuffer[offset];
        op(val, state);
        mBuffer.setValue(offset, val);
        mValueMask.set(offset, state);
    }

    /// Mark all voxels as active but don't change their values.
    void setValuesOn() { mValueMask.setOn(); }
    /// Mark all voxels as inactive but don't change their values.
    void setValuesOff() { mValueMask.setOff(); }

    /// Return @c true if the voxel at the given coordinates is active.
    bool isValueOn(const Coord& xyz) const {return this->isValueOn(LeafNode::coordToOffset(xyz));}
    /// Return @c true if the voxel at the given offset is active.
    bool isValueOn(Index offset) const { return mValueMask.isOn(offset); }

    /// Return @c false since leaf nodes never contain tiles.
    static bool hasActiveTiles() { return false; }

    /// Set all voxels that lie outside the given axis-aligned box to the background.
    void clip(const CoordBBox&, const ValueType& background);

    /// Set all voxels within an axis-aligned box to the specified value and active state.
    void fill(const CoordBBox& bbox, const ValueType&, bool active = true);
    /// Set all voxels within an axis-aligned box to the specified value and active state.
    void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true)
    {
        this->fill(bbox, value, active);
    }

    /// Set all voxels to the specified value but don't change their active states.
    void fill(const ValueType& value);
    /// Set all voxels to the specified value and active state.
    void fill(const ValueType& value, bool active);

    /// @brief Copy into a dense grid the values of the voxels that lie within
    /// a given bounding box.
    ///
    /// @param bbox   inclusive bounding box of the voxels to be copied into the dense grid
    /// @param dense  dense grid with a stride in @e z of one (see tools::Dense
    ///               in tools/Dense.h for the required API)
    ///
    /// @note @a bbox is assumed to be identical to or contained in the coordinate domains
    /// of both the dense grid and this node, i.e., no bounds checking is performed.
    /// @note Consider using tools::CopyToDense in tools/Dense.h
    /// instead of calling this method directly.
    template<typename DenseT>
    void copyToDense(const CoordBBox& bbox, DenseT& dense) const;

    /// @brief Copy from a dense grid into this node the values of the voxels
    /// that lie within a given bounding box.
    /// @details Only values that are different (by more than the given tolerance)
    /// from the background value will be active.  Other values are inactive
    /// and truncated to the background value.
    ///
    /// @param bbox        inclusive bounding box of the voxels to be copied into this node
    /// @param dense       dense grid with a stride in @e z of one (see tools::Dense
    ///                    in tools/Dense.h for the required API)
    /// @param background  background value of the tree that this node belongs to
    /// @param tolerance   tolerance within which a value equals the background value
    ///
    /// @note @a bbox is assumed to be identical to or contained in the coordinate domains
    /// of both the dense grid and this node, i.e., no bounds checking is performed.
    /// @note Consider using tools::CopyFromDense in tools/Dense.h
    /// instead of calling this method directly.
    template<typename DenseT>
    void copyFromDense(const CoordBBox& bbox, const DenseT& dense,
                       const ValueType& background, const ValueType& tolerance);

    /// @brief Return the value of the voxel at the given coordinates.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    const ValueType& getValueAndCache(const Coord& xyz, AccessorT&) const
    {
        return this->getValue(xyz);
    }

    /// @brief Return @c true if the voxel at the given coordinates is active.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool isValueOnAndCache(const Coord& xyz, AccessorT&) const { return this->isValueOn(xyz); }

    /// @brief Change the value of the voxel at the given coordinates and mark it as active.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
    {
        this->setValueOn(xyz, val);
    }

    /// @brief Change the value of the voxel at the given coordinates
    /// but preserve its state.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOnlyAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
    {
        this->setValueOnly(xyz, val);
    }

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
    {
        this->modifyValue(xyz, op);
    }

    /// Apply a functor to the voxel at the given coordinates.
    /// @note Used internally by ValueAccessor.
    template<typename ModifyOp, typename AccessorT>
    void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
    {
        this->modifyValueAndActiveState(xyz, op);
    }

    /// @brief Change the value of the voxel at the given coordinates and mark it as inactive.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT&)
    {
        this->setValueOff(xyz, value);
    }

    /// @brief Set the active state of the voxel at the given coordinates
    /// without changing its value.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&)
    {
        this->setActiveState(xyz, on);
    }

    /// @brief Return @c true if the voxel at the given coordinates is active
    /// and return the voxel value in @a val.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    bool probeValueAndCache(const Coord& xyz, ValueType& val, AccessorT&) const
    {
        return this->probeValue(xyz, val);
    }

    /// @brief Return the value of the voxel at the given coordinates and return
    /// its active state and level (i.e., 0) in @a state and @a level.
    /// @note Used internally by ValueAccessor.
    template<typename AccessorT>
    const ValueType& getValue(const Coord& xyz, bool& state, int& level, AccessorT&) const
    {
        const Index offset = this->coordToOffset(xyz);
        state = mValueMask.isOn(offset);
        level = LEVEL;
        return mBuffer[offset];
    }

    /// @brief Return the LEVEL (=0) at which leaf node values reside.
    /// @note Used internally by ValueAccessor (note last argument is a dummy).
    template<typename AccessorT>
    static Index getValueLevelAndCache(const Coord&, AccessorT&) { return LEVEL; }

    /// @brief Return a const reference to the first value in the buffer.
    /// @note Though it is potentially risky you can convert this
    /// to a non-const pointer by means of const_case<ValueType*>&.
    const ValueType& getFirstValue() const { return mBuffer[0]; }
    /// Return a const reference to the last value in the buffer.
    const ValueType& getLastValue() const { return mBuffer[SIZE - 1]; }

    /// @brief Replace inactive occurrences of @a oldBackground with @a newBackground,
    /// and inactive occurrences of @a -oldBackground with @a -newBackground.
    void resetBackground(const ValueType& oldBackground, const ValueType& newBackground);

    void negate();

    /// @brief No-op
    /// @details This function exists only to enable template instantiation.
    void voxelizeActiveTiles(bool = true) {}

    template<MergePolicy Policy> void merge(const LeafNode&);
    template<MergePolicy Policy> void merge(const ValueType& tileValue, bool tileActive);
    template<MergePolicy Policy>
    void merge(const LeafNode& other, const ValueType& /*bg*/, const ValueType& /*otherBG*/);

    /// @brief Union this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active if either of the original voxels
    /// were active.
    ///
    /// @note This operation modifies only active states, not values.
    template<typename OtherType>
    void topologyUnion(const LeafNode<OtherType, Log2Dim>& other);

    /// @brief Intersect this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if both of the original voxels
    /// were active.
    ///
    /// @details The last dummy argument is required to match the signature
    /// for InternalNode::topologyIntersection.
    ///
    /// @note This operation modifies only active states, not
    /// values. Also note that this operation can result in all voxels
    /// being inactive so consider subsequnetly calling prune.
    template<typename OtherType>
    void topologyIntersection(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);

    /// @brief Difference this node's set of active values with the active values
    /// of the other node, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if the original voxel is
    /// active in this LeafNode and inactive in the other LeafNode.
    ///
    /// @details The last dummy argument is required to match the signature
    /// for InternalNode::topologyDifference.
    ///
    /// @note This operation modifies only active states, not values.
    /// Also, because it can deactivate all of this node's voxels,
    /// consider subsequently calling prune.
    template<typename OtherType>
    void topologyDifference(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);

    template<typename CombineOp>
    void combine(const LeafNode& other, CombineOp& op);
    template<typename CombineOp>
    void combine(const ValueType& value, bool valueIsActive, CombineOp& op);

    template<typename CombineOp, typename OtherType /*= ValueType*/>
    void combine2(const LeafNode& other, const OtherType&, bool valueIsActive, CombineOp&);
    template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
    void combine2(const ValueType&, const OtherNodeT& other, bool valueIsActive, CombineOp&);
    template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
    void combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp&);

    /// @brief Calls the templated functor BBoxOp with bounding box
    /// information. An additional level argument is provided to the
    /// callback.
    ///
    /// @note The bounding boxes are guarenteed to be non-overlapping.
    template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;

    template<typename VisitorOp> void visit(VisitorOp&);
    template<typename VisitorOp> void visit(VisitorOp&) const;

    template<typename OtherLeafNodeType, typename VisitorOp>
    void visit2Node(OtherLeafNodeType& other, VisitorOp&);
    template<typename OtherLeafNodeType, typename VisitorOp>
    void visit2Node(OtherLeafNodeType& other, VisitorOp&) const;
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false);
    template<typename IterT, typename VisitorOp>
    void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false) const;

    //@{
    /// This function exists only to enable template instantiation.
    void prune(const ValueType& /*tolerance*/ = zeroVal<ValueType>()) {}
    void addLeaf(LeafNode*) {}
    template<typename AccessorT>
    void addLeafAndCache(LeafNode*, AccessorT&) {}
    template<typename NodeT>
    NodeT* stealNode(const Coord&, const ValueType&, bool) { return nullptr; }
    template<typename NodeT>
    NodeT* probeNode(const Coord&) { return nullptr; }
    template<typename NodeT>
    const NodeT* probeConstNode(const Coord&) const { return nullptr; }
    template<typename ArrayT> void getNodes(ArrayT&) const {}
    template<typename ArrayT> void stealNodes(ArrayT&, const ValueType&, bool) {}
    //@}

    void addTile(Index level, const Coord&, const ValueType&, bool);
    void addTile(Index offset, const ValueType&, bool);
    template<typename AccessorT>
    void addTileAndCache(Index, const Coord&, const ValueType&, bool, AccessorT&);

    //@{
    /// @brief Return a pointer to this node.
    LeafNode* touchLeaf(const Coord&) { return this; }
    template<typename AccessorT>
    LeafNode* touchLeafAndCache(const Coord&, AccessorT&) { return this; }
    template<typename NodeT, typename AccessorT>
    NodeT* probeNodeAndCache(const Coord&, AccessorT&)
    {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (!(std::is_same<NodeT, LeafNode>::value)) return nullptr;
        return reinterpret_cast<NodeT*>(this);
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
    LeafNode* probeLeaf(const Coord&) { return this; }
    template<typename AccessorT>
    LeafNode* probeLeafAndCache(const Coord&, AccessorT&) { return this; }
    //@}
    //@{
    /// @brief Return a @const pointer to this node.
    const LeafNode* probeConstLeaf(const Coord&) const { return this; }
    template<typename AccessorT>
    const LeafNode* probeConstLeafAndCache(const Coord&, AccessorT&) const { return this; }
    template<typename AccessorT>
    const LeafNode* probeLeafAndCache(const Coord&, AccessorT&) const { return this; }
    const LeafNode* probeLeaf(const Coord&) const { return this; }
    template<typename NodeT, typename AccessorT>
    const NodeT* probeConstNodeAndCache(const Coord&, AccessorT&) const
    {
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
        if (!(std::is_same<NodeT, LeafNode>::value)) return nullptr;
        return reinterpret_cast<const NodeT*>(this);
        OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
    }
    //@}

    /// Return @c true if all of this node's values have the same active state
    /// and are in the range this->getFirstValue() +/- @a tolerance.
    ///
    ///
    /// @param firstValue  Is updated with the first value of this leaf node.
    /// @param state       Is updated with the state of all values IF method
    ///                    returns @c true. Else the value is undefined!
    /// @param tolerance   The tolerance used to determine if values are
    ///                    approximatly equal to the for value.
    bool isConstant(ValueType& firstValue, bool& state,
                    const ValueType& tolerance = zeroVal<ValueType>()) const;

    /// Return @c true if all of this node's values have the same active state
    /// and the range (@a maxValue - @a minValue) < @a tolerance.
    ///
    /// @param minValue  Is updated with the minimum of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param maxValue  Is updated with the maximum of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param state     Is updated with the state of all values IF method
    ///                  returns @c true. Else the value is undefined!
    /// @param tolerance The tolerance used to determine if values are
    ///                  approximatly constant.
    bool isConstant(ValueType& minValue, ValueType& maxValue,
                    bool& state, const ValueType& tolerance = zeroVal<ValueType>()) const;


    /// @brief Computes the median value of all the active AND inactive voxels in this node.
    /// @return The median value of all values in this node.
    ///
    /// @param tmp Optional temporary storage that can hold at least NUM_VALUES values
    ///            Use of this temporary storage can improve performance
    ///            when this method is called multiple times.
    ///
    /// @note If tmp = this->buffer().data() then the median
    ///       value is computed very efficiently (in place) but
    ///       the voxel values in this node are re-shuffeled!
    ///
    /// @warning If tmp != nullptr then it is the responsibility of
    ///          the client code that it points to enough memory to
    ///          hold NUM_VALUES elements of type ValueType.
    ValueType medianAll(ValueType *tmp = nullptr) const;

    /// @brief Computes the median value of all the active voxels in this node.
    /// @return The number of active voxels.
    ///
    /// @param value If the return value is non zero @a value is updated
    ///              with the median value.
    ///
    /// @param tmp Optional temporary storage that can hold at least
    ///            as many values as there are active voxels in this node.
    ///            Use of this temporary storage can improve performance
    ///            when this method is called multiple times.
    ///
    /// @warning If tmp != nullptr then it is the responsibility of
    ///          the client code that it points to enough memory to
    ///          hold the number of active voxels of type ValueType.
    Index medianOn(ValueType &value, ValueType *tmp = nullptr) const;

    /// @brief Computes the median value of all the inactive voxels in this node.
    /// @return The number of inactive voxels.
    ///
    /// @param value If the return value is non zero @a value is updated
    ///              with the median value.
    ///
    /// @param tmp Optional temporary storage that can hold at least
    ///            as many values as there are inactive voxels in this node.
    ///            Use of this temporary storage can improve performance
    ///            when this method is called multiple times.
    ///
    /// @warning If tmp != nullptr then it is the responsibility of
    ///          the client code that it points to enough memory to
    ///          hold the number of inactive voxels of type ValueType.
    Index medianOff(ValueType &value, ValueType *tmp = nullptr) const;

    /// Return @c true if all of this node's values are inactive.
    bool isInactive() const { return mValueMask.isOff(); }

protected:
    friend class ::TestLeaf;
    template<typename> friend class ::TestLeafIO;

    // During topology-only construction, access is needed
    // to protected/private members of other template instances.
    template<typename, Index> friend class LeafNode;

    friend struct ValueIter<MaskOnIterator, LeafNode, ValueType, ValueOn>;
    friend struct ValueIter<MaskOffIterator, LeafNode, ValueType, ValueOff>;
    friend struct ValueIter<MaskDenseIterator, LeafNode, ValueType, ValueAll>;
    friend struct ValueIter<MaskOnIterator, const LeafNode, ValueType, ValueOn>;
    friend struct ValueIter<MaskOffIterator, const LeafNode, ValueType, ValueOff>;
    friend struct ValueIter<MaskDenseIterator, const LeafNode, ValueType, ValueAll>;

    // Allow iterators to call mask accessor methods (see below).
    /// @todo Make mask accessors public?
    friend class IteratorBase<MaskOnIterator, LeafNode>;
    friend class IteratorBase<MaskOffIterator, LeafNode>;
    friend class IteratorBase<MaskDenseIterator, LeafNode>;

    // Mask accessors
public:
    bool isValueMaskOn(Index n) const { return mValueMask.isOn(n); }
    bool isValueMaskOn() const { return mValueMask.isOn(); }
    bool isValueMaskOff(Index n) const { return mValueMask.isOff(n); }
    bool isValueMaskOff() const { return mValueMask.isOff(); }
    const NodeMaskType& getValueMask() const { return mValueMask; }
    NodeMaskType& getValueMask() { return mValueMask; }
    const NodeMaskType& valueMask() const { return mValueMask; }
    void setValueMask(const NodeMaskType& mask) { mValueMask = mask; }
    bool isChildMaskOn(Index) const { return false; } // leaf nodes have no children
    bool isChildMaskOff(Index) const { return true; }
    bool isChildMaskOff() const { return true; }
protected:
    void setValueMask(Index n, bool on) { mValueMask.set(n, on); }
    void setValueMaskOn(Index n)  { mValueMask.setOn(n); }
    void setValueMaskOff(Index n) { mValueMask.setOff(n); }

    inline void skipCompressedValues(bool seekable, std::istream&, bool fromHalf);

    /// Compute the origin of the leaf node that contains the voxel with the given coordinates.
    static void evalNodeOrigin(Coord& xyz) { xyz &= ~(DIM - 1); }

    template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
    static inline void doVisit(NodeT&, VisitorOp&);

    template<typename NodeT, typename OtherNodeT, typename VisitorOp,
             typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp&);

    template<typename NodeT, typename VisitorOp,
             typename ChildAllIterT, typename OtherChildAllIterT>
    static inline void doVisit2(NodeT& self, OtherChildAllIterT&, VisitorOp&, bool otherIsLHS);

private:
    /// Buffer containing the actual data values
    Buffer mBuffer;
    /// Bitmask that determines which voxels are active
    NodeMaskType mValueMask;
    /// Global grid index coordinates (x,y,z) of the local origin of this node
    Coord mOrigin;
}; // end of LeafNode class


////////////////////////////////////////


//@{
/// Helper metafunction used to implement LeafNode::SameConfiguration
/// (which, as an inner class, can't be independently specialized)
template<Index Dim1, typename NodeT2>
struct SameLeafConfig { static const bool value = false; };

template<Index Dim1, typename T2>
struct SameLeafConfig<Dim1, LeafNode<T2, Dim1> > { static const bool value = true; };
//@}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode():
    mValueMask(),//default is off!
    mOrigin(0, 0, 0)
{
}


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const Coord& xyz, const ValueType& val, bool active):
    mBuffer(val),
    mValueMask(active),
    mOrigin(xyz & (~(DIM - 1)))
{
}


#if OPENVDB_ABI_VERSION_NUMBER >= 3
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(PartialCreate, const Coord& xyz, const ValueType& val, bool active):
    mBuffer(PartialCreate(), val),
    mValueMask(active),
    mOrigin(xyz & (~(DIM - 1)))
{
}
#endif


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode& other):
    mBuffer(other.mBuffer),
    mValueMask(other.valueMask()),
    mOrigin(other.mOrigin)
{
}


// Copy-construct from a leaf node with the same configuration but a different ValueType.
template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other):
    mValueMask(other.valueMask()),
    mOrigin(other.mOrigin)
{
    struct Local {
        /// @todo Consider using a value conversion functor passed as an argument instead.
        static inline ValueType convertValue(const OtherValueType& val) { return ValueType(val); }
    };

    for (Index i = 0; i < SIZE; ++i) {
        mBuffer[i] = Local::convertValue(other.mBuffer[i]);
    }
}


template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
                               const ValueType& background, TopologyCopy):
    mBuffer(background),
    mValueMask(other.valueMask()),
    mOrigin(other.mOrigin)
{
}


template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
    const ValueType& offValue, const ValueType& onValue, TopologyCopy):
    mValueMask(other.valueMask()),
    mOrigin(other.mOrigin)
{
    for (Index i = 0; i < SIZE; ++i) {
        mBuffer[i] = (mValueMask.isOn(i) ? onValue : offValue);
    }
}


template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::~LeafNode()
{
}


template<typename T, Index Log2Dim>
inline std::string
LeafNode<T, Log2Dim>::str() const
{
    std::ostringstream ostr;
    ostr << "LeafNode @" << mOrigin << ": " << mBuffer;
    return ostr.str();
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline Index
LeafNode<T, Log2Dim>::coordToOffset(const Coord& xyz)
{
    assert ((xyz[0] & (DIM-1u)) < DIM && (xyz[1] & (DIM-1u)) < DIM && (xyz[2] & (DIM-1u)) < DIM);
    return ((xyz[0] & (DIM-1u)) << 2*Log2Dim)
        +  ((xyz[1] & (DIM-1u)) <<  Log2Dim)
        +   (xyz[2] & (DIM-1u));
}

template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToLocalCoord(Index n)
{
    assert(n<(1<< 3*Log2Dim));
    Coord xyz;
    xyz.setX(n >> 2*Log2Dim);
    n &= ((1<<2*Log2Dim)-1);
    xyz.setY(n >> Log2Dim);
    xyz.setZ(n & ((1<<Log2Dim)-1));
    return xyz;
}


template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToGlobalCoord(Index n) const
{
    return (this->offsetToLocalCoord(n) + this->origin());
}


////////////////////////////////////////


template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(const Coord& xyz) const
{
    return this->getValue(LeafNode::coordToOffset(xyz));
}

template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(Index offset) const
{
    assert(offset < SIZE);
    return mBuffer[offset];
}


template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(const Coord& xyz, ValueType& val) const
{
    return this->probeValue(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(Index offset, ValueType& val) const
{
    assert(offset < SIZE);
    val = mBuffer[offset];
    return mValueMask.isOn(offset);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(const Coord& xyz, const ValueType& val)
{
    this->setValueOff(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(Index offset, const ValueType& val)
{
    assert(offset < SIZE);
    mBuffer.setValue(offset, val);
    mValueMask.setOff(offset);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setActiveState(const Coord& xyz, bool on)
{
    mValueMask.set(this->coordToOffset(xyz), on);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(const Coord& xyz, const ValueType& val)
{
    this->setValueOnly(LeafNode::coordToOffset(xyz), val);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(Index offset, const ValueType& val)
{
    assert(offset<SIZE); mBuffer.setValue(offset, val);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::clip(const CoordBBox& clipBBox, const T& background)
{
    CoordBBox nodeBBox = this->getNodeBoundingBox();
    if (!clipBBox.hasOverlap(nodeBBox)) {
        // This node lies completely outside the clipping region.  Fill it with the background.
        this->fill(background, /*active=*/false);
    } else if (clipBBox.isInside(nodeBBox)) {
        // This node lies completely inside the clipping region.  Leave it intact.
        return;
    }

    // This node isn't completely contained inside the clipping region.
    // Set any voxels that lie outside the region to the background value.

    // Construct a boolean mask that is on inside the clipping region and off outside it.
    NodeMaskType mask;
    nodeBBox.intersect(clipBBox);
    Coord xyz;
    int &x = xyz.x(), &y = xyz.y(), &z = xyz.z();
    for (x = nodeBBox.min().x(); x <= nodeBBox.max().x(); ++x) {
        for (y = nodeBBox.min().y(); y <= nodeBBox.max().y(); ++y) {
            for (z = nodeBBox.min().z(); z <= nodeBBox.max().z(); ++z) {
                mask.setOn(static_cast<Index32>(this->coordToOffset(xyz)));
            }
        }
    }

    // Set voxels that lie in the inactive region of the mask (i.e., outside
    // the clipping region) to the background value.
    for (MaskOffIterator maskIter = mask.beginOff(); maskIter; ++maskIter) {
        this->setValueOff(maskIter.pos(), background);
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif

    auto clippedBBox = this->getNodeBoundingBox();
    clippedBBox.intersect(bbox);
    if (!clippedBBox) return;

    for (Int32 x = clippedBBox.min().x(); x <= clippedBBox.max().x(); ++x) {
        const Index offsetX = (x & (DIM-1u)) << 2*Log2Dim;
        for (Int32 y = clippedBBox.min().y(); y <= clippedBBox.max().y(); ++y) {
            const Index offsetXY = offsetX + ((y & (DIM-1u)) << Log2Dim);
            for (Int32 z = clippedBBox.min().z(); z <= clippedBBox.max().z(); ++z) {
                const Index offset = offsetXY + (z & (DIM-1u));
                mBuffer[offset] = value;
                mValueMask.set(offset, active);
            }
        }
    }
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value)
{
    mBuffer.fill(value);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value, bool active)
{
    mBuffer.fill(value);
    mValueMask.set(active);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    mBuffer.loadValues();
#endif

    using DenseValueType = typename DenseT::ValueType;

    const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
    const Coord& min = dense.bbox().min();
    DenseValueType* t0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // target array
    const T* s0 = &mBuffer[bbox.min()[2] & (DIM-1u)]; // source array
    for (Int32 x = bbox.min()[0], ex = bbox.max()[0] + 1; x < ex; ++x) {
        DenseValueType* t1 = t0 + xStride * (x - min[0]);
        const T* s1 = s0 + ((x & (DIM-1u)) << 2*Log2Dim);
        for (Int32 y = bbox.min()[1], ey = bbox.max()[1] + 1; y < ey; ++y) {
            DenseValueType* t2 = t1 + yStride * (y - min[1]);
            const T* s2 = s1 + ((y & (DIM-1u)) << Log2Dim);
            for (Int32 z = bbox.min()[2], ez = bbox.max()[2] + 1; z < ez; ++z, t2 += zStride) {
                *t2 = DenseValueType(*s2++);
            }
        }
    }
}


template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyFromDense(const CoordBBox& bbox, const DenseT& dense,
                                    const ValueType& background, const ValueType& tolerance)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif

    using DenseValueType = typename DenseT::ValueType;

    const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
    const Coord& min = dense.bbox().min();

    const DenseValueType* s0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // source
    const Int32 n0 = bbox.min()[2] & (DIM-1u);
    for (Int32 x = bbox.min()[0], ex = bbox.max()[0]+1; x < ex; ++x) {
        const DenseValueType* s1 = s0 + xStride * (x - min[0]);
        const Int32 n1 = n0 + ((x & (DIM-1u)) << 2*LOG2DIM);
        for (Int32 y = bbox.min()[1], ey = bbox.max()[1]+1; y < ey; ++y) {
            const DenseValueType* s2 = s1 + yStride * (y - min[1]);
            Int32 n2 = n1 + ((y & (DIM-1u)) << LOG2DIM);
            for (Int32 z = bbox.min()[2], ez = bbox.max()[2]+1; z < ez; ++z, ++n2, s2 += zStride) {
                if (math::isApproxEqual(background, ValueType(*s2), tolerance)) {
                    mValueMask.setOff(n2);
                    mBuffer[n2] = background;
                } else {
                    mValueMask.setOn(n2);
                    mBuffer[n2] = ValueType(*s2);
                }
            }
        }
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::readTopology(std::istream& is, bool /*fromHalf*/)
{
    mValueMask.load(is);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeTopology(std::ostream& os, bool /*toHalf*/) const
{
    mValueMask.save(os);
}


////////////////////////////////////////



template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::skipCompressedValues(bool seekable, std::istream& is, bool fromHalf)
{
    if (seekable) {
        // Seek over voxel values.
        io::readCompressedValues<ValueType, NodeMaskType>(
            is, nullptr, SIZE, mValueMask, fromHalf);
    } else {
        // Read and discard voxel values.
        Buffer temp;
        io::readCompressedValues(is, temp.mData, SIZE, mValueMask, fromHalf);
    }
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::readBuffers(std::istream& is, bool fromHalf)
{
    this->readBuffers(is, CoordBBox::inf(), fromHalf);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::readBuffers(std::istream& is, const CoordBBox& clipBBox, bool fromHalf)
{
    SharedPtr<io::StreamMetadata> meta = io::getStreamMetadataPtr(is);
    const bool seekable = meta && meta->seekable();

#if OPENVDB_ABI_VERSION_NUMBER >= 3
    std::streamoff maskpos = is.tellg();
#endif

    if (seekable) {
        // Seek over the value mask.
        mValueMask.seek(is);
    } else {
        // Read in the value mask.
        mValueMask.load(is);
    }

    int8_t numBuffers = 1;
    if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION) {
        // Read in the origin.
        is.read(reinterpret_cast<char*>(&mOrigin), sizeof(Coord::ValueType) * 3);

        // Read in the number of buffers, which should now always be one.
        is.read(reinterpret_cast<char*>(&numBuffers), sizeof(int8_t));
    }

    CoordBBox nodeBBox = this->getNodeBoundingBox();
    if (!clipBBox.hasOverlap(nodeBBox)) {
        // This node lies completely outside the clipping region.
        skipCompressedValues(seekable, is, fromHalf);
        mValueMask.setOff();
        mBuffer.setOutOfCore(false);
    } else {
#if OPENVDB_ABI_VERSION_NUMBER >= 3
        // If this node lies completely inside the clipping region and it is being read
        // from a memory-mapped file, delay loading of its buffer until the buffer
        // is actually accessed.  (If this node requires clipping, its buffer
        // must be accessed and therefore must be loaded.)
        io::MappedFile::Ptr mappedFile = io::getMappedFilePtr(is);
        const bool delayLoad = ((mappedFile.get() != nullptr) && clipBBox.isInside(nodeBBox));

        if (delayLoad) {
            mBuffer.setOutOfCore(true);
            mBuffer.mFileInfo = new typename Buffer::FileInfo;
            mBuffer.mFileInfo->meta = meta;
            mBuffer.mFileInfo->bufpos = is.tellg();
            mBuffer.mFileInfo->mapping = mappedFile;
            // Save the offset to the value mask, because the in-memory copy
            // might change before the value buffer gets read.
            mBuffer.mFileInfo->maskpos = maskpos;
            // Skip over voxel values.
            skipCompressedValues(seekable, is, fromHalf);
        } else {
#endif
            mBuffer.allocate();
            io::readCompressedValues(is, mBuffer.mData, SIZE, mValueMask, fromHalf);
            mBuffer.setOutOfCore(false);

            // Get this tree's background value.
            T background = zeroVal<T>();
            if (const void* bgPtr = io::getGridBackgroundValuePtr(is)) {
                background = *static_cast<const T*>(bgPtr);
            }
            this->clip(clipBBox, background);
#if OPENVDB_ABI_VERSION_NUMBER >= 3
        }
#endif
    }

    if (numBuffers > 1) {
        // Read in and discard auxiliary buffers that were created with earlier
        // versions of the library.  (Auxiliary buffers are not mask compressed.)
        const bool zipped = io::getDataCompression(is) & io::COMPRESS_ZIP;
        Buffer temp;
        for (int i = 1; i < numBuffers; ++i) {
            if (fromHalf) {
                io::HalfReader<io::RealToHalf<T>::isReal, T>::read(is, temp.mData, SIZE, zipped);
            } else {
                io::readData<T>(is, temp.mData, SIZE, zipped);
            }
        }
    }
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeBuffers(std::ostream& os, bool toHalf) const
{
    // Write out the value mask.
    mValueMask.save(os);

    mBuffer.loadValues();

    io::writeCompressedValues(os, mBuffer.mData, SIZE,
        mValueMask, /*childMask=*/NodeMaskType(), toHalf);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::operator==(const LeafNode& other) const
{
    return mOrigin == other.mOrigin &&
           mValueMask == other.valueMask() &&
           mBuffer == other.mBuffer;
}


template<typename T, Index Log2Dim>
inline Index64
LeafNode<T, Log2Dim>::memUsage() const
{
    // Use sizeof(*this) to capture alignment-related padding
    // (but note that sizeof(*this) includes sizeof(mBuffer)).
    return sizeof(*this) + mBuffer.memUsage() - sizeof(mBuffer);
}


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
    CoordBBox this_bbox = this->getNodeBoundingBox();
    if (bbox.isInside(this_bbox)) return;//this LeafNode is already enclosed in the bbox
    if (ValueOnCIter iter = this->cbeginValueOn()) {//any active values?
        if (visitVoxels) {//use voxel granularity?
            this_bbox.reset();
            for(; iter; ++iter) this_bbox.expand(this->offsetToLocalCoord(iter.pos()));
            this_bbox.translate(this->origin());
        }
        bbox.expand(this_bbox);
    }
}


template<typename T, Index Log2Dim>
template<typename OtherType, Index OtherLog2Dim>
inline bool
LeafNode<T, Log2Dim>::hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const
{
    assert(other);
    return (Log2Dim == OtherLog2Dim && mValueMask == other->getValueMask());
}

template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::isConstant(ValueType& firstValue,
                                 bool& state,
                                 const ValueType& tolerance) const
{
    if (!mValueMask.isConstant(state)) return false;// early termination
    firstValue = mBuffer[0];
    for (Index i = 1; i < SIZE; ++i) {
        if ( !math::isApproxEqual(mBuffer[i], firstValue, tolerance) ) return false;// early termination
    }
    return true;
}

template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::isConstant(ValueType& minValue,
                                 ValueType& maxValue,
                                 bool& state,
                                 const ValueType& tolerance) const
{
    if (!mValueMask.isConstant(state)) return false;// early termination
    minValue = maxValue = mBuffer[0];
    for (Index i = 1; i < SIZE; ++i) {
        const T& v = mBuffer[i];
        if (v < minValue) {
            if ((maxValue - v) > tolerance) return false;// early termination
            minValue = v;
        } else if (v > maxValue) {
            if ((v - minValue) > tolerance) return false;// early termination
            maxValue = v;
        }
    }
    return true;
}

template<typename T, Index Log2Dim>
inline T
LeafNode<T, Log2Dim>::medianAll(T *tmp) const
{
    std::unique_ptr<T[]> data(nullptr);
    if (tmp == nullptr) {//allocate temporary storage
        data.reset(new T[NUM_VALUES]);
        tmp = data.get();
    }
    if (tmp != mBuffer.data()) {
        const T* src = mBuffer.data();
        for (T* dst = tmp; dst-tmp < NUM_VALUES;) *dst++ = *src++;
    }
    static const size_t midpoint = (NUM_VALUES - 1) >> 1;
    std::nth_element(tmp, tmp + midpoint, tmp + NUM_VALUES);
    return tmp[midpoint];
}

template<typename T, Index Log2Dim>
inline Index
LeafNode<T, Log2Dim>::medianOn(T &value, T *tmp) const
{
    const Index count = mValueMask.countOn();
    if (count == NUM_VALUES) {//special case: all voxels are active
        value = this->medianAll(tmp);
        return NUM_VALUES;
    } else if (count == 0) {
        return 0;
    }
    std::unique_ptr<T[]> data(nullptr);
    if (tmp == nullptr) {//allocate temporary storage
        data.reset(new T[count]);// 0 < count < NUM_VALUES
        tmp = data.get();
    }
    for (auto iter=this->cbeginValueOn(); iter; ++iter) *tmp++ = *iter;
    T *begin = tmp - count;
    const size_t midpoint = (count - 1) >> 1;
    std::nth_element(begin, begin + midpoint, tmp);
    value = begin[midpoint];
    return count;
}

template<typename T, Index Log2Dim>
inline Index
LeafNode<T, Log2Dim>::medianOff(T &value, T *tmp) const
{
    const Index count = mValueMask.countOff();
    if (count == NUM_VALUES) {//special case: all voxels are inactive
        value = this->medianAll(tmp);
        return NUM_VALUES;
    } else if (count == 0) {
        return 0;
    }
    std::unique_ptr<T[]> data(nullptr);
    if (tmp == nullptr) {//allocate temporary storage
        data.reset(new T[count]);// 0 < count < NUM_VALUES
        tmp = data.get();
    }
    for (auto iter=this->cbeginValueOff(); iter; ++iter) *tmp++ = *iter;
    T *begin = tmp - count;
    const size_t midpoint = (count - 1) >> 1;
    std::nth_element(begin, begin + midpoint, tmp);
    value = begin[midpoint];
    return count;
}

////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index /*level*/, const Coord& xyz, const ValueType& val, bool active)
{
    this->addTile(this->coordToOffset(xyz), val, active);
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index offset, const ValueType& val, bool active)
{
    assert(offset < SIZE);
    setValueOnly(offset, val);
    setActiveState(offset, active);
}

template<typename T, Index Log2Dim>
template<typename AccessorT>
inline void
LeafNode<T, Log2Dim>::addTileAndCache(Index level, const Coord& xyz,
    const ValueType& val, bool active, AccessorT&)
{
    this->addTile(level, xyz, val, active);
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::resetBackground(const ValueType& oldBackground,
                                      const ValueType& newBackground)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif

    typename NodeMaskType::OffIterator iter;
    // For all inactive values...
    for (iter = this->mValueMask.beginOff(); iter; ++iter) {
        ValueType &inactiveValue = mBuffer[iter.pos()];
        if (math::isApproxEqual(inactiveValue, oldBackground)) {
            inactiveValue = newBackground;
        } else if (math::isApproxEqual(inactiveValue, math::negative(oldBackground))) {
            inactiveValue = math::negative(newBackground);
        }
    }
}


template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif

    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    if (Policy == MERGE_NODES) return;
    typename NodeMaskType::OnIterator iter = other.valueMask().beginOn();
    for (; iter; ++iter) {
        const Index n = iter.pos();
        if (mValueMask.isOff(n)) {
            mBuffer[n] = other.mBuffer[n];
            mValueMask.setOn(n);
        }
    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}

template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other,
    const ValueType& /*bg*/, const ValueType& /*otherBG*/)
{
    this->template merge<Policy>(other);
}

template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const ValueType& tileValue, bool tileActive)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif

    OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
    if (Policy != MERGE_ACTIVE_STATES_AND_NODES) return;
    if (!tileActive) return;
    // Replace all inactive values with the active tile value.
    for (typename NodeMaskType::OffIterator iter = mValueMask.beginOff(); iter; ++iter) {
        const Index n = iter.pos();
        mBuffer[n] = tileValue;
        mValueMask.setOn(n);
    }
    OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}


template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyUnion(const LeafNode<OtherType, Log2Dim>& other)
{
    mValueMask |= other.valueMask();
}

template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyIntersection(const LeafNode<OtherType, Log2Dim>& other,
                                           const ValueType&)
{
    mValueMask &= other.valueMask();
}

template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyDifference(const LeafNode<OtherType, Log2Dim>& other,
                                         const ValueType&)
{
    mValueMask &= !other.valueMask();
}

template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::negate()
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    for (Index i = 0; i < SIZE; ++i) {
        mBuffer[i] = -mBuffer[i];
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const LeafNode& other, CombineOp& op)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    CombineArgs<T> args;
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(mBuffer[i])
            .setAIsActive(mValueMask.isOn(i))
            .setBRef(other.mBuffer[i])
            .setBIsActive(other.valueMask().isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const ValueType& value, bool valueIsActive, CombineOp& op)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    CombineArgs<T> args;
    args.setBRef(value).setBIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(mBuffer[i])
            .setAIsActive(mValueMask.isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherType>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& other, const OtherType& value,
    bool valueIsActive, CombineOp& op)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    CombineArgs<T, OtherType> args;
    args.setBRef(value).setBIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setARef(other.mBuffer[i])
            .setAIsActive(other.valueMask().isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<T, Log2Dim>::combine2(const ValueType& value, const OtherNodeT& other,
    bool valueIsActive, CombineOp& op)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    CombineArgs<T, typename OtherNodeT::ValueType> args;
    args.setARef(value).setAIsActive(valueIsActive);
    for (Index i = 0; i < SIZE; ++i) {
        op(args.setBRef(other.mBuffer[i])
            .setBIsActive(other.valueMask().isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp& op)
{
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    if (!this->allocate()) return;
#endif
    CombineArgs<T, typename OtherNodeT::ValueType> args;
    for (Index i = 0; i < SIZE; ++i) {
        mValueMask.set(i, b0.valueMask().isOn(i) || b1.valueMask().isOn(i));
        op(args.setARef(b0.mBuffer[i])
            .setAIsActive(b0.valueMask().isOn(i))
            .setBRef(b1.mBuffer[i])
            .setBIsActive(b1.valueMask().isOn(i))
            .setResultRef(mBuffer[i]));
        mValueMask.set(i, args.resultIsActive());
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename BBoxOp>
inline void
LeafNode<T, Log2Dim>::visitActiveBBox(BBoxOp& op) const
{
    if (op.template descent<LEVEL>()) {
        for (ValueOnCIter i=this->cbeginValueOn(); i; ++i) {
#ifdef _MSC_VER
            op.operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#else
            op.template operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#endif
        }
    } else {
#ifdef _MSC_VER
        op.operator()<LEVEL>(this->getNodeBoundingBox());
#else
        op.template operator()<LEVEL>(this->getNodeBoundingBox());
#endif
    }
}


template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op)
{
    doVisit<LeafNode, VisitorOp, ChildAllIter>(*this, op);
}


template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op) const
{
    doVisit<const LeafNode, VisitorOp, ChildAllCIter>(*this, op);
}


template<typename T, Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit(NodeT& self, VisitorOp& op)
{
    for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
        op(iter);
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op)
{
    doVisit2Node<LeafNode, OtherLeafNodeType, VisitorOp, ChildAllIter,
        typename OtherLeafNodeType::ChildAllIter>(*this, other, op);
}


template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op) const
{
    doVisit2Node<const LeafNode, OtherLeafNodeType, VisitorOp, ChildAllCIter,
        typename OtherLeafNodeType::ChildAllCIter>(*this, other, op);
}


template<typename T, Index Log2Dim>
template<
    typename NodeT,
    typename OtherNodeT,
    typename VisitorOp,
    typename ChildAllIterT,
    typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp& op)
{
    // Allow the two nodes to have different ValueTypes, but not different dimensions.
    static_assert(OtherNodeT::SIZE == NodeT::SIZE,
        "can't visit nodes of different sizes simultaneously");
    static_assert(OtherNodeT::LEVEL == NodeT::LEVEL,
        "can't visit nodes at different tree levels simultaneously");

    ChildAllIterT iter = self.beginChildAll();
    OtherChildAllIterT otherIter = other.beginChildAll();

    for ( ; iter && otherIter; ++iter, ++otherIter) {
        op(iter, otherIter);
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS)
{
    doVisit2<LeafNode, VisitorOp, ChildAllIter, IterT>(
        *this, otherIter, op, otherIsLHS);
}


template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS) const
{
    doVisit2<const LeafNode, VisitorOp, ChildAllCIter, IterT>(
        *this, otherIter, op, otherIsLHS);
}


template<typename T, Index Log2Dim>
template<
    typename NodeT,
    typename VisitorOp,
    typename ChildAllIterT,
    typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2(NodeT& self, OtherChildAllIterT& otherIter,
    VisitorOp& op, bool otherIsLHS)
{
    if (!otherIter) return;

    if (otherIsLHS) {
        for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
            op(otherIter, iter);
        }
    } else {
        for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
            op(iter, otherIter);
        }
    }
}


////////////////////////////////////////


template<typename T, Index Log2Dim>
inline std::ostream&
operator<<(std::ostream& os, const typename LeafNode<T, Log2Dim>::Buffer& buf)
{
    for (Index32 i = 0, N = buf.size(); i < N; ++i) os << buf.mData[i] << ", ";
    return os;
}

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb


////////////////////////////////////////


// Specialization for LeafNodes of type bool
#include "LeafNodeBool.h"

// Specialization for LeafNodes with mask information only
#include "LeafNodeMask.h"

#endif // OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )