File: Tree.h

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (2380 lines) | stat: -rw-r--r-- 91,909 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

/// @file tree/Tree.h

#ifndef OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/Metadata.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/BBox.h>
#include <openvdb/util/Formats.h>
#include <openvdb/util/logging.h>
#include <openvdb/Platform.h>
#include "RootNode.h"
#include "InternalNode.h"
#include "LeafNode.h"
#include "TreeIterator.h"
#include "ValueAccessor.h"
#include <tbb/atomic.h>
#include <tbb/concurrent_hash_map.h>
#include <cstdint>
#include <iostream>
#include <sstream>
#include <vector>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

/// @brief Base class for typed trees
class OPENVDB_API TreeBase
{
public:
    using Ptr = SharedPtr<TreeBase>;
    using ConstPtr = SharedPtr<const TreeBase>;

    TreeBase() = default;
    TreeBase(const TreeBase&) = default;
    TreeBase& operator=(const TreeBase&) = delete; // disallow assignment
    virtual ~TreeBase() = default;

    /// Return the name of this tree's type.
    virtual const Name& type() const = 0;

    /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d").
    virtual Name valueType() const = 0;

    /// Return a pointer to a deep copy of this tree
    virtual TreeBase::Ptr copy() const = 0;

    //
    // Tree methods
    //
    /// @brief Return this tree's background value wrapped as metadata.
    /// @note Query the metadata object for the value's type.
    virtual Metadata::Ptr getBackgroundValue() const { return Metadata::Ptr(); }

    /// @brief Return in @a bbox the axis-aligned bounding box of all
    /// leaf nodes and active tiles.
    /// @details This is faster than calling evalActiveVoxelBoundingBox,
    /// which visits the individual active voxels, and hence
    /// evalLeafBoundingBox produces a less tight, i.e. approximate, bbox.
    /// @return @c false if the bounding box is empty (in which case
    /// the bbox is set to its default value).
    virtual bool evalLeafBoundingBox(CoordBBox& bbox) const = 0;

    /// @brief Return in @a dim the dimensions of the axis-aligned bounding box
    /// of all leaf nodes.
    /// @return @c false if the bounding box is empty.
    virtual bool evalLeafDim(Coord& dim) const = 0;

    /// @brief Return in @a bbox the axis-aligned bounding box of all
    /// active voxels and tiles.
    /// @details This method produces a more accurate, i.e. tighter,
    /// bounding box than evalLeafBoundingBox which is approximate but
    /// faster.
    /// @return @c false if the bounding box is empty (in which case
    /// the bbox is set to its default value).
    virtual bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const = 0;

    /// @brief Return in @a dim the dimensions of the axis-aligned bounding box of all
    /// active voxels.  This is a tighter bounding box than the leaf node bounding box.
    /// @return @c false if the bounding box is empty.
    virtual bool evalActiveVoxelDim(Coord& dim) const = 0;

    virtual void getIndexRange(CoordBBox& bbox) const = 0;

#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// @brief Replace with background tiles any nodes whose voxel buffers
    /// have not yet been allocated.
    /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
    /// are not yet resident in memory because delayed loading is in effect.
    /// @sa readNonresidentBuffers, io::File::open
    virtual void clipUnallocatedNodes() = 0;
#endif
#if OPENVDB_ABI_VERSION_NUMBER >= 4
    /// Return the total number of unallocated leaf nodes residing in this tree.
    virtual Index32 unallocatedLeafCount() const = 0;
#endif


    //
    // Statistics
    //
    /// @brief Return the depth of this tree.
    ///
    /// A tree with only a root node and leaf nodes has depth 2, for example.
    virtual Index treeDepth() const = 0;
    /// Return the number of leaf nodes.
    virtual Index32 leafCount() const = 0;
    /// Return the number of non-leaf nodes.
    virtual Index32 nonLeafCount() const = 0;
    /// Return the number of active voxels stored in leaf nodes.
    virtual Index64 activeLeafVoxelCount() const = 0;
    /// Return the number of inactive voxels stored in leaf nodes.
    virtual Index64 inactiveLeafVoxelCount() const = 0;
    /// Return the total number of active voxels.
    virtual Index64 activeVoxelCount() const = 0;
    /// Return the number of inactive voxels within the bounding box of all active voxels.
    virtual Index64 inactiveVoxelCount() const = 0;
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// Return the total number of active tiles.
    virtual Index64 activeTileCount() const = 0;
#endif

    /// Return the total amount of memory in bytes occupied by this tree.
    virtual Index64 memUsage() const { return 0; }


    //
    // I/O methods
    //
    /// @brief Read the tree topology from a stream.
    ///
    /// This will read the tree structure and tile values, but not voxel data.
    virtual void readTopology(std::istream&, bool saveFloatAsHalf = false);
    /// @brief Write the tree topology to a stream.
    ///
    /// This will write the tree structure and tile values, but not voxel data.
    virtual void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const;

    /// Read all data buffers for this tree.
    virtual void readBuffers(std::istream&, bool saveFloatAsHalf = false) = 0;
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// Read all of this tree's data buffers that intersect the given bounding box.
    virtual void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) = 0;
    /// @brief Read all of this tree's data buffers that are not yet resident in memory
    /// (because delayed loading is in effect).
    /// @details If this tree was read from a memory-mapped file, this operation
    /// disconnects the tree from the file.
    /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
    virtual void readNonresidentBuffers() const = 0;
#endif
    /// Write out all the data buffers for this tree.
    virtual void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const = 0;

    /// @brief Print statistics, memory usage and other information about this tree.
    /// @param os            a stream to which to write textual information
    /// @param verboseLevel  1: print tree configuration only;
    ///                      2: include node and voxel statistics;
    ///                      3: include memory usage;
    ///                      4: include minimum and maximum voxel values
    /// @warning @a verboseLevel 4 forces loading of any unallocated nodes.
    virtual void print(std::ostream& os = std::cout, int verboseLevel = 1) const;
};


////////////////////////////////////////


template<typename _RootNodeType>
class Tree: public TreeBase
{
public:
    using Ptr = SharedPtr<Tree>;
    using ConstPtr = SharedPtr<const Tree>;

    using RootNodeType = _RootNodeType;
    using ValueType = typename RootNodeType::ValueType;
    using BuildType = typename RootNodeType::BuildType;
    using LeafNodeType = typename RootNodeType::LeafNodeType;

    static const Index DEPTH = RootNodeType::LEVEL + 1;

    /// @brief ValueConverter<T>::Type is the type of a tree having the same
    /// hierarchy as this tree but a different value type, T.
    ///
    /// For example, FloatTree::ValueConverter<double>::Type is equivalent to DoubleTree.
    /// @note If the source tree type is a template argument, it might be necessary
    /// to write "typename SourceTree::template ValueConverter<T>::Type".
    template<typename OtherValueType>
    struct ValueConverter {
        using Type = Tree<typename RootNodeType::template ValueConverter<OtherValueType>::Type>;
    };


    Tree() {}

    Tree& operator=(const Tree&) = delete; // disallow assignment

    /// Deep copy constructor
    Tree(const Tree& other): TreeBase(other), mRoot(other.mRoot)
    {
    }

    /// @brief Value conversion deep copy constructor
    ///
    /// Deep copy a tree of the same configuration as this tree type but a different
    /// ValueType, casting the other tree's values to this tree's ValueType.
    /// @throw TypeError if the other tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the other tree's ValueType.
    template<typename OtherRootType>
    explicit Tree(const Tree<OtherRootType>& other): TreeBase(other), mRoot(other.root())
    {
    }

    /// @brief Topology copy constructor from a tree of a different type
    ///
    /// Copy the structure, i.e., the active states of tiles and voxels, of another
    /// tree of a possibly different type, but don't copy any tile or voxel values.
    /// Instead, initialize tiles and voxels with the given active and inactive values.
    /// @param other          a tree having (possibly) a different ValueType
    /// @param inactiveValue  background value for this tree, and the value to which
    ///                       all inactive tiles and voxels are initialized
    /// @param activeValue    value to which active tiles and voxels are initialized
    /// @throw TypeError if the other tree's configuration doesn't match this tree's.
    template<typename OtherTreeType>
    Tree(const OtherTreeType& other,
        const ValueType& inactiveValue,
        const ValueType& activeValue,
        TopologyCopy):
        TreeBase(other),
        mRoot(other.root(), inactiveValue, activeValue, TopologyCopy())
    {
    }

    /// @brief Topology copy constructor from a tree of a different type
    ///
    /// @note This topology copy constructor is generally faster than
    /// the one that takes both a foreground and a background value.
    ///
    /// Copy the structure, i.e., the active states of tiles and voxels, of another
    /// tree of a possibly different type, but don't copy any tile or voxel values.
    /// Instead, initialize tiles and voxels with the given background value.
    /// @param other        a tree having (possibly) a different ValueType
    /// @param background   the value to which tiles and voxels are initialized
    /// @throw TypeError if the other tree's configuration doesn't match this tree's.
    template<typename OtherTreeType>
    Tree(const OtherTreeType& other, const ValueType& background, TopologyCopy):
        TreeBase(other),
        mRoot(other.root(), background, TopologyCopy())
    {
    }

    /// Empty tree constructor
    Tree(const ValueType& background): mRoot(background) {}

    ~Tree() override { this->clear(); releaseAllAccessors(); }

    /// Return a pointer to a deep copy of this tree
    TreeBase::Ptr copy() const override { return TreeBase::Ptr(new Tree(*this)); }

    /// Return the name of the type of a voxel's value (e.g., "float" or "vec3d")
    Name valueType() const override { return typeNameAsString<ValueType>(); }

    /// Return the name of this type of tree.
    static const Name& treeType();
    /// Return the name of this type of tree.
    const Name& type() const override { return this->treeType(); }

    bool operator==(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }
    bool operator!=(const Tree&) const { OPENVDB_THROW(NotImplementedError, ""); }

    //@{
    /// Return this tree's root node.
    RootNodeType& root() { return mRoot; }
    const RootNodeType& root() const { return mRoot; }
    //@}


    //
    // Tree methods
    //
    /// @brief Return @c true if the given tree has the same node and active value
    /// topology as this tree, whether or not it has the same @c ValueType.
    template<typename OtherRootNodeType>
    bool hasSameTopology(const Tree<OtherRootNodeType>& other) const;

    bool evalLeafBoundingBox(CoordBBox& bbox) const override;
    bool evalActiveVoxelBoundingBox(CoordBBox& bbox) const override;
    bool evalActiveVoxelDim(Coord& dim) const override;
    bool evalLeafDim(Coord& dim) const override;

    /// @brief Traverse the type hierarchy of nodes, and return, in @a dims, a list
    /// of the Log2Dims of nodes in order from RootNode to LeafNode.
    /// @note Because RootNodes are resizable, the RootNode Log2Dim is 0 for all trees.
    static void getNodeLog2Dims(std::vector<Index>& dims);


    //
    // I/O methods
    //
    /// @brief Read the tree topology from a stream.
    ///
    /// This will read the tree structure and tile values, but not voxel data.
    void readTopology(std::istream&, bool saveFloatAsHalf = false) override;
    /// @brief Write the tree topology to a stream.
    ///
    /// This will write the tree structure and tile values, but not voxel data.
    void writeTopology(std::ostream&, bool saveFloatAsHalf = false) const override;
    /// Read all data buffers for this tree.
    void readBuffers(std::istream&, bool saveFloatAsHalf = false) override;
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// Read all of this tree's data buffers that intersect the given bounding box.
    void readBuffers(std::istream&, const CoordBBox&, bool saveFloatAsHalf = false) override;
    /// @brief Read all of this tree's data buffers that are not yet resident in memory
    /// (because delayed loading is in effect).
    /// @details If this tree was read from a memory-mapped file, this operation
    /// disconnects the tree from the file.
    /// @sa clipUnallocatedNodes, io::File::open, io::MappedFile
    void readNonresidentBuffers() const override;
#endif
    /// Write out all data buffers for this tree.
    void writeBuffers(std::ostream&, bool saveFloatAsHalf = false) const override;

    void print(std::ostream& os = std::cout, int verboseLevel = 1) const override;


    //
    // Statistics
    //
    /// @brief Return the depth of this tree.
    ///
    /// A tree with only a root node and leaf nodes has depth 2, for example.
    Index treeDepth() const override { return DEPTH; }
    /// Return the number of leaf nodes.
    Index32 leafCount() const override { return mRoot.leafCount(); }
    /// Return the number of non-leaf nodes.
    Index32 nonLeafCount() const override { return mRoot.nonLeafCount(); }
    /// Return the number of active voxels stored in leaf nodes.
    Index64 activeLeafVoxelCount() const override { return mRoot.onLeafVoxelCount(); }
    /// Return the number of inactive voxels stored in leaf nodes.
    Index64 inactiveLeafVoxelCount() const override { return mRoot.offLeafVoxelCount(); }
    /// Return the total number of active voxels.
    Index64 activeVoxelCount() const override { return mRoot.onVoxelCount(); }
    /// Return the number of inactive voxels within the bounding box of all active voxels.
    Index64 inactiveVoxelCount() const override;
#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// Return the total number of active tiles.
    Index64 activeTileCount() const override { return mRoot.onTileCount(); }
#else
    Index64 activeTileCount() const { return mRoot.onTileCount(); }
#endif

    /// Return the minimum and maximum active values in this tree.
    void evalMinMax(ValueType &min, ValueType &max) const;

    Index64 memUsage() const override { return sizeof(*this) + mRoot.memUsage(); }


    //
    // Voxel access methods (using signed indexing)
    //
    /// Return the value of the voxel at the given coordinates.
    const ValueType& getValue(const Coord& xyz) const;
    /// @brief Return the value of the voxel at the given coordinates
    /// and update the given accessor's node cache.
    template<typename AccessT> const ValueType& getValue(const Coord& xyz, AccessT&) const;

    /// @brief Return the tree depth (0 = root) at which the value of voxel (x, y, z) resides.
    /// @details If (x, y, z) isn't explicitly represented in the tree (i.e., it is
    /// implicitly a background voxel), return -1.
    int getValueDepth(const Coord& xyz) const;

    /// Set the active state of the voxel at the given coordinates but don't change its value.
    void setActiveState(const Coord& xyz, bool on);
    /// Set the value of the voxel at the given coordinates but don't change its active state.
    void setValueOnly(const Coord& xyz, const ValueType& value);
    /// Mark the voxel at the given coordinates as active but don't change its value.
    void setValueOn(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValueOn(const Coord& xyz, const ValueType& value);
    /// Set the value of the voxel at the given coordinates and mark the voxel as active.
    void setValue(const Coord& xyz, const ValueType& value);
    /// @brief Set the value of the voxel at the given coordinates, mark the voxel as active,
    /// and update the given accessor's node cache.
    template<typename AccessT> void setValue(const Coord& xyz, const ValueType& value, AccessT&);
    /// Mark the voxel at the given coordinates as inactive but don't change its value.
    void setValueOff(const Coord& xyz);
    /// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
    void setValueOff(const Coord& xyz, const ValueType& value);

    /// @brief Apply a functor to the value of the voxel at the given coordinates
    /// and mark the voxel as active.
    /// @details Provided that the functor can be inlined, this is typically
    /// significantly faster than calling getValue() followed by setValueOn().
    /// @param xyz  the coordinates of a voxel whose value is to be modified
    /// @param op   a functor of the form <tt>void op(ValueType&) const</tt> that modifies
    ///             its argument in place
    /// @par Example:
    /// @code
    /// Coord xyz(1, 0, -2);
    /// // Multiply the value of a voxel by a constant and mark the voxel as active.
    /// floatTree.modifyValue(xyz, [](float& f) { f *= 0.25; }); // C++11
    /// // Set the value of a voxel to the maximum of its current value and 0.25,
    /// // and mark the voxel as active.
    /// floatTree.modifyValue(xyz, [](float& f) { f = std::max(f, 0.25f); }); // C++11
    /// @endcode
    /// @note The functor is not guaranteed to be called only once.
    /// @see tools::foreach()
    template<typename ModifyOp>
    void modifyValue(const Coord& xyz, const ModifyOp& op);

    /// @brief Apply a functor to the voxel at the given coordinates.
    /// @details Provided that the functor can be inlined, this is typically
    /// significantly faster than calling getValue() followed by setValue().
    /// @param xyz  the coordinates of a voxel to be modified
    /// @param op   a functor of the form <tt>void op(ValueType&, bool&) const</tt> that
    ///             modifies its arguments, a voxel's value and active state, in place
    /// @par Example:
    /// @code
    /// Coord xyz(1, 0, -2);
    /// // Multiply the value of a voxel by a constant and mark the voxel as inactive.
    /// floatTree.modifyValueAndActiveState(xyz,
    ///     [](float& f, bool& b) { f *= 0.25; b = false; }); // C++11
    /// // Set the value of a voxel to the maximum of its current value and 0.25,
    /// // but don't change the voxel's active state.
    /// floatTree.modifyValueAndActiveState(xyz,
    ///     [](float& f, bool&) { f = std::max(f, 0.25f); }); // C++11
    /// @endcode
    /// @note The functor is not guaranteed to be called only once.
    /// @see tools::foreach()
    template<typename ModifyOp>
    void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op);

    /// @brief Get the value of the voxel at the given coordinates.
    /// @return @c true if the value is active.
    bool probeValue(const Coord& xyz, ValueType& value) const;

    /// Return @c true if the value at the given coordinates is active.
    bool isValueOn(const Coord& xyz) const { return mRoot.isValueOn(xyz); }
    /// Return @c true if the value at the given coordinates is inactive.
    bool isValueOff(const Coord& xyz) const { return !this->isValueOn(xyz); }
    /// Return @c true if this tree has any active tiles.
    bool hasActiveTiles() const { return mRoot.hasActiveTiles(); }

    /// Set all voxels that lie outside the given axis-aligned box to the background.
    void clip(const CoordBBox&);

#if OPENVDB_ABI_VERSION_NUMBER >= 3
    /// @brief Replace with background tiles any nodes whose voxel buffers
    /// have not yet been allocated.
    /// @details Typically, unallocated nodes are leaf nodes whose voxel buffers
    /// are not yet resident in memory because delayed loading is in effect.
    /// @sa readNonresidentBuffers, io::File::open
    void clipUnallocatedNodes() override;
#endif
#if OPENVDB_ABI_VERSION_NUMBER >= 4
    /// Return the total number of unallocated leaf nodes residing in this tree.
    Index32 unallocatedLeafCount() const override;
#endif

    //@{
    /// @brief Set all voxels within a given axis-aligned box to a constant value.
    /// @param bbox    inclusive coordinates of opposite corners of an axis-aligned box
    /// @param value   the value to which to set voxels within the box
    /// @param active  if true, mark voxels within the box as active,
    ///                otherwise mark them as inactive
    /// @note This operation generates a sparse, but not always optimally sparse,
    /// representation of the filled box. Follow fill operations with a prune()
    /// operation for optimal sparseness.
    void sparseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);
    void fill(const CoordBBox& bbox, const ValueType& value, bool active = true)
    {
        this->sparseFill(bbox, value, active);
    }
    //@}

    /// @brief Set all voxels within a given axis-aligned box to a constant value
    /// and ensure that those voxels are all represented at the leaf level.
    /// @param bbox    inclusive coordinates of opposite corners of an axis-aligned box.
    /// @param value   the value to which to set voxels within the box.
    /// @param active  if true, mark voxels within the box as active,
    ///                otherwise mark them as inactive.
    /// @sa voxelizeActiveTiles()
    void denseFill(const CoordBBox& bbox, const ValueType& value, bool active = true);

    /// @brief Densify active tiles, i.e., replace them with leaf-level active voxels.
    ///
    /// @param threaded if true, this operation is multi-threaded (over the internal nodes).
    ///
    /// @warning This method can explode the tree's memory footprint, especially if it
    /// contains active tiles at the upper levels (in particular the root level)!
    ///
    /// @sa denseFill()
    void voxelizeActiveTiles(bool threaded = true);

    /// @brief Reduce the memory footprint of this tree by replacing with tiles
    /// any nodes whose values are all the same (optionally to within a tolerance)
    /// and have the same active state.
    /// @warning Will soon be deprecated!
    void prune(const ValueType& tolerance = zeroVal<ValueType>())
    {
        this->clearAllAccessors();
        mRoot.prune(tolerance);
    }

    /// @brief Add the given leaf node to this tree, creating a new branch if necessary.
    /// If a leaf node with the same origin already exists, replace it.
    ///
    /// @warning Ownership of the leaf is transferred to the tree so
    /// the client code should not attempt to delete the leaf pointer!
    void addLeaf(LeafNodeType* leaf) { assert(leaf); mRoot.addLeaf(leaf); }

    /// @brief Add a tile containing voxel (x, y, z) at the specified tree level,
    /// creating a new branch if necessary.  Delete any existing lower-level nodes
    /// that contain (x, y, z).
    /// @note @a level must be less than this tree's depth.
    void addTile(Index level, const Coord& xyz, const ValueType& value, bool active);

    /// @brief Return a pointer to the node of type @c NodeT that contains voxel (x, y, z)
    /// and replace it with a tile of the specified value and state.
    /// If no such node exists, leave the tree unchanged and return @c nullptr.
    /// @note The caller takes ownership of the node and is responsible for deleting it.
    template<typename NodeT>
    NodeT* stealNode(const Coord& xyz, const ValueType& value, bool active);

    /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
    /// If no such node exists, create one that preserves the values and
    /// active states of all voxels.
    /// @details Use this method to preallocate a static tree topology over which to
    /// safely perform multithreaded processing.
    LeafNodeType* touchLeaf(const Coord& xyz);

    //@{
    /// @brief Return a pointer to the node of type @c NodeType that contains
    /// voxel (x, y, z).  If no such node exists, return @c nullptr.
    template<typename NodeType> NodeType* probeNode(const Coord& xyz);
    template<typename NodeType> const NodeType* probeConstNode(const Coord& xyz) const;
    template<typename NodeType> const NodeType* probeNode(const Coord& xyz) const;
    //@}

    //@{
    /// @brief Return a pointer to the leaf node that contains voxel (x, y, z).
    /// If no such node exists, return @c nullptr.
    LeafNodeType* probeLeaf(const Coord& xyz);
    const LeafNodeType* probeConstLeaf(const Coord& xyz) const;
    const LeafNodeType* probeLeaf(const Coord& xyz) const { return this->probeConstLeaf(xyz); }
    //@}

    //@{
    /// @brief Adds all nodes of a certain type to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    using value_type = ...;             // the type of node to be added to the array
    ///    void push_back(value_type nodePtr); // add a node to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    using value_type = LeafType*;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.getNodes(array);
    /// @endcode
    template<typename ArrayT> void getNodes(ArrayT& array) { mRoot.getNodes(array); }
    template<typename ArrayT> void getNodes(ArrayT& array) const { mRoot.getNodes(array); }
    //@}

    /// @brief Steals all nodes of a certain type from the tree and
    /// adds them to a container with the following API:
    /// @code
    /// struct ArrayT {
    ///    using value_type = ...;             // the type of node to be added to the array
    ///    void push_back(value_type nodePtr); // add a node to the array
    /// };
    /// @endcode
    /// @details An example of a wrapper around a c-style array is:
    /// @code
    /// struct MyArray {
    ///    using value_type = LeafType*;
    ///    value_type* ptr;
    ///    MyArray(value_type* array) : ptr(array) {}
    ///    void push_back(value_type leaf) { *ptr++ = leaf; }
    ///};
    /// @endcode
    /// @details An example that constructs a list of pointer to all leaf nodes is:
    /// @code
    /// std::vector<const LeafNodeType*> array;//most std contains have the required API
    /// array.reserve(tree.leafCount());//this is a fast preallocation.
    /// tree.stealNodes(array);
    /// @endcode
    template<typename ArrayT>
    void stealNodes(ArrayT& array) { this->clearAllAccessors(); mRoot.stealNodes(array); }
    template<typename ArrayT>
    void stealNodes(ArrayT& array, const ValueType& value, bool state)
    {
        this->clearAllAccessors();
        mRoot.stealNodes(array, value, state);
    }

    //
    // Aux methods
    //
    /// @brief Return @c true if this tree contains no nodes other than
    /// the root node and no tiles other than background tiles.
    bool empty() const { return mRoot.empty(); }

    /// Remove all tiles from this tree and all nodes other than the root node.
    void clear();

    /// Clear all registered accessors.
    void clearAllAccessors();

    //@{
    /// @brief Register an accessor for this tree.  Registered accessors are
    /// automatically cleared whenever one of this tree's nodes is deleted.
    void attachAccessor(ValueAccessorBase<Tree, true>&) const;
    void attachAccessor(ValueAccessorBase<const Tree, true>&) const;
    //@}

    //@{
    /// Dummy implementations
    void attachAccessor(ValueAccessorBase<Tree, false>&) const {}
    void attachAccessor(ValueAccessorBase<const Tree, false>&) const {}
    //@}

    //@{
    /// Deregister an accessor so that it is no longer automatically cleared.
    void releaseAccessor(ValueAccessorBase<Tree, true>&) const;
    void releaseAccessor(ValueAccessorBase<const Tree, true>&) const;
    //@}

    //@{
    /// Dummy implementations
    void releaseAccessor(ValueAccessorBase<Tree, false>&) const {}
    void releaseAccessor(ValueAccessorBase<const Tree, false>&) const {}
    //@}

    /// @brief Return this tree's background value wrapped as metadata.
    /// @note Query the metadata object for the value's type.
    Metadata::Ptr getBackgroundValue() const override;

    /// @brief Return this tree's background value.
    ///
    /// @note Use tools::changeBackground to efficiently modify the
    /// background values. Else use tree.root().setBackground, which
    /// is serial and hence slower.
    const ValueType& background() const { return mRoot.background(); }

    /// Min and max are both inclusive.
    void getIndexRange(CoordBBox& bbox) const override { mRoot.getIndexRange(bbox); }

    /// @brief Efficiently merge another tree into this tree using one of several schemes.
    /// @details This operation is primarily intended to combine trees that are mostly
    /// non-overlapping (for example, intermediate trees from computations that are
    /// parallelized across disjoint regions of space).
    /// @note This operation is not guaranteed to produce an optimally sparse tree.
    /// Follow merge() with prune() for optimal sparseness.
    /// @warning This operation always empties the other tree.
    void merge(Tree& other, MergePolicy = MERGE_ACTIVE_STATES);

    /// @brief Union this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different.
    /// @details The resulting state of a value is active if the corresponding value
    /// was already active OR if it is active in the other tree.  Also, a resulting
    /// value maps to a voxel if the corresponding value already mapped to a voxel
    /// OR if it is a voxel in the other tree.  Thus, a resulting value can only
    /// map to a tile if the corresponding value already mapped to a tile
    /// AND if it is a tile value in other tree.
    ///
    /// @note This operation modifies only active states, not values.
    /// Specifically, active tiles and voxels in this tree are not changed, and
    /// tiles or voxels that were inactive in this tree but active in the other tree
    /// are marked as active in this tree but left with their original values.
    template<typename OtherRootNodeType>
    void topologyUnion(const Tree<OtherRootNodeType>& other);

    /// @brief Intersects this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different.
    /// @details The resulting state of a value is active only if the corresponding
    /// value was already active AND if it is active in the other tree. Also, a
    /// resulting value maps to a voxel if the corresponding value
    /// already mapped to an active voxel in either of the two grids
    /// and it maps to an active tile or voxel in the other grid.
    ///
    /// @note This operation can delete branches in this grid if they
    /// overlap with inactive tiles in the other grid. Likewise active
    /// voxels can be turned into unactive voxels resulting in leaf
    /// nodes with no active values. Thus, it is recommended to
    /// subsequently call tools::pruneInactive.
    template<typename OtherRootNodeType>
    void topologyIntersection(const Tree<OtherRootNodeType>& other);

    /// @brief Difference this tree's set of active values with the active values
    /// of the other tree, whose @c ValueType may be different. So a
    /// resulting voxel will be active only if the original voxel is
    /// active in this tree and inactive in the other tree.
    ///
    /// @note This operation can delete branches in this grid if they
    /// overlap with active tiles in the other grid. Likewise active
    /// voxels can be turned into inactive voxels resulting in leaf
    /// nodes with no active values. Thus, it is recommended to
    /// subsequently call tools::pruneInactive.
    template<typename OtherRootNodeType>
    void topologyDifference(const Tree<OtherRootNodeType>& other);

    /// For a given function @c f, use sparse traversal to compute <tt>f(this, other)</tt>
    /// over all corresponding pairs of values (tile or voxel) of this tree and the other tree
    /// and store the result in this tree.
    /// This method is typically more space-efficient than the two-tree combine2(),
    /// since it moves rather than copies nodes from the other tree into this tree.
    /// @note This operation always empties the other tree.
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form <tt>void op(const T& a, const T& b, T& result)</tt>,
    ///               where @c T is this tree's @c ValueType, that computes
    ///               <tt>result = f(a, b)</tt>
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// @par Example:
    ///     Compute the per-voxel difference between two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void diff(const float& a, const float& b, float& result) {
    ///             result = a - b;
    ///         }
    ///     };
    ///     aTree.combine(bTree, Local::diff);
    /// }
    /// @endcode
    ///
    /// @par Example:
    ///     Compute <tt>f * a + (1 - f) * b</tt> over all voxels of two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in @c aTree (leaving @c bTree empty).
    /// @code
    /// namespace {
    ///     struct Blend {
    ///         Blend(float f): frac(f) {}
    ///         inline void operator()(const float& a, const float& b, float& result) const {
    ///             result = frac * a + (1.0 - frac) * b;
    ///         }
    ///         float frac;
    ///     };
    /// }
    /// {
    ///     aTree.combine(bTree, Blend(0.25)); // 0.25 * a + 0.75 * b
    /// }
    /// @endcode
    template<typename CombineOp>
    void combine(Tree& other, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename CombineOp>
    void combine(Tree& other, const CombineOp& op, bool prune = false);
#endif

    /// Like combine(), but with
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form <tt>void op(CombineArgs<ValueType>& args)</tt> that
    ///               computes <tt>args.setResult(f(args.a(), args.b()))</tt> and, optionally,
    ///               <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
    ///               for some functions @c f and @c g
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// This variant passes not only the @em a and @em b values but also the active states
    /// of the @em a and @em b values to the functor, which may then return, by calling
    /// @c args.setResultIsActive(), a computed active state for the result value.
    /// By default, the result is active if either the @em a or the @em b value is active.
    ///
    /// @see openvdb/Types.h for the definition of the CombineArgs struct.
    ///
    /// @par Example:
    ///     Replace voxel values in floating-point @c aTree with corresponding values
    ///     from floating-point @c bTree (leaving @c bTree empty) wherever the @c bTree
    ///     values are larger.  Also, preserve the active states of any transferred values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     aTree.combineExtended(bTree, Local::max);
    /// }
    /// @endcode
    template<typename ExtendedCombineOp>
    void combineExtended(Tree& other, ExtendedCombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename ExtendedCombineOp>
    void combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune = false);
#endif

    /// For a given function @c f, use sparse traversal to compute <tt>f(a, b)</tt> over all
    /// corresponding pairs of values (tile or voxel) of trees A and B and store the result
    /// in this tree.
    /// @param a,b    two trees with the same configuration (levels and node dimensions)
    ///               as this tree but with the B tree possibly having a different value type
    /// @param op     a functor of the form <tt>void op(const T1& a, const T2& b, T1& result)</tt>,
    ///               where @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the
    ///               B tree's @c ValueType, that computes <tt>result = f(a, b)</tt>
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    ///
    /// @throw TypeError if the B tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the B tree's ValueType.
    ///
    /// @par Example:
    ///     Compute the per-voxel difference between two floating-point trees,
    ///     @c aTree and @c bTree, and store the result in a third tree.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void diff(const float& a, const float& b, float& result) {
    ///             result = a - b;
    ///         }
    ///     };
    ///     FloatTree resultTree;
    ///     resultTree.combine2(aTree, bTree, Local::diff);
    /// }
    /// @endcode
    template<typename CombineOp, typename OtherTreeType /*= Tree*/>
    void combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune = false);
#ifndef _MSC_VER
    template<typename CombineOp, typename OtherTreeType /*= Tree*/>
    void combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune = false);
#endif

    /// Like combine2(), but with
    /// @param a,b    two trees with the same configuration (levels and node dimensions)
    ///               as this tree but with the B tree possibly having a different value type
    /// @param op     a functor of the form <tt>void op(CombineArgs<T1, T2>& args)</tt>, where
    ///               @c T1 is this tree's and the A tree's @c ValueType and @c T2 is the B tree's
    ///               @c ValueType, that computes <tt>args.setResult(f(args.a(), args.b()))</tt>
    ///               and, optionally,
    ///               <tt>args.setResultIsActive(g(args.aIsActive(), args.bIsActive()))</tt>
    ///               for some functions @c f and @c g
    /// @param prune  if true, prune the resulting tree one branch at a time (this is usually
    ///               more space-efficient than pruning the entire tree in one pass)
    /// This variant passes not only the @em a and @em b values but also the active states
    /// of the @em a and @em b values to the functor, which may then return, by calling
    /// <tt>args.setResultIsActive()</tt>, a computed active state for the result value.
    /// By default, the result is active if either the @em a or the @em b value is active.
    ///
    /// @throw TypeError if the B tree's configuration doesn't match this tree's
    /// or if this tree's ValueType is not constructible from the B tree's ValueType.
    ///
    /// @see openvdb/Types.h for the definition of the CombineArgs struct.
    ///
    /// @par Example:
    ///     Compute the per-voxel maximum values of two single-precision floating-point trees,
    ///     @c aTree and @c bTree, and store the result in a third tree.  Set the active state
    ///     of each output value to that of the larger of the two input values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     FloatTree aTree = ...;
    ///     FloatTree bTree = ...;
    ///     FloatTree resultTree;
    ///     resultTree.combine2Extended(aTree, bTree, Local::max);
    /// }
    /// @endcode
    ///
    /// @par Example:
    ///     Compute the per-voxel maximum values of a double-precision and a single-precision
    ///     floating-point tree, @c aTree and @c bTree, and store the result in a third,
    ///     double-precision tree.  Set the active state of each output value to that of
    ///     the larger of the two input values.
    /// @code
    /// {
    ///     struct Local {
    ///         static inline void max(CombineArgs<double, float>& args) {
    ///             if (args.b() > args.a()) {
    ///                 // Transfer the B value and its active state.
    ///                 args.setResult(args.b());
    ///                 args.setResultIsActive(args.bIsActive());
    ///             } else {
    ///                 // Preserve the A value and its active state.
    ///                 args.setResult(args.a());
    ///                 args.setResultIsActive(args.aIsActive());
    ///             }
    ///         }
    ///     };
    ///     DoubleTree aTree = ...;
    ///     FloatTree bTree = ...;
    ///     DoubleTree resultTree;
    ///     resultTree.combine2Extended(aTree, bTree, Local::max);
    /// }
    /// @endcode
    template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
    void combine2Extended(const Tree& a, const OtherTreeType& b, ExtendedCombineOp& op,
        bool prune = false);
#ifndef _MSC_VER
    template<typename ExtendedCombineOp, typename OtherTreeType /*= Tree*/>
    void combine2Extended(const Tree& a, const OtherTreeType& b, const ExtendedCombineOp&,
        bool prune = false);
#endif

    /// @brief Use sparse traversal to call the given functor with bounding box
    /// information for all active tiles and leaf nodes or active voxels in the tree.
    ///
    /// @note The bounding boxes are guaranteed to be non-overlapping.
    /// @param op  a functor with a templated call operator of the form
    ///     <tt>template<Index LEVEL> void operator()(const CoordBBox& bbox)</tt>,
    ///     where <tt>bbox</tt> is the bounding box of either an active tile
    ///     (if @c LEVEL > 0), a leaf node or an active voxel.
    ///     The functor must also provide a templated method of the form
    ///     <tt>template<Index LEVEL> bool descent()</tt> that returns @c false
    ///     if bounding boxes below the specified tree level are not to be visited.
    ///     In such cases of early tree termination, a bounding box is instead
    ///     derived from each terminating child node.
    ///
    /// @par Example:
    ///     Visit and process all active tiles and leaf nodes in a tree, but don't
    ///     descend to the active voxels.  The smallest bounding boxes that will be
    ///     visited are those of leaf nodes or level-1 active tiles.
    /// @code
    /// {
    ///     struct ProcessTilesAndLeafNodes {
    ///         // Descend to leaf nodes, but no further.
    ///         template<Index LEVEL> inline bool descent() { return LEVEL > 0; }
    ///         // Use this version to descend to voxels:
    ///         //template<Index LEVEL> inline bool descent() { return true; }
    ///
    ///         template<Index LEVEL>
    ///         inline void operator()(const CoordBBox &bbox) {
    ///             if (LEVEL > 0) {
    ///                 // code to process an active tile
    ///             } else {
    ///                 // code to process a leaf node
    ///             }
    ///         }
    ///     };
    ///     ProcessTilesAndLeafNodes op;
    ///     aTree.visitActiveBBox(op);
    /// }
    /// @endcode
    /// @see openvdb/unittest/TestTree.cc for another example.
    template<typename BBoxOp> void visitActiveBBox(BBoxOp& op) const { mRoot.visitActiveBBox(op); }

    /// Traverse this tree in depth-first order, and at each node call the given functor
    /// with a @c DenseIterator (see Iterator.h) that points to either a child node or a
    /// tile value.  If the iterator points to a child node and the functor returns true,
    /// do not descend to the child node; instead, continue the traversal at the next
    /// iterator position.
    /// @param op  a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
    ///            where @c IterT is either a RootNode::ChildAllIter,
    ///            an InternalNode::ChildAllIter or a LeafNode::ChildAllIter
    ///
    /// @note There is no iterator that points to a RootNode, so to visit the root node,
    /// retrieve the @c parent() of a RootNode::ChildAllIter.
    ///
    /// @par Example:
    ///     Print information about the nodes and tiles of a tree, but not individual voxels.
    /// @code
    /// namespace {
    ///     template<typename TreeT>
    ///     struct PrintTreeVisitor
    ///     {
    ///         using RootT = typename TreeT::RootNodeType;
    ///         bool visitedRoot;
    ///
    ///         PrintTreeVisitor(): visitedRoot(false) {}
    ///
    ///         template<typename IterT>
    ///         inline bool operator()(IterT& iter)
    ///         {
    ///             if (!visitedRoot && iter.parent().getLevel() == RootT::LEVEL) {
    ///                 visitedRoot = true;
    ///                 std::cout << "Level-" << RootT::LEVEL << " node" << std::endl;
    ///             }
    ///             typename IterT::NonConstValueType value;
    ///             typename IterT::ChildNodeType* child = iter.probeChild(value);
    ///             if (child == nullptr) {
    ///                 std::cout << "Tile with value " << value << std::endl;
    ///                 return true; // no child to visit, so stop descending
    ///             }
    ///             std::cout << "Level-" << child->getLevel() << " node" << std::endl;
    ///             return (child->getLevel() == 0); // don't visit leaf nodes
    ///         }
    ///
    ///         // The generic method, above, calls iter.probeChild(), which is not defined
    ///         // for LeafNode::ChildAllIter.  These overloads ensure that the generic
    ///         // method template doesn't get instantiated for LeafNode iterators.
    ///         bool operator()(typename TreeT::LeafNodeType::ChildAllIter&) { return true; }
    ///         bool operator()(typename TreeT::LeafNodeType::ChildAllCIter&) { return true; }
    ///     };
    /// }
    /// {
    ///     PrintTreeVisitor visitor;
    ///     tree.visit(visitor);
    /// }
    /// @endcode
    template<typename VisitorOp> void visit(VisitorOp& op);
    template<typename VisitorOp> void visit(const VisitorOp& op);

    /// Like visit(), but using @c const iterators, i.e., with
    /// @param op  a functor of the form <tt>template<typename IterT> bool op(IterT&)</tt>,
    ///            where @c IterT is either a RootNode::ChildAllCIter,
    ///            an InternalNode::ChildAllCIter or a LeafNode::ChildAllCIter
    template<typename VisitorOp> void visit(VisitorOp& op) const;
    template<typename VisitorOp> void visit(const VisitorOp& op) const;

    /// Traverse this tree and another tree in depth-first order, and for corresponding
    /// subregions of index space call the given functor with two @c DenseIterators
    /// (see Iterator.h), each of which points to either a child node or a tile value
    /// of this tree and the other tree.  If the A iterator points to a child node
    /// and the functor returns a nonzero value with bit 0 set (e.g., 1), do not descend
    /// to the child node; instead, continue the traversal at the next A iterator position.
    /// Similarly, if the B iterator points to a child node and the functor returns a value
    /// with bit 1 set (e.g., 2), continue the traversal at the next B iterator position.
    /// @note The other tree must have the same index space and fan-out factors as
    /// this tree, but it may have a different @c ValueType and a different topology.
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form
    ///               <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
    ///               where @c AIterT and @c BIterT are any combination of a
    ///               RootNode::ChildAllIter, an InternalNode::ChildAllIter or a
    ///               LeafNode::ChildAllIter with an @c OtherTreeType::RootNode::ChildAllIter,
    ///               an @c OtherTreeType::InternalNode::ChildAllIter
    ///               or an @c OtherTreeType::LeafNode::ChildAllIter
    ///
    /// @par Example:
    ///     Given two trees of the same type, @c aTree and @c bTree, replace leaf nodes of
    ///     @c aTree with corresponding leaf nodes of @c bTree, leaving @c bTree partially empty.
    /// @code
    /// namespace {
    ///     template<typename AIterT, typename BIterT>
    ///     inline int stealLeafNodes(AIterT& aIter, BIterT& bIter)
    ///     {
    ///         typename AIterT::NonConstValueType aValue;
    ///         typename AIterT::ChildNodeType* aChild = aIter.probeChild(aValue);
    ///         typename BIterT::NonConstValueType bValue;
    ///         typename BIterT::ChildNodeType* bChild = bIter.probeChild(bValue);
    ///
    ///         const Index aLevel = aChild->getLevel(), bLevel = bChild->getLevel();
    ///         if (aChild && bChild && aLevel == 0 && bLevel == 0) { // both are leaf nodes
    ///             aIter.setChild(bChild); // give B's child to A
    ///             bIter.setValue(bValue); // replace B's child with a constant tile value
    ///         }
    ///         // Don't iterate over leaf node voxels of either A or B.
    ///         int skipBranch = (aLevel == 0) ? 1 : 0;
    ///         if (bLevel == 0) skipBranch = skipBranch | 2;
    ///         return skipBranch;
    ///     }
    /// }
    /// {
    ///     aTree.visit2(bTree, stealLeafNodes);
    /// }
    /// @endcode
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, VisitorOp& op);
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, const VisitorOp& op);

    /// Like visit2(), but using @c const iterators, i.e., with
    /// @param other  a tree of the same type as this tree
    /// @param op     a functor of the form
    ///               <tt>template<class AIterT, class BIterT> int op(AIterT&, BIterT&)</tt>,
    ///               where @c AIterT and @c BIterT are any combination of a
    ///               RootNode::ChildAllCIter, an InternalNode::ChildAllCIter
    ///               or a LeafNode::ChildAllCIter with an
    ///               @c OtherTreeType::RootNode::ChildAllCIter,
    ///               an @c OtherTreeType::InternalNode::ChildAllCIter
    ///               or an @c OtherTreeType::LeafNode::ChildAllCIter
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, VisitorOp& op) const;
    template<typename OtherTreeType, typename VisitorOp>
    void visit2(OtherTreeType& other, const VisitorOp& op) const;


    //
    // Iteration
    //
    //@{
    /// Return an iterator over children of the root node.
    typename RootNodeType::ChildOnCIter  beginRootChildren() const { return mRoot.cbeginChildOn(); }
    typename RootNodeType::ChildOnCIter cbeginRootChildren() const { return mRoot.cbeginChildOn(); }
    typename RootNodeType::ChildOnIter   beginRootChildren() { return mRoot.beginChildOn(); }
    //@}

    //@{
    /// Return an iterator over non-child entries of the root node's table.
    typename RootNodeType::ChildOffCIter  beginRootTiles() const { return mRoot.cbeginChildOff(); }
    typename RootNodeType::ChildOffCIter cbeginRootTiles() const { return mRoot.cbeginChildOff(); }
    typename RootNodeType::ChildOffIter   beginRootTiles() { return mRoot.beginChildOff(); }
    //@}

    //@{
    /// Return an iterator over all entries of the root node's table.
    typename RootNodeType::ChildAllCIter  beginRootDense() const { return mRoot.cbeginChildAll(); }
    typename RootNodeType::ChildAllCIter cbeginRootDense() const { return mRoot.cbeginChildAll(); }
    typename RootNodeType::ChildAllIter   beginRootDense() { return mRoot.beginChildAll(); }
    //@}


    //@{
    /// Iterator over all nodes in this tree
    using NodeIter = NodeIteratorBase<Tree, typename RootNodeType::ChildOnIter>;
    using NodeCIter = NodeIteratorBase<const Tree, typename RootNodeType::ChildOnCIter>;
    //@}

    //@{
    /// Iterator over all leaf nodes in this tree
    using LeafIter = LeafIteratorBase<Tree, typename RootNodeType::ChildOnIter>;
    using LeafCIter = LeafIteratorBase<const Tree, typename RootNodeType::ChildOnCIter>;
    //@}

    //@{
    /// Return an iterator over all nodes in this tree.
    NodeIter   beginNode() { return NodeIter(*this); }
    NodeCIter  beginNode() const { return NodeCIter(*this); }
    NodeCIter cbeginNode() const { return NodeCIter(*this); }
    //@}

    //@{
    /// Return an iterator over all leaf nodes in this tree.
    LeafIter   beginLeaf() { return LeafIter(*this); }
    LeafCIter  beginLeaf() const { return LeafCIter(*this); }
    LeafCIter cbeginLeaf() const { return LeafCIter(*this); }
    //@}

    using ValueAllIter = TreeValueIteratorBase<Tree, typename RootNodeType::ValueAllIter>;
    using ValueAllCIter = TreeValueIteratorBase<const Tree, typename RootNodeType::ValueAllCIter>;
    using ValueOnIter = TreeValueIteratorBase<Tree, typename RootNodeType::ValueOnIter>;
    using ValueOnCIter = TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOnCIter>;
    using ValueOffIter = TreeValueIteratorBase<Tree, typename RootNodeType::ValueOffIter>;
    using ValueOffCIter = TreeValueIteratorBase<const Tree, typename RootNodeType::ValueOffCIter>;

    //@{
    /// Return an iterator over all values (tile and voxel) across all nodes.
    ValueAllIter   beginValueAll() { return ValueAllIter(*this); }
    ValueAllCIter  beginValueAll() const { return ValueAllCIter(*this); }
    ValueAllCIter cbeginValueAll() const { return ValueAllCIter(*this); }
    //@}
    //@{
    /// Return an iterator over active values (tile and voxel) across all nodes.
    ValueOnIter   beginValueOn() { return ValueOnIter(*this); }
    ValueOnCIter  beginValueOn() const { return ValueOnCIter(*this); }
    ValueOnCIter cbeginValueOn() const { return ValueOnCIter(*this); }
    //@}
    //@{
    /// Return an iterator over inactive values (tile and voxel) across all nodes.
    ValueOffIter   beginValueOff() { return ValueOffIter(*this); }
    ValueOffCIter  beginValueOff() const { return ValueOffCIter(*this); }
    ValueOffCIter cbeginValueOff() const { return ValueOffCIter(*this); }
    //@}

    /// @brief Return an iterator of type @c IterT (for example, begin<ValueOnIter>() is
    /// equivalent to beginValueOn()).
    template<typename IterT> IterT begin();
    /// @brief Return a const iterator of type CIterT (for example, cbegin<ValueOnCIter>()
    /// is equivalent to cbeginValueOn()).
    template<typename CIterT> CIterT cbegin() const;


protected:
    using AccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<Tree, true>*, bool>;
    using ConstAccessorRegistry = tbb::concurrent_hash_map<ValueAccessorBase<const Tree, true>*, bool>;

    /// @brief Notify all registered accessors, by calling ValueAccessor::release(),
    /// that this tree is about to be deleted.
    void releaseAllAccessors();

    // TBB body object used to deallocates nodes in parallel.
    template<typename NodeType>
    struct DeallocateNodes {
        DeallocateNodes(std::vector<NodeType*>& nodes)
            : mNodes(nodes.empty() ? nullptr : &nodes.front()) { }
        void operator()(const tbb::blocked_range<size_t>& range) const {
            for (size_t n = range.begin(), N = range.end(); n < N; ++n) {
                delete mNodes[n]; mNodes[n] = nullptr;
            }
        }
        NodeType ** const mNodes;
    };

    //
    // Data members
    //
    RootNodeType mRoot; // root node of the tree
    mutable AccessorRegistry mAccessorRegistry;
    mutable ConstAccessorRegistry mConstAccessorRegistry;

    static tbb::atomic<const Name*> sTreeTypeName;
}; // end of Tree class

template<typename _RootNodeType>
tbb::atomic<const Name*> Tree<_RootNodeType>::sTreeTypeName;


/// @brief Tree3<T, N1, N2>::Type is the type of a three-level tree
/// (Root, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1 and N2, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=4, Index N2=3>
struct Tree3 {
    using Type = Tree<RootNode<InternalNode<LeafNode<T, N2>, N1>>>;
};


/// @brief Tree4<T, N1, N2, N3>::Type is the type of a four-level tree
/// (Root, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2 and N3, respectively.
/// @note This is the standard tree configuration.
template<typename T, Index N1=5, Index N2=4, Index N3=3>
struct Tree4 {
    using Type = Tree<RootNode<InternalNode<InternalNode<LeafNode<T, N3>, N2>, N1>>>;
};

/// @brief Tree5<T, N1, N2, N3, N4>::Type is the type of a five-level tree
/// (Root, Internal, Internal, Internal, Leaf) with value type T and
/// internal and leaf node log dimensions N1, N2, N3 and N4, respectively.
/// @note This is NOT the standard tree configuration (Tree4 is).
template<typename T, Index N1=6, Index N2=5, Index N3=4, Index N4=3>
struct Tree5 {
    using Type =
        Tree<RootNode<InternalNode<InternalNode<InternalNode<LeafNode<T, N4>, N3>, N2>, N1>>>;
};


////////////////////////////////////////


inline void
TreeBase::readTopology(std::istream& is, bool /*saveFloatAsHalf*/)
{
    int32_t bufferCount;
    is.read(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
    if (bufferCount != 1) OPENVDB_LOG_WARN("multi-buffer trees are no longer supported");
}


inline void
TreeBase::writeTopology(std::ostream& os, bool /*saveFloatAsHalf*/) const
{
    int32_t bufferCount = 1;
    os.write(reinterpret_cast<char*>(&bufferCount), sizeof(int32_t));
}


inline void
TreeBase::print(std::ostream& os, int /*verboseLevel*/) const
{
    os << "    Tree Type: " << type()
       << "    Active Voxel Count: " << activeVoxelCount() << std::endl
#if OPENVDB_ABI_VERSION_NUMBER >= 3
       << "    Active tile Count: " << activeTileCount() << std::endl
#endif
       << "    Inactive Voxel Count: " << inactiveVoxelCount() << std::endl
       << "    Leaf Node Count: " << leafCount() << std::endl
       << "    Non-leaf Node Count: " << nonLeafCount() << std::endl;
}


////////////////////////////////////////


//
// Type traits for tree iterators
//

/// @brief TreeIterTraits provides, for all tree iterators, a begin(tree) function
/// that returns an iterator over a tree of arbitrary type.
template<typename TreeT, typename IterT> struct TreeIterTraits;

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnIter> {
    static typename TreeT::RootNodeType::ChildOnIter begin(TreeT& tree) {
        return tree.beginRootChildren();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOnCIter> {
    static typename TreeT::RootNodeType::ChildOnCIter begin(const TreeT& tree) {
        return tree.cbeginRootChildren();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffIter> {
    static typename TreeT::RootNodeType::ChildOffIter begin(TreeT& tree) {
        return tree.beginRootTiles();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildOffCIter> {
    static typename TreeT::RootNodeType::ChildOffCIter begin(const TreeT& tree) {
        return tree.cbeginRootTiles();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllIter> {
    static typename TreeT::RootNodeType::ChildAllIter begin(TreeT& tree) {
        return tree.beginRootDense();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::RootNodeType::ChildAllCIter> {
    static typename TreeT::RootNodeType::ChildAllCIter begin(const TreeT& tree) {
        return tree.cbeginRootDense();
    }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeIter> {
    static typename TreeT::NodeIter begin(TreeT& tree) { return tree.beginNode(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::NodeCIter> {
    static typename TreeT::NodeCIter begin(const TreeT& tree) { return tree.cbeginNode(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafIter> {
    static typename TreeT::LeafIter begin(TreeT& tree) { return tree.beginLeaf(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::LeafCIter> {
    static typename TreeT::LeafCIter begin(const TreeT& tree) { return tree.cbeginLeaf(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnIter> {
    static typename TreeT::ValueOnIter begin(TreeT& tree) { return tree.beginValueOn(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOnCIter> {
    static typename TreeT::ValueOnCIter begin(const TreeT& tree) { return tree.cbeginValueOn(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffIter> {
    static typename TreeT::ValueOffIter begin(TreeT& tree) { return tree.beginValueOff(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueOffCIter> {
    static typename TreeT::ValueOffCIter begin(const TreeT& tree) { return tree.cbeginValueOff(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllIter> {
    static typename TreeT::ValueAllIter begin(TreeT& tree) { return tree.beginValueAll(); }
};

template<typename TreeT> struct TreeIterTraits<TreeT, typename TreeT::ValueAllCIter> {
    static typename TreeT::ValueAllCIter begin(const TreeT& tree) { return tree.cbeginValueAll(); }
};


template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::begin()
{
    return TreeIterTraits<Tree, IterT>::begin(*this);
}


template<typename RootNodeType>
template<typename IterT>
inline IterT
Tree<RootNodeType>::cbegin() const
{
    return TreeIterTraits<Tree, IterT>::begin(*this);
}


////////////////////////////////////////


template<typename RootNodeType>
void
Tree<RootNodeType>::readTopology(std::istream& is, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    TreeBase::readTopology(is, saveFloatAsHalf);
    mRoot.readTopology(is, saveFloatAsHalf);
}


template<typename RootNodeType>
void
Tree<RootNodeType>::writeTopology(std::ostream& os, bool saveFloatAsHalf) const
{
    TreeBase::writeTopology(os, saveFloatAsHalf);
    mRoot.writeTopology(os, saveFloatAsHalf);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    mRoot.readBuffers(is, saveFloatAsHalf);
}


#if OPENVDB_ABI_VERSION_NUMBER >= 3

template<typename RootNodeType>
inline void
Tree<RootNodeType>::readBuffers(std::istream &is, const CoordBBox& bbox, bool saveFloatAsHalf)
{
    this->clearAllAccessors();
    mRoot.readBuffers(is, bbox, saveFloatAsHalf);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::readNonresidentBuffers() const
{
    for (LeafCIter it = this->cbeginLeaf(); it; ++it) {
        // Retrieving the value of a leaf voxel forces loading of the leaf node's voxel buffer.
        it->getValue(Index(0));
    }
}

#endif


template<typename RootNodeType>
inline void
Tree<RootNodeType>::writeBuffers(std::ostream &os, bool saveFloatAsHalf) const
{
    mRoot.writeBuffers(os, saveFloatAsHalf);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::clear()
{
    std::vector<LeafNodeType*> leafnodes;
    this->stealNodes(leafnodes);

    tbb::parallel_for(tbb::blocked_range<size_t>(0, leafnodes.size()),
        DeallocateNodes<LeafNodeType>(leafnodes));

    std::vector<typename RootNodeType::ChildNodeType*> internalNodes;
    this->stealNodes(internalNodes);

    tbb::parallel_for(tbb::blocked_range<size_t>(0, internalNodes.size()),
        DeallocateNodes<typename RootNodeType::ChildNodeType>(internalNodes));

    mRoot.clear();

    this->clearAllAccessors();
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
    typename AccessorRegistry::accessor a;
    mAccessorRegistry.insert(a, &accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::attachAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
    typename ConstAccessorRegistry::accessor a;
    mConstAccessorRegistry.insert(a, &accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<Tree, true>& accessor) const
{
    mAccessorRegistry.erase(&accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAccessor(ValueAccessorBase<const Tree, true>& accessor) const
{
    mConstAccessorRegistry.erase(&accessor);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::clearAllAccessors()
{
    for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
        it != mAccessorRegistry.end(); ++it)
    {
        if (it->first) it->first->clear();
    }

    for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
        it != mConstAccessorRegistry.end(); ++it)
    {
        if (it->first) it->first->clear();
    }
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::releaseAllAccessors()
{
    mAccessorRegistry.erase(nullptr);
    for (typename AccessorRegistry::iterator it = mAccessorRegistry.begin();
        it != mAccessorRegistry.end(); ++it)
    {
        it->first->release();
    }
    mAccessorRegistry.clear();

    mAccessorRegistry.erase(nullptr);
    for (typename ConstAccessorRegistry::iterator it = mConstAccessorRegistry.begin();
        it != mConstAccessorRegistry.end(); ++it)
    {
        it->first->release();
    }
    mConstAccessorRegistry.clear();
}


////////////////////////////////////////


template<typename RootNodeType>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz) const
{
    return mRoot.getValue(xyz);
}


template<typename RootNodeType>
template<typename AccessT>
inline const typename RootNodeType::ValueType&
Tree<RootNodeType>::getValue(const Coord& xyz, AccessT& accessor) const
{
    return accessor.getValue(xyz);
}


template<typename RootNodeType>
inline int
Tree<RootNodeType>::getValueDepth(const Coord& xyz) const
{
    return mRoot.getValueDepth(xyz);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz)
{
    mRoot.setValueOff(xyz);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOff(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOff(xyz, value);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setActiveState(const Coord& xyz, bool on)
{
    mRoot.setActiveState(xyz, on);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOn(xyz, value);
}

template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOnly(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOnly(xyz, value);
}

template<typename RootNodeType>
template<typename AccessT>
inline void
Tree<RootNodeType>::setValue(const Coord& xyz, const ValueType& value, AccessT& accessor)
{
    accessor.setValue(xyz, value);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz)
{
    mRoot.setActiveState(xyz, true);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::setValueOn(const Coord& xyz, const ValueType& value)
{
    mRoot.setValueOn(xyz, value);
}


template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValue(const Coord& xyz, const ModifyOp& op)
{
    mRoot.modifyValue(xyz, op);
}


template<typename RootNodeType>
template<typename ModifyOp>
inline void
Tree<RootNodeType>::modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
    mRoot.modifyValueAndActiveState(xyz, op);
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::probeValue(const Coord& xyz, ValueType& value) const
{
    return mRoot.probeValue(xyz, value);
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::addTile(Index level, const Coord& xyz,
                            const ValueType& value, bool active)
{
    mRoot.addTile(level, xyz, value, active);
}


template<typename RootNodeType>
template<typename NodeT>
inline NodeT*
Tree<RootNodeType>::stealNode(const Coord& xyz, const ValueType& value, bool active)
{
    this->clearAllAccessors();
    return mRoot.template stealNode<NodeT>(xyz, value, active);
}


template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::touchLeaf(const Coord& xyz)
{
    return mRoot.touchLeaf(xyz);
}


template<typename RootNodeType>
inline typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeLeaf(const Coord& xyz)
{
    return mRoot.probeLeaf(xyz);
}


template<typename RootNodeType>
inline const typename RootNodeType::LeafNodeType*
Tree<RootNodeType>::probeConstLeaf(const Coord& xyz) const
{
    return mRoot.probeConstLeaf(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz)
{
    return mRoot.template probeNode<NodeType>(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeNode(const Coord& xyz) const
{
    return this->template probeConstNode<NodeType>(xyz);
}


template<typename RootNodeType>
template<typename NodeType>
inline const NodeType*
Tree<RootNodeType>::probeConstNode(const Coord& xyz) const
{
    return mRoot.template probeConstNode<NodeType>(xyz);
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::clip(const CoordBBox& bbox)
{
    this->clearAllAccessors();
    return mRoot.clip(bbox);
}


#if OPENVDB_ABI_VERSION_NUMBER >= 3
template<typename RootNodeType>
inline void
Tree<RootNodeType>::clipUnallocatedNodes()
{
    this->clearAllAccessors();
    for (LeafIter it = this->beginLeaf(); it; ) {
        const LeafNodeType* leaf = it.getLeaf();
        ++it; // advance the iterator before deleting the leaf node
        if (!leaf->isAllocated()) {
            this->addTile(/*level=*/0, leaf->origin(), this->background(), /*active=*/false);
        }
    }
}
#endif

#if OPENVDB_ABI_VERSION_NUMBER >= 4
template<typename RootNodeType>
inline Index32
Tree<RootNodeType>::unallocatedLeafCount() const
{
    Index32 sum = 0;
    for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
    return sum;
}
#endif


template<typename RootNodeType>
inline void
Tree<RootNodeType>::sparseFill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    this->clearAllAccessors();
    return mRoot.sparseFill(bbox, value, active);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::denseFill(const CoordBBox& bbox, const ValueType& value, bool active)
{
    this->clearAllAccessors();
    return mRoot.denseFill(bbox, value, active);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::voxelizeActiveTiles(bool threaded)
{
    this->clearAllAccessors();
    mRoot.voxelizeActiveTiles(threaded);
}


template<typename RootNodeType>
Metadata::Ptr
Tree<RootNodeType>::getBackgroundValue() const
{
    Metadata::Ptr result;
    if (Metadata::isRegisteredType(valueType())) {
        using MetadataT = TypedMetadata<ValueType>;
        result = Metadata::createMetadata(valueType());
        if (result->typeName() == MetadataT::staticTypeName()) {
            MetadataT* m = static_cast<MetadataT*>(result.get());
            m->value() = mRoot.background();
        }
    }
    return result;
}


////////////////////////////////////////


template<typename RootNodeType>
inline void
Tree<RootNodeType>::merge(Tree& other, MergePolicy policy)
{
    this->clearAllAccessors();
    other.clearAllAccessors();
    switch (policy) {
        case MERGE_ACTIVE_STATES:
            mRoot.template merge<MERGE_ACTIVE_STATES>(other.mRoot); break;
        case MERGE_NODES:
            mRoot.template merge<MERGE_NODES>(other.mRoot); break;
        case MERGE_ACTIVE_STATES_AND_NODES:
            mRoot.template merge<MERGE_ACTIVE_STATES_AND_NODES>(other.mRoot); break;
    }
}


template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyUnion(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyUnion(other.root());
}

template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyIntersection(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyIntersection(other.root());
}

template<typename RootNodeType>
template<typename OtherRootNodeType>
inline void
Tree<RootNodeType>::topologyDifference(const Tree<OtherRootNodeType>& other)
{
    this->clearAllAccessors();
    mRoot.topologyDifference(other.root());
}

////////////////////////////////////////


/// @brief Helper class to adapt a three-argument (a, b, result) CombineOp functor
/// into a single-argument functor that accepts a CombineArgs struct
template<typename AValueT, typename CombineOp, typename BValueT = AValueT>
struct CombineOpAdapter
{
    CombineOpAdapter(CombineOp& _op): op(_op) {}

    void operator()(CombineArgs<AValueT, BValueT>& args) const {
        op(args.a(), args.b(), args.result());
    }

    CombineOp& op;
};


template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, CombineOp> extendedOp(op);
    this->combineExtended(other, extendedOp, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combine(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp>
inline void
Tree<RootNodeType>::combine(Tree& other, const CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, const CombineOp> extendedOp(op);
    this->combineExtended(other, extendedOp, prune);
}
#endif


template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.combine(other.root(), op, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.combineExtended(bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp>
inline void
Tree<RootNodeType>::combineExtended(Tree& other, const ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.template combine<const ExtendedCombineOp>(other.mRoot, op, prune);
}
#endif


template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
    this->combine2Extended(a, b, extendedOp, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.combine2(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename CombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2(const Tree& a, const OtherTreeType& b, const CombineOp& op, bool prune)
{
    CombineOpAdapter<ValueType, const CombineOp, typename OtherTreeType::ValueType> extendedOp(op);
    this->combine2Extended(a, b, extendedOp, prune);
}
#endif


template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
    ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.combine2(a.root(), b.root(), op, prune);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like the following, where the functor argument is a temporary:
/// <tt>tree.combine2Extended(aTree, bTree, MyCombineOp(...))</tt>.
#ifndef _MSC_VER
template<typename RootNodeType>
template<typename ExtendedCombineOp, typename OtherTreeType>
inline void
Tree<RootNodeType>::combine2Extended(const Tree& a, const OtherTreeType& b,
    const ExtendedCombineOp& op, bool prune)
{
    this->clearAllAccessors();
    mRoot.template combine2<const ExtendedCombineOp>(a.root(), b.root(), op, prune);
}
#endif


////////////////////////////////////////


template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op)
{
    this->clearAllAccessors();
    mRoot.template visit<VisitorOp>(op);
}


template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(VisitorOp& op) const
{
    mRoot.template visit<VisitorOp>(op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op)
{
    this->clearAllAccessors();
    mRoot.template visit<const VisitorOp>(op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>tree.visit(MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename VisitorOp>
inline void
Tree<RootNodeType>::visit(const VisitorOp& op) const
{
    mRoot.template visit<const VisitorOp>(op);
}


////////////////////////////////////////


template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op)
{
    this->clearAllAccessors();
    using OtherRootNodeType = typename OtherTreeType::RootNodeType;
    mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}


template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, VisitorOp& op) const
{
    using OtherRootNodeType = typename OtherTreeType::RootNodeType;
    mRoot.template visit2<OtherRootNodeType, VisitorOp>(other.root(), op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op)
{
    this->clearAllAccessors();
    using OtherRootNodeType = typename OtherTreeType::RootNodeType;
    mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}


/// @internal This overload is needed (for ICC and GCC, but not for VC) to disambiguate
/// code like this: <tt>aTree.visit2(bTree, MyVisitorOp(...))</tt>.
template<typename RootNodeType>
template<typename OtherTreeType, typename VisitorOp>
inline void
Tree<RootNodeType>::visit2(OtherTreeType& other, const VisitorOp& op) const
{
    using OtherRootNodeType = typename OtherTreeType::RootNodeType;
    mRoot.template visit2<OtherRootNodeType, const VisitorOp>(other.root(), op);
}


////////////////////////////////////////


template<typename RootNodeType>
inline const Name&
Tree<RootNodeType>::treeType()
{
    if (sTreeTypeName == nullptr) {
        std::vector<Index> dims;
        Tree::getNodeLog2Dims(dims);
        std::ostringstream ostr;
        ostr << "Tree_" << typeNameAsString<BuildType>();
        for (size_t i = 1, N = dims.size(); i < N; ++i) { // start from 1 to skip the RootNode
            ostr << "_" << dims[i];
        }
        Name* s = new Name(ostr.str());
        if (sTreeTypeName.compare_and_swap(s, nullptr) != nullptr) delete s;
    }
    return *sTreeTypeName;
}


template<typename RootNodeType>
template<typename OtherRootNodeType>
inline bool
Tree<RootNodeType>::hasSameTopology(const Tree<OtherRootNodeType>& other) const
{
    return mRoot.hasSameTopology(other.root());
}


template<typename RootNodeType>
Index64
Tree<RootNodeType>::inactiveVoxelCount() const
{
    Coord dim(0, 0, 0);
    this->evalActiveVoxelDim(dim);
    const Index64
        totalVoxels = dim.x() * dim.y() * dim.z(),
        activeVoxels = this->activeVoxelCount();
    assert(totalVoxels >= activeVoxels);
    return totalVoxels - activeVoxels;
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafBoundingBox(CoordBBox& bbox) const
{
    bbox.reset(); // default invalid bbox

    if (this->empty()) return false;  // empty

    mRoot.evalActiveBoundingBox(bbox, false);

    return true;// not empty
}

template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelBoundingBox(CoordBBox& bbox) const
{
    bbox.reset(); // default invalid bbox

    if (this->empty()) return false;  // empty

    mRoot.evalActiveBoundingBox(bbox, true);

    return true;// not empty
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalActiveVoxelDim(Coord& dim) const
{
    CoordBBox bbox;
    bool notEmpty = this->evalActiveVoxelBoundingBox(bbox);
    dim = bbox.extents();
    return notEmpty;
}


template<typename RootNodeType>
inline bool
Tree<RootNodeType>::evalLeafDim(Coord& dim) const
{
    CoordBBox bbox;
    bool notEmpty = this->evalLeafBoundingBox(bbox);
    dim = bbox.extents();
    return notEmpty;
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::evalMinMax(ValueType& minVal, ValueType& maxVal) const
{
    /// @todo optimize
    minVal = maxVal = zeroVal<ValueType>();
    if (ValueOnCIter iter = this->cbeginValueOn()) {
        minVal = maxVal = *iter;
        for (++iter; iter; ++iter) {
            const ValueType& val = *iter;
            if (val < minVal) minVal = val;
            if (val > maxVal) maxVal = val;
        }
    }
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::getNodeLog2Dims(std::vector<Index>& dims)
{
    dims.clear();
    RootNodeType::getNodeLog2Dims(dims);
}


template<typename RootNodeType>
inline void
Tree<RootNodeType>::print(std::ostream& os, int verboseLevel) const
{
    if (verboseLevel <= 0) return;

    /// @todo Consider using boost::io::ios_precision_saver instead.
    struct OnExit {
        std::ostream& os;
        std::streamsize savedPrecision;
        OnExit(std::ostream& _os): os(_os), savedPrecision(os.precision()) {}
        ~OnExit() { os.precision(savedPrecision); }
    };
    OnExit restorePrecision(os);

    std::vector<Index> dims;
    Tree::getNodeLog2Dims(dims);

    os << "Information about Tree:\n"
        << "  Type: " << this->type() << "\n";

    os << "  Configuration:\n";

    if (verboseLevel <= 1) {
        // Print node types and sizes.
        os << "    Root(" << mRoot.getTableSize() << ")";
        if (dims.size() > 1) {
            for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
                os << ", Internal(" << (1 << dims[i]) << "^3)";
            }
            os << ", Leaf(" << (1 << *dims.rbegin()) << "^3)\n";
        }
        os << "  Background value: " << mRoot.background() << "\n";
        return;
    }

    // The following is tree information that is expensive to extract.

    ValueType minVal = zeroVal<ValueType>(), maxVal = zeroVal<ValueType>();
    if (verboseLevel > 3) {
        // This forces loading of all non-resident nodes.
        this->evalMinMax(minVal, maxVal);
    }

    std::vector<Index64> nodeCount(dims.size());
    for (NodeCIter it = cbeginNode(); it; ++it) ++(nodeCount[it.getDepth()]);

    Index64 totalNodeCount = 0;
    for (size_t i = 0; i < nodeCount.size(); ++i) totalNodeCount += nodeCount[i];

    // Print node types, counts and sizes.
    os << "    Root(1 x " << mRoot.getTableSize() << ")";
    if (dims.size() > 1) {
        for (size_t i = 1, N = dims.size() - 1; i < N; ++i) {
            os << ", Internal(" << util::formattedInt(nodeCount[i]);
            os << " x " << (1 << dims[i]) << "^3)";
        }
        os << ", Leaf(" << util::formattedInt(*nodeCount.rbegin());
        os << " x " << (1 << *dims.rbegin()) << "^3)\n";
    }
    os << "  Background value: " << mRoot.background() << "\n";

    // Statistics of topology and values

    if (verboseLevel > 3) {
        os << "  Min value: " << minVal << "\n";
        os << "  Max value: " << maxVal << "\n";
    }

    const Index64
        leafCount = *nodeCount.rbegin(),
        numActiveVoxels = this->activeVoxelCount(),
        numActiveLeafVoxels = this->activeLeafVoxelCount(),
        numActiveTiles = this->activeTileCount();

    os << "  Number of active voxels:       " << util::formattedInt(numActiveVoxels) << "\n";
    os << "  Number of active tiles:        " << util::formattedInt(numActiveTiles) << "\n";

    Coord dim(0, 0, 0);
    Index64 totalVoxels = 0;
    if (numActiveVoxels) { // nonempty
        CoordBBox bbox;
        this->evalActiveVoxelBoundingBox(bbox);
        dim = bbox.extents();
        totalVoxels = dim.x() * uint64_t(dim.y()) * dim.z();

        os << "  Bounding box of active voxels: " << bbox << "\n";
        os << "  Dimensions of active voxels:   "
            << dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";

        const double activeRatio = (100.0 * double(numActiveVoxels)) / double(totalVoxels);
        os << "  Percentage of active voxels:   " << std::setprecision(3) << activeRatio << "%\n";

        if (leafCount > 0) {
            const double fillRatio = (100.0 * double(numActiveLeafVoxels))
                / (double(leafCount) * double(LeafNodeType::NUM_VOXELS));
            os << "  Average leaf node fill ratio:  " << fillRatio << "%\n";
        }

#if OPENVDB_ABI_VERSION_NUMBER >= 3
        if (verboseLevel > 2) {
            Index64 sum = 0;// count the number of unallocated leaf nodes
            for (auto it = this->cbeginLeaf(); it; ++it) if (!it->isAllocated()) ++sum;
            os << "  Number of unallocated nodes:   "
               << util::formattedInt(sum) << " ("
               << (100.0 * double(sum) / double(totalNodeCount)) << "%)\n";
        }
#endif
    } else {
        os << "  Tree is empty!\n";
    }
    os << std::flush;

    if (verboseLevel == 2) return;

    // Memory footprint in bytes
    const Index64
        actualMem = this->memUsage(),
        denseMem = sizeof(ValueType) * totalVoxels,
        voxelsMem = sizeof(ValueType) * numActiveLeafVoxels;
            ///< @todo not accurate for BoolTree (and probably should count tile values)

    os << "Memory footprint:\n";
    util::printBytes(os, actualMem, "  Actual:             ");
    util::printBytes(os, voxelsMem, "  Active leaf voxels: ");

    if (numActiveVoxels) {
        util::printBytes(os, denseMem, "  Dense equivalent:   ");
        os << "  Actual footprint is " << (100.0 * double(actualMem) / double(denseMem))
            << "% of an equivalent dense volume\n";
        os << "  Leaf voxel footprint is " << (100.0 * double(voxelsMem) / double(actualMem))
           << "% of actual footprint\n";
    }
}

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TREE_TREE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )