File: TreeIterator.h

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (1417 lines) | stat: -rw-r--r-- 53,438 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file tree/TreeIterator.h

#ifndef OPENVDB_TREE_TREEITERATOR_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_TREEITERATOR_HAS_BEEN_INCLUDED

#include <boost/mpl/front.hpp>
#include <boost/mpl/pop_front.hpp>
#include <boost/mpl/push_back.hpp>
#include <boost/mpl/size.hpp>
#include <boost/mpl/vector.hpp>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <openvdb/version.h>
#include <openvdb/Types.h>
#include <algorithm>
#include <sstream>
#include <string>
#include <type_traits>

// Prior to 0.96.1, depth-bounded value iterators always descended to the leaf level
// and iterated past leaf nodes.  Now, they never descend past the maximum depth.
// Comment out the following line to restore the older, less-efficient behavior:
#define ENABLE_TREE_VALUE_DEPTH_BOUND_OPTIMIZATION


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {

/// CopyConstness<T1, T2>::Type is either const T2 or T2 with no const qualifier,
/// depending on whether T1 is const.  For example,
/// - CopyConstness<int, int>::Type is int
/// - CopyConstness<int, const int>::Type is int
/// - CopyConstness<const int, int>::Type is const int
/// - CopyConstness<const int, const int>::Type is const int
template<typename FromType, typename ToType> struct CopyConstness {
    using Type = typename std::remove_const<ToType>::type;
};
template<typename FromType, typename ToType> struct CopyConstness<const FromType, ToType> {
    using Type = const ToType;
};


////////////////////////////////////////


namespace iter {

template<typename HeadT, int HeadLevel>
struct InvertedTree {
    using SubtreeT = typename InvertedTree<typename HeadT::ChildNodeType, HeadLevel-1>::Type;
    using Type = typename boost::mpl::push_back<SubtreeT, HeadT>::type;
};
template<typename HeadT>
struct InvertedTree<HeadT, /*HeadLevel=*/1> {
    using Type = typename boost::mpl::vector<typename HeadT::ChildNodeType, HeadT>::type;
};

} // namespace iter


////////////////////////////////////////


/// IterTraits provides the following for iterators of the standard types,
/// i.e., for {Child,Value}{On,Off,All}{Iter,CIter}:
/// - a NodeConverter template to convert an iterator for one type of node
///   to an iterator of the same type for another type of node; for example,
///   IterTraits<RootNode, RootNode::ValueOnIter>::NodeConverter<LeafNode>::Type
///   is synonymous with LeafNode::ValueOnIter.
/// - a begin(node) function that returns a begin iterator for a node of arbitrary type;
///   for example, IterTraits<LeafNode, LeafNode::ValueOnIter>::begin(leaf) returns
///   leaf.beginValueOn()
/// - a getChild() function that returns a pointer to the child node to which the iterator
///   is currently pointing (always null if the iterator is a Value iterator)
template<typename NodeT, typename IterT>
struct IterTraits
{
    template<typename ChildT> static ChildT* getChild(const IterT&) { return nullptr; }
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildOnIter>
{
    using IterT = typename NodeT::ChildOnIter;
    static IterT begin(NodeT& node) { return node.beginChildOn(); }
    template<typename ChildT> static ChildT* getChild(const IterT& iter) {
        return &iter.getValue();
    }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildOnIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildOnCIter>
{
    using IterT = typename NodeT::ChildOnCIter;
    static IterT begin(const NodeT& node) { return node.cbeginChildOn(); }
    template<typename ChildT> static const ChildT* getChild(const IterT& iter) {
        return &iter.getValue();
    }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildOnCIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildOffIter>
{
    using IterT = typename NodeT::ChildOffIter;
    static IterT begin(NodeT& node) { return node.beginChildOff(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildOffIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildOffCIter>
{
    using IterT = typename NodeT::ChildOffCIter;
    static IterT begin(const NodeT& node) { return node.cbeginChildOff(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildOffCIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildAllIter>
{
    using IterT = typename NodeT::ChildAllIter;
    static IterT begin(NodeT& node) { return node.beginChildAll(); }
    template<typename ChildT> static ChildT* getChild(const IterT& iter) {
        typename IterT::NonConstValueType val;
        return iter.probeChild(val);
    }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildAllIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ChildAllCIter>
{
    using IterT = typename NodeT::ChildAllCIter;
    static IterT begin(const NodeT& node) { return node.cbeginChildAll(); }
    template<typename ChildT> static ChildT* getChild(const IterT& iter) {
        typename IterT::NonConstValueType val;
        return iter.probeChild(val);
    }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ChildAllCIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueOnIter>
{
    using IterT = typename NodeT::ValueOnIter;
    static IterT begin(NodeT& node) { return node.beginValueOn(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueOnIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueOnCIter>
{
    using IterT = typename NodeT::ValueOnCIter;
    static IterT begin(const NodeT& node) { return node.cbeginValueOn(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueOnCIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueOffIter>
{
    using IterT = typename NodeT::ValueOffIter;
    static IterT begin(NodeT& node) { return node.beginValueOff(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueOffIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueOffCIter>
{
    using IterT = typename NodeT::ValueOffCIter;
    static IterT begin(const NodeT& node) { return node.cbeginValueOff(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueOffCIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueAllIter>
{
    using IterT = typename NodeT::ValueAllIter;
    static IterT begin(NodeT& node) { return node.beginValueAll(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueAllIter;
    };
};

template<typename NodeT>
struct IterTraits<NodeT, typename NodeT::ValueAllCIter>
{
    using IterT = typename NodeT::ValueAllCIter;
    static IterT begin(const NodeT& node) { return node.cbeginValueAll(); }
    template<typename OtherNodeT> struct NodeConverter {
        using Type = typename OtherNodeT::ValueAllCIter;
    };
};


////////////////////////////////////////


/// @brief An IterListItem is an element of a compile-time linked list of iterators
/// to nodes of different types.
///
/// The list is constructed by traversing the template hierarchy of a Tree in reverse order,
/// so typically the elements will be a LeafNode iterator of some type (e.g., ValueOnCIter),
/// followed by one or more InternalNode iterators of the same type, followed by a RootNode
/// iterator of the same type.
///
/// The length of the list is fixed at compile time, and because it is implemented using
/// nested, templated classes, much of the list traversal logic can be optimized away.
template<typename PrevItemT, typename NodeVecT, size_t VecSize, Index _Level>
class IterListItem
{
public:
    /// The type of iterator stored in the previous list item
    using PrevIterT = typename PrevItemT::IterT;
    /// The type of node (non-const) whose iterator is stored in this list item
    using _NodeT = typename boost::mpl::front<NodeVecT>::type;
    /// The type of iterator stored in this list item (e.g., InternalNode::ValueOnCIter)
    using IterT = typename IterTraits<typename PrevIterT::NonConstNodeType, PrevIterT>::template
        NodeConverter<_NodeT>::Type;

    /// The type of node (const or non-const) over which IterT iterates (e.g., const RootNode<...>)
    using NodeT = typename IterT::NodeType;
    /// The type of the node with const qualifiers removed ("Non-Const")
    using NCNodeT = typename IterT::NonConstNodeType;
    /// The type of value (with const qualifiers removed) to which the iterator points
    using NCValueT = typename IterT::NonConstValueType;
    /// NodeT's child node type, with the same constness (e.g., const InternalNode<...>)
    using ChildT = typename CopyConstness<NodeT, typename NodeT::ChildNodeType>::Type;
    /// NodeT's child node type with const qualifiers removed
    using NCChildT = typename CopyConstness<NCNodeT, typename NCNodeT::ChildNodeType>::Type;
    using ITraits = IterTraits<NCNodeT, IterT>;
    /// NodeT's level in its tree (0 = LeafNode)
    static const Index Level = _Level;

    IterListItem(PrevItemT* prev): mNext(this), mPrev(prev) {}

    IterListItem(const IterListItem& other):
        mIter(other.mIter), mNext(other.mNext), mPrev(nullptr) {}
    IterListItem& operator=(const IterListItem& other)
    {
        if (&other != this) {
            mIter = other.mIter;
            mNext = other.mNext;
            mPrev = nullptr; ///< @note external call to updateBackPointers() required
        }
        return *this;
    }

    void updateBackPointers(PrevItemT* prev) { mPrev = prev; mNext.updateBackPointers(this); }

    void setIter(const IterT& iter) { mIter = iter; }
    template<typename OtherIterT>
    void setIter(const OtherIterT& iter) { mNext.setIter(iter); }

    /// Return the node over which this list element's iterator iterates.
    void getNode(Index lvl, NodeT*& node) const
    {
        node = (lvl <= Level) ? mIter.getParentNode() : nullptr;
    }
    /// Return the node over which one of the following list elements' iterator iterates.
    template<typename OtherNodeT>
    void getNode(Index lvl, OtherNodeT*& node) const { mNext.getNode(lvl, node); }

    /// @brief Initialize the iterator for level @a lvl of the tree with the node
    /// over which the corresponding iterator of @a otherListItem is iterating.
    ///
    /// For example, if @a otherListItem contains a LeafNode::ValueOnIter,
    /// initialize this list's leaf iterator with the same LeafNode.
    template<typename OtherIterListItemT>
    void initLevel(Index lvl, OtherIterListItemT& otherListItem)
    {
        if (lvl == Level) {
            const NodeT* node = nullptr;
            otherListItem.getNode(lvl, node);
            mIter = (node == nullptr) ? IterT() : ITraits::begin(*const_cast<NodeT*>(node));
        } else {
            // Forward to one of the following list elements.
            mNext.initLevel(lvl, otherListItem);
        }
    }

    /// Return The table offset of the iterator at level @a lvl of the tree.
    Index pos(Index lvl) const { return (lvl == Level) ? mIter.pos() : mNext.pos(lvl); }

    /// Return @c true if the iterator at level @a lvl of the tree has not yet reached its end.
    bool test(Index lvl) const { return (lvl == Level) ? mIter.test() : mNext.test(lvl); }

    /// Increment the iterator at level @a lvl of the tree.
    bool next(Index lvl) { return (lvl == Level) ? mIter.next() : mNext.next(lvl); }

    /// @brief If the iterator at level @a lvl of the tree points to a child node,
    /// initialize the next iterator in this list with that child node.
    bool down(Index lvl)
    {
        if (lvl == Level && mPrev != nullptr && mIter) {
            if (ChildT* child = ITraits::template getChild<ChildT>(mIter)) {
                mPrev->setIter(PrevItemT::ITraits::begin(*child));
                return true;
            }
        }
        return (lvl > Level) ? mNext.down(lvl) : false;
    }

    /// @brief Return the global coordinates of the voxel or tile to which the iterator
    /// at level @a lvl of the tree is currently pointing.
    Coord getCoord(Index lvl) const
    {
        return (lvl == Level) ? mIter.getCoord() : mNext.getCoord(lvl);
    }
    Index getChildDim(Index lvl) const
    {
        return (lvl == Level) ? NodeT::getChildDim() : mNext.getChildDim(lvl);
    }
    /// Return the number of (virtual) voxels spanned by a tile value or child node
    Index64 getVoxelCount(Index lvl) const
    {
        return (lvl == Level) ? ChildT::NUM_VOXELS : mNext.getVoxelCount(lvl);
    }

    /// Return @c true if the iterator at level @a lvl of the tree points to an active value.
    bool isValueOn(Index lvl) const
    {
        return (lvl == Level) ? mIter.isValueOn() : mNext.isValueOn(lvl);
    }

    /// Return the value to which the iterator at level @a lvl of the tree points.
    const NCValueT& getValue(Index lvl) const
    {
        if (lvl == Level) return mIter.getValue();
        return mNext.getValue(lvl);
    }

    /// @brief Set the value (to @a val) to which the iterator at level @a lvl
    /// of the tree points and mark the value as active.
    /// @note Not valid when @c IterT is a const iterator type
    void setValue(Index lvl, const NCValueT& val) const
    {
        if (lvl == Level) mIter.setValue(val); else mNext.setValue(lvl, val);
    }
    /// @brief Set the value (to @a val) to which the iterator at level @a lvl of the tree
    /// points and mark the value as active if @a on is @c true, or inactive otherwise.
    /// @note Not valid when @c IterT is a const iterator type
    void setValueOn(Index lvl, bool on = true) const
    {
        if (lvl == Level) mIter.setValueOn(on); else mNext.setValueOn(lvl, on);
    }
    /// @brief Mark the value to which the iterator at level @a lvl of the tree points
    /// as inactive.
    /// @note Not valid when @c IterT is a const iterator type
    void setValueOff(Index lvl) const
    {
        if (lvl == Level) mIter.setValueOff(); else mNext.setValueOff(lvl);
    }

    /// @brief Apply a functor to the item to which this iterator is pointing.
    /// @note Not valid when @c IterT is a const iterator type
    template<typename ModifyOp>
    void modifyValue(Index lvl, const ModifyOp& op) const
    {
        if (lvl == Level) mIter.modifyValue(op); else mNext.modifyValue(lvl, op);
    }

private:
    using RestT = typename boost::mpl::pop_front<NodeVecT>::type; // NodeVecT minus its first item
    using NextItem = IterListItem<IterListItem, RestT, VecSize - 1, Level + 1>;

    IterT mIter;
    NextItem mNext;
    PrevItemT* mPrev;
};


/// The initial element of a compile-time linked list of iterators to nodes of different types
template<typename PrevItemT, typename NodeVecT, size_t VecSize>
class IterListItem<PrevItemT, NodeVecT, VecSize, /*Level=*/0U>
{
public:
    /// The type of iterator stored in the previous list item
    using PrevIterT = typename PrevItemT::IterT;
    /// The type of node (non-const) whose iterator is stored in this list item
    using _NodeT = typename boost::mpl::front<NodeVecT>::type;
    /// The type of iterator stored in this list item (e.g., InternalNode::ValueOnCIter)
    using IterT = typename IterTraits<typename PrevIterT::NonConstNodeType, PrevIterT>::template
        NodeConverter<_NodeT>::Type;

    /// The type of node (const or non-const) over which IterT iterates (e.g., const RootNode<...>)
    using NodeT = typename IterT::NodeType;
    /// The type of the node with const qualifiers removed ("Non-Const")
    using NCNodeT = typename IterT::NonConstNodeType;
    /// The type of value (with const qualifiers removed) to which the iterator points
    using NCValueT = typename IterT::NonConstValueType;
    using ITraits = IterTraits<NCNodeT, IterT>;
    /// NodeT's level in its tree (0 = LeafNode)
    static const Index Level = 0;

    IterListItem(PrevItemT*): mNext(this), mPrev(nullptr) {}

    IterListItem(const IterListItem& other):
        mIter(other.mIter), mNext(other.mNext), mPrev(nullptr) {}
    IterListItem& operator=(const IterListItem& other)
    {
        if (&other != this) {
            mIter = other.mIter;
            mNext = other.mNext;
            mPrev = nullptr;
        }
        return *this;
    }

    void updateBackPointers(PrevItemT* = nullptr)
    {
        mPrev = nullptr; mNext.updateBackPointers(this);
    }

    void setIter(const IterT& iter) { mIter = iter; }
    template<typename OtherIterT>
    void setIter(const OtherIterT& iter) { mNext.setIter(iter); }

    void getNode(Index lvl, NodeT*& node) const
    {
        node = (lvl == 0) ? mIter.getParentNode() : nullptr;
    }
    template<typename OtherNodeT>
    void getNode(Index lvl, OtherNodeT*& node) const { mNext.getNode(lvl, node); }

    template<typename OtherIterListItemT>
    void initLevel(Index lvl, OtherIterListItemT& otherListItem)
    {
        if (lvl == 0) {
            const NodeT* node = nullptr;
            otherListItem.getNode(lvl, node);
            mIter = (node == nullptr) ? IterT() : ITraits::begin(*const_cast<NodeT*>(node));
        } else {
            mNext.initLevel(lvl, otherListItem);
        }
    }

    Index pos(Index lvl) const { return (lvl == 0) ? mIter.pos() : mNext.pos(lvl); }

    bool test(Index lvl) const { return (lvl == 0) ? mIter.test() : mNext.test(lvl); }

    bool next(Index lvl) { return (lvl == 0) ? mIter.next() : mNext.next(lvl); }

    bool down(Index lvl) { return (lvl == 0) ? false : mNext.down(lvl); }

    Coord getCoord(Index lvl) const
    {
        return (lvl == 0) ?  mIter.getCoord() : mNext.getCoord(lvl);
    }
    Index getChildDim(Index lvl) const
    {
        return (lvl == 0) ? NodeT::getChildDim() : mNext.getChildDim(lvl);
    }

    Index64 getVoxelCount(Index lvl) const
    {
        return (lvl == 0) ? 1 : mNext.getVoxelCount(lvl);
    }

    bool isValueOn(Index lvl) const
    {
        return (lvl == 0) ? mIter.isValueOn() : mNext.isValueOn(lvl);
    }

    const NCValueT& getValue(Index lvl) const
    {
        if (lvl == 0) return mIter.getValue();
        return mNext.getValue(lvl);
    }

    void setValue(Index lvl, const NCValueT& val) const
    {
        if (lvl == 0) mIter.setValue(val); else mNext.setValue(lvl, val);
    }
    void setValueOn(Index lvl, bool on = true) const
    {
        if (lvl == 0) mIter.setValueOn(on); else mNext.setValueOn(lvl, on);
    }
    void setValueOff(Index lvl) const
    {
        if (lvl == 0) mIter.setValueOff(); else mNext.setValueOff(lvl);
    }

    template<typename ModifyOp>
    void modifyValue(Index lvl, const ModifyOp& op) const
    {
        if (lvl == 0) mIter.modifyValue(op); else mNext.modifyValue(lvl, op);
    }

private:
    using RestT = typename boost::mpl::pop_front<NodeVecT>::type; // NodeVecT minus its first item
    using NextItem = IterListItem<IterListItem, RestT, VecSize - 1, /*Level=*/1>;

    IterT mIter;
    NextItem mNext;
    PrevItemT* mPrev;
};


/// The final element of a compile-time linked list of iterators to nodes of different types
template<typename PrevItemT, typename NodeVecT, Index _Level>
class IterListItem<PrevItemT, NodeVecT, /*VecSize=*/1, _Level>
{
public:
    using _NodeT = typename boost::mpl::front<NodeVecT>::type;
    /// The type of iterator stored in the previous list item
    using PrevIterT = typename PrevItemT::IterT;
    /// The type of iterator stored in this list item (e.g., RootNode::ValueOnCIter)
    using IterT = typename IterTraits<typename PrevIterT::NonConstNodeType, PrevIterT>::template
        NodeConverter<_NodeT>::Type;

    /// The type of node over which IterT iterates (e.g., const RootNode<...>)
    using NodeT = typename IterT::NodeType;
    /// The type of the node with const qualifiers removed ("Non-Const")
    using NCNodeT = typename IterT::NonConstNodeType;
    /// The type of value (with const qualifiers removed) to which the iterator points
    using NCValueT = typename IterT::NonConstValueType;
    /// NodeT's child node type, with the same constness (e.g., const InternalNode<...>)
    using ChildT = typename CopyConstness<NodeT, typename NodeT::ChildNodeType>::Type;
    /// NodeT's child node type with const qualifiers removed
    using NCChildT = typename CopyConstness<NCNodeT, typename NCNodeT::ChildNodeType>::Type;
    using ITraits = IterTraits<NCNodeT, IterT>;
    /// NodeT's level in its tree (0 = LeafNode)
    static const Index Level = _Level;

    IterListItem(PrevItemT* prev): mPrev(prev) {}

    IterListItem(const IterListItem& other): mIter(other.mIter), mPrev(nullptr) {}
    IterListItem& operator=(const IterListItem& other)
    {
        if (&other != this) {
            mIter = other.mIter;
            mPrev = nullptr; ///< @note external call to updateBackPointers() required
        }
        return *this;
    }

    void updateBackPointers(PrevItemT* prev) { mPrev = prev; }

    // The following method specializations differ from the default template
    // implementations mainly in that they don't forward.

    void setIter(const IterT& iter) { mIter = iter; }

    void getNode(Index lvl, NodeT*& node) const
    {
        node = (lvl <= Level) ? mIter.getParentNode() : nullptr;
    }

    template<typename OtherIterListItemT>
    void initLevel(Index lvl, OtherIterListItemT& otherListItem)
    {
        if (lvl == Level) {
            const NodeT* node = nullptr;
            otherListItem.getNode(lvl, node);
            mIter = (node == nullptr) ? IterT() : ITraits::begin(*const_cast<NodeT*>(node));
        }
    }

    Index pos(Index lvl) const { return (lvl == Level) ? mIter.pos() : Index(-1); }

    bool test(Index lvl) const { return (lvl == Level) ? mIter.test() : false; }

    bool next(Index lvl) { return (lvl == Level) ? mIter.next() : false; }

    bool down(Index lvl)
    {
        if (lvl == Level && mPrev != nullptr && mIter) {
            if (ChildT* child = ITraits::template getChild<ChildT>(mIter)) {
                mPrev->setIter(PrevItemT::ITraits::begin(*child));
                return true;
            }
        }
        return false;
    }

    Coord getCoord(Index lvl) const { return (lvl == Level) ? mIter.getCoord() : Coord(); }
    Index getChildDim(Index lvl) const { return (lvl == Level) ? NodeT::getChildDim() : 0; }
    Index64 getVoxelCount(Index lvl) const { return (lvl == Level) ? ChildT::NUM_VOXELS : 0; }

    bool isValueOn(Index lvl) const { return (lvl == Level) ? mIter.isValueOn() : false; }

    const NCValueT& getValue(Index lvl) const
    {
        assert(lvl == Level);
        (void)lvl; // avoid unused variable warning in optimized builds
        return mIter.getValue();
    }

    void setValue(Index lvl, const NCValueT& val) const { if (lvl == Level) mIter.setValue(val); }
    void setValueOn(Index lvl, bool on = true) const { if (lvl == Level) mIter.setValueOn(on); }
    void setValueOff(Index lvl) const { if (lvl == Level) mIter.setValueOff(); }

    template<typename ModifyOp>
    void modifyValue(Index lvl, const ModifyOp& op) const
    {
        if (lvl == Level) mIter.modifyValue(op);
    }

private:
    IterT mIter;
    PrevItemT* mPrev;
};


////////////////////////////////////////


//#define DEBUG_TREE_VALUE_ITERATOR

/// @brief Base class for tree-traversal iterators over tile and voxel values
template<typename _TreeT, typename _ValueIterT>
class TreeValueIteratorBase
{
public:
    using TreeT = _TreeT;
    using ValueIterT = _ValueIterT;
    using NodeT = typename ValueIterT::NodeType;
    using ValueT = typename ValueIterT::NonConstValueType;
    using ChildOnIterT = typename NodeT::ChildOnCIter;
    static const Index ROOT_LEVEL = NodeT::LEVEL;
    static_assert(ValueIterT::NodeType::LEVEL == ROOT_LEVEL, "invalid value iterator node type");
    static const Index LEAF_LEVEL = 0, ROOT_DEPTH = 0, LEAF_DEPTH = ROOT_LEVEL;

    TreeValueIteratorBase(TreeT&);

    TreeValueIteratorBase(const TreeValueIteratorBase& other);
    TreeValueIteratorBase& operator=(const TreeValueIteratorBase& other);

    /// Specify the depth of the highest level of the tree to which to ascend (depth 0 = root).
    void setMinDepth(Index minDepth);
    /// Return the depth of the highest level of the tree to which this iterator ascends.
    Index getMinDepth() const { return ROOT_LEVEL - Index(mMaxLevel); }
    /// Specify the depth of the lowest level of the tree to which to descend (depth 0 = root).
    void setMaxDepth(Index maxDepth);
    /// Return the depth of the lowest level of the tree to which this iterator ascends.
    Index getMaxDepth() const { return ROOT_LEVEL - Index(mMinLevel); }

    //@{
    /// Return @c true if this iterator is not yet exhausted.
    bool test() const { return mValueIterList.test(mLevel); }
    operator bool() const { return this->test(); }
    //@}

    /// @brief Advance to the next tile or voxel value.
    /// Return @c true if this iterator is not yet exhausted.
    bool next();
    /// Advance to the next tile or voxel value.
    TreeValueIteratorBase& operator++() { this->next(); return *this; }

    /// @brief Return the level in the tree (0 = leaf) of the node to which
    /// this iterator is currently pointing.
    Index getLevel() const { return mLevel; }
    /// @brief Return the depth in the tree (0 = root) of the node to which
    /// this iterator is currently pointing.
    Index getDepth() const { return ROOT_LEVEL - mLevel; }
    static Index getLeafDepth() { return LEAF_DEPTH; }

    /// @brief Return in @a node a pointer to the node over which this iterator is
    /// currently iterating or one of that node's parents, as determined by @a NodeType.
    /// @return a null pointer if @a NodeType specifies a node at a lower level
    /// of the tree than that given by getLevel().
    template<typename NodeType>
    void getNode(NodeType*& node) const { mValueIterList.getNode(mLevel, node); }

    /// @brief Return the global coordinates of the voxel or tile to which
    /// this iterator is currently pointing.
    Coord getCoord() const { return mValueIterList.getCoord(mLevel); }
    /// @brief Return in @a bbox the axis-aligned bounding box of
    /// the voxel or tile to which this iterator is currently pointing.
    /// @return false if the bounding box is empty.
    bool getBoundingBox(CoordBBox&) const;
    /// @brief Return the axis-aligned bounding box of the voxel or tile to which
    /// this iterator is currently pointing.
    CoordBBox getBoundingBox() const { CoordBBox b; this->getBoundingBox(b); return b; }

    /// Return the number of (virtual) voxels corresponding to the value
    Index64 getVoxelCount() const { return mValueIterList.getVoxelCount(mLevel);}

    /// Return @c true if this iterator is currently pointing to a (non-leaf) tile value.
    bool isTileValue() const { return mLevel != 0 && this->test(); }
    /// Return @c true if this iterator is currently pointing to a (leaf) voxel value.
    bool isVoxelValue() const { return mLevel == 0 && this->test(); }
    /// Return @c true if the value to which this iterator is currently pointing is active.
    bool isValueOn() const { return mValueIterList.isValueOn(mLevel); }

    //@{
    /// Return the tile or voxel value to which this iterator is currently pointing.
    const ValueT& getValue() const { return mValueIterList.getValue(mLevel); }
    const ValueT& operator*() const { return this->getValue(); }
    const ValueT* operator->() const { return &(this->operator*()); }
    //@}

    /// @brief Change the tile or voxel value to which this iterator is currently pointing
    /// and mark it as active.
    void setValue(const ValueT& val) const { mValueIterList.setValue(mLevel, val); }
    /// @brief Change the active/inactive state of the tile or voxel value to which
    /// this iterator is currently pointing.
    void setActiveState(bool on) const { mValueIterList.setValueOn(mLevel, on); }
    /// Mark the tile or voxel value to which this iterator is currently pointing as inactive.
    void setValueOff() const { mValueIterList.setValueOff(mLevel); }

    /// @brief Apply a functor to the item to which this iterator is pointing.
    /// (Not valid for const iterators.)
    /// @param op  a functor of the form <tt>void op(ValueType&) const</tt> that modifies
    ///            its argument in place
    /// @see Tree::modifyValue()
    template<typename ModifyOp>
    void modifyValue(const ModifyOp& op) const { mValueIterList.modifyValue(mLevel, op); }

    /// Return a pointer to the tree over which this iterator is iterating.
    TreeT* getTree() const { return mTree; }

    /// Return a string (for debugging, mainly) describing this iterator's current state.
    std::string summary() const;

private:
    bool advance(bool dontIncrement = false);

    using InvTreeT = typename iter::InvertedTree<NodeT, NodeT::LEVEL>::Type;
    struct PrevChildItem { using IterT = ChildOnIterT; };
    struct PrevValueItem { using IterT = ValueIterT; };

    IterListItem<PrevChildItem, InvTreeT, /*VecSize=*/ROOT_LEVEL+1, /*Level=*/0> mChildIterList;
    IterListItem<PrevValueItem, InvTreeT, /*VecSize=*/ROOT_LEVEL+1, /*Level=*/0> mValueIterList;
    Index mLevel;
    int mMinLevel, mMaxLevel;
    TreeT* mTree;
}; // class TreeValueIteratorBase


template<typename TreeT, typename ValueIterT>
inline
TreeValueIteratorBase<TreeT, ValueIterT>::TreeValueIteratorBase(TreeT& tree):
    mChildIterList(nullptr),
    mValueIterList(nullptr),
    mLevel(ROOT_LEVEL),
    mMinLevel(int(LEAF_LEVEL)),
    mMaxLevel(int(ROOT_LEVEL)),
    mTree(&tree)
{
    mChildIterList.setIter(IterTraits<NodeT, ChildOnIterT>::begin(tree.root()));
    mValueIterList.setIter(IterTraits<NodeT, ValueIterT>::begin(tree.root()));
    this->advance(/*dontIncrement=*/true);
}


template<typename TreeT, typename ValueIterT>
inline
TreeValueIteratorBase<TreeT, ValueIterT>::TreeValueIteratorBase(const TreeValueIteratorBase& other):
    mChildIterList(other.mChildIterList),
    mValueIterList(other.mValueIterList),
    mLevel(other.mLevel),
    mMinLevel(other.mMinLevel),
    mMaxLevel(other.mMaxLevel),
    mTree(other.mTree)
{
    mChildIterList.updateBackPointers();
    mValueIterList.updateBackPointers();
}


template<typename TreeT, typename ValueIterT>
inline TreeValueIteratorBase<TreeT, ValueIterT>&
TreeValueIteratorBase<TreeT, ValueIterT>::operator=(const TreeValueIteratorBase& other)
{
    if (&other != this) {
        mChildIterList = other.mChildIterList;
        mValueIterList = other.mValueIterList;
        mLevel = other.mLevel;
        mMinLevel = other.mMinLevel;
        mMaxLevel = other.mMaxLevel;
        mTree = other.mTree;
        mChildIterList.updateBackPointers();
        mValueIterList.updateBackPointers();
    }
    return *this;
}


template<typename TreeT, typename ValueIterT>
inline void
TreeValueIteratorBase<TreeT, ValueIterT>::setMinDepth(Index minDepth)
{
    mMaxLevel = int(ROOT_LEVEL - minDepth); // level = ROOT_LEVEL - depth
    if (int(mLevel) > mMaxLevel) this->next();
}


template<typename TreeT, typename ValueIterT>
inline void
TreeValueIteratorBase<TreeT, ValueIterT>::setMaxDepth(Index maxDepth)
{
    // level = ROOT_LEVEL - depth
    mMinLevel = int(ROOT_LEVEL - std::min(maxDepth, this->getLeafDepth()));
    if (int(mLevel) < mMinLevel) this->next();
}


template<typename TreeT, typename ValueIterT>
inline bool
TreeValueIteratorBase<TreeT, ValueIterT>::next()
{
    do {
        if (!this->advance()) return false;
    } while (int(mLevel) < mMinLevel || int(mLevel) > mMaxLevel);
    return true;
}


template<typename TreeT, typename ValueIterT>
inline bool
TreeValueIteratorBase<TreeT, ValueIterT>::advance(bool dontIncrement)
{
    bool recurse = false;
    do {
        recurse = false;
        Index
            vPos = mValueIterList.pos(mLevel),
            cPos = mChildIterList.pos(mLevel);
        if (vPos == cPos && mChildIterList.test(mLevel)) {
            /// @todo Once ValueOff iterators properly skip child pointers, remove this block.
            mValueIterList.next(mLevel);
            vPos = mValueIterList.pos(mLevel);
        }
        if (vPos < cPos) {
            if (dontIncrement) return true;
            if (mValueIterList.next(mLevel)) {
                if (mValueIterList.pos(mLevel) == cPos && mChildIterList.test(mLevel)) {
                    /// @todo Once ValueOff iterators properly skip child pointers,
                    /// remove this block.
                    mValueIterList.next(mLevel);
                }
                // If there is a next value and it precedes the next child, return.
                if (mValueIterList.pos(mLevel) < cPos) return true;
            }
        } else {
            // Advance to the next child, which may or may not precede the next value.
            if (!dontIncrement) mChildIterList.next(mLevel);
        }
#ifdef DEBUG_TREE_VALUE_ITERATOR
        std::cout << "\n" << this->summary() << std::flush;
#endif

        // Descend to the lowest level at which the next value precedes the next child.
        while (mChildIterList.pos(mLevel) < mValueIterList.pos(mLevel)) {
#ifdef ENABLE_TREE_VALUE_DEPTH_BOUND_OPTIMIZATION
            if (int(mLevel) == mMinLevel) {
                // If the current node lies at the lowest allowed level, none of its
                // children can be visited, so just advance its child iterator.
                mChildIterList.next(mLevel);
                if (mValueIterList.pos(mLevel) == mChildIterList.pos(mLevel)
                    && mChildIterList.test(mLevel))
                {
                    /// @todo Once ValueOff iterators properly skip child pointers,
                    /// remove this block.
                    mValueIterList.next(mLevel);
                }
            } else
#endif
                if (mChildIterList.down(mLevel)) {
                    --mLevel; // descend one level
                    mValueIterList.initLevel(mLevel, mChildIterList);
                    if (mValueIterList.pos(mLevel) == mChildIterList.pos(mLevel)
                        && mChildIterList.test(mLevel))
                    {
                        /// @todo Once ValueOff iterators properly skip child pointers,
                        /// remove this block.
                        mValueIterList.next(mLevel);
                    }
                } else break;
#ifdef DEBUG_TREE_VALUE_ITERATOR
            std::cout << "\n" << this->summary() << std::flush;
#endif
        }
        // Ascend to the nearest level at which one of the iterators is not yet exhausted.
        while (!mChildIterList.test(mLevel) && !mValueIterList.test(mLevel)) {
            if (mLevel == ROOT_LEVEL) return false;
            ++mLevel;
            mChildIterList.next(mLevel);
            dontIncrement = true;
            recurse = true;
        }
    } while (recurse);
    return true;
}


template<typename TreeT, typename ValueIterT>
inline bool
TreeValueIteratorBase<TreeT, ValueIterT>::getBoundingBox(CoordBBox& bbox) const
{
    if (!this->test()) {
        bbox = CoordBBox();
        return false;
    }
    bbox.min() = mValueIterList.getCoord(mLevel);
    bbox.max() = bbox.min().offsetBy(mValueIterList.getChildDim(mLevel) - 1);
    return true;
}


template<typename TreeT, typename ValueIterT>
inline std::string
TreeValueIteratorBase<TreeT, ValueIterT>::summary() const
{
    std::ostringstream ostr;
    for (int lvl = int(ROOT_LEVEL); lvl >= 0 && lvl >= int(mLevel); --lvl) {
        if (lvl == 0) ostr << "leaf";
        else if (lvl == int(ROOT_LEVEL)) ostr << "root";
        else ostr << "int" << (ROOT_LEVEL - lvl);
        ostr << " v" << mValueIterList.pos(lvl)
            << " c" << mChildIterList.pos(lvl);
        if (lvl > int(mLevel)) ostr << " / ";
    }
    if (this->test() && mValueIterList.pos(mLevel) < mChildIterList.pos(mLevel)) {
        if (mLevel == 0) {
            ostr << " " << this->getCoord();
        } else {
            ostr << " " << this->getBoundingBox();
        }
    }
    return ostr.str();
}


////////////////////////////////////////


/// @brief Base class for tree-traversal iterators over all nodes
template<typename _TreeT, typename RootChildOnIterT>
class NodeIteratorBase
{
public:
    using TreeT = _TreeT;
    using RootIterT = RootChildOnIterT;
    using RootNodeT = typename RootIterT::NodeType;
    using NCRootNodeT = typename RootIterT::NonConstNodeType;
    static const Index ROOT_LEVEL = RootNodeT::LEVEL;
    using InvTreeT = typename iter::InvertedTree<NCRootNodeT, ROOT_LEVEL>::Type;
    static const Index LEAF_LEVEL = 0, ROOT_DEPTH = 0, LEAF_DEPTH = ROOT_LEVEL;

    using RootIterTraits = IterTraits<NCRootNodeT, RootIterT>;

    NodeIteratorBase();
    NodeIteratorBase(TreeT&);

    NodeIteratorBase(const NodeIteratorBase& other);
    NodeIteratorBase& operator=(const NodeIteratorBase& other);

    /// Specify the depth of the highest level of the tree to which to ascend (depth 0 = root).
    void setMinDepth(Index minDepth);
    /// Return the depth of the highest level of the tree to which this iterator ascends.
    Index getMinDepth() const { return ROOT_LEVEL - Index(mMaxLevel); }
    /// Specify the depth of the lowest level of the tree to which to descend (depth 0 = root).
    void setMaxDepth(Index maxDepth);
    /// Return the depth of the lowest level of the tree to which this iterator ascends.
    Index getMaxDepth() const { return ROOT_LEVEL - Index(mMinLevel); }

    //@{
    /// Return @c true if this iterator is not yet exhausted.
    bool test() const { return !mDone; }
    operator bool() const { return this->test(); }
    //@}

    /// @brief Advance to the next tile or voxel value.
    /// @return @c true if this iterator is not yet exhausted.
    bool next();
    /// Advance the iterator to the next leaf node.
    void increment() { this->next(); }
    NodeIteratorBase& operator++() { this->increment(); return *this; }
    /// Increment the iterator n times.
    void increment(Index n) { for (Index i = 0; i < n && this->next(); ++i) {} }

    /// @brief Return the level in the tree (0 = leaf) of the node to which
    /// this iterator is currently pointing.
    Index getLevel() const { return mLevel; }
    /// @brief Return the depth in the tree (0 = root) of the node to which
    /// this iterator is currently pointing.
    Index getDepth() const { return ROOT_LEVEL - mLevel; }
    static Index getLeafDepth() { return LEAF_DEPTH; }

    /// @brief Return the global coordinates of the voxel or tile to which
    /// this iterator is currently pointing.
    Coord getCoord() const;
    /// @brief Return in @a bbox the axis-aligned bounding box of
    /// the voxel or tile to which this iterator is currently pointing.
    /// @return false if the bounding box is empty.
    bool getBoundingBox(CoordBBox& bbox) const;
    /// @brief Return the axis-aligned bounding box of the voxel or tile to which
    /// this iterator is currently pointing.
    CoordBBox getBoundingBox() const { CoordBBox b; this->getBoundingBox(b); return b; }

    //@{
    /// @brief Return the node to which the iterator is pointing.
    /// @note This iterator doesn't have the usual dereference operators (* and ->),
    /// because they would have to be overloaded by the returned node type.
    template<typename NodeT>
    void getNode(NodeT*& node) const { node = nullptr; mIterList.getNode(mLevel, node); }
    template<typename NodeT>
    void getNode(const NodeT*& node) const { node = nullptr; mIterList.getNode(mLevel, node); }
    //@}

    TreeT* getTree() const { return mTree; }

    std::string summary() const;

private:
    struct PrevItem { using IterT = RootIterT; };

    IterListItem<PrevItem, InvTreeT, /*VecSize=*/ROOT_LEVEL+1, LEAF_LEVEL> mIterList;
    Index mLevel;
    int mMinLevel, mMaxLevel;
    bool mDone;
    TreeT* mTree;
}; // class NodeIteratorBase


template<typename TreeT, typename RootChildOnIterT>
inline
NodeIteratorBase<TreeT, RootChildOnIterT>::NodeIteratorBase():
    mIterList(nullptr),
    mLevel(ROOT_LEVEL),
    mMinLevel(int(LEAF_LEVEL)),
    mMaxLevel(int(ROOT_LEVEL)),
    mDone(true),
    mTree(nullptr)
{
}


template<typename TreeT, typename RootChildOnIterT>
inline
NodeIteratorBase<TreeT, RootChildOnIterT>::NodeIteratorBase(TreeT& tree):
    mIterList(nullptr),
    mLevel(ROOT_LEVEL),
    mMinLevel(int(LEAF_LEVEL)),
    mMaxLevel(int(ROOT_LEVEL)),
    mDone(false),
    mTree(&tree)
{
    mIterList.setIter(RootIterTraits::begin(tree.root()));
}


template<typename TreeT, typename RootChildOnIterT>
inline
NodeIteratorBase<TreeT, RootChildOnIterT>::NodeIteratorBase(const NodeIteratorBase& other):
    mIterList(other.mIterList),
    mLevel(other.mLevel),
    mMinLevel(other.mMinLevel),
    mMaxLevel(other.mMaxLevel),
    mDone(other.mDone),
    mTree(other.mTree)
{
    mIterList.updateBackPointers();
}


template<typename TreeT, typename RootChildOnIterT>
inline NodeIteratorBase<TreeT, RootChildOnIterT>&
NodeIteratorBase<TreeT, RootChildOnIterT>::operator=(const NodeIteratorBase& other)
{
    if (&other != this) {
        mLevel = other.mLevel;
        mMinLevel = other.mMinLevel;
        mMaxLevel = other.mMaxLevel;
        mDone = other.mDone;
        mTree = other.mTree;
        mIterList = other.mIterList;
        mIterList.updateBackPointers();
    }
    return *this;
}


template<typename TreeT, typename RootChildOnIterT>
inline void
NodeIteratorBase<TreeT, RootChildOnIterT>::setMinDepth(Index minDepth)
{
    mMaxLevel = int(ROOT_LEVEL - minDepth); // level = ROOT_LEVEL - depth
    if (int(mLevel) > mMaxLevel) this->next();
}


template<typename TreeT, typename RootChildOnIterT>
inline void
NodeIteratorBase<TreeT, RootChildOnIterT>::setMaxDepth(Index maxDepth)
{
    // level = ROOT_LEVEL - depth
    mMinLevel = int(ROOT_LEVEL - std::min(maxDepth, this->getLeafDepth()));
    if (int(mLevel) < mMinLevel) this->next();
}


template<typename TreeT, typename RootChildOnIterT>
inline bool
NodeIteratorBase<TreeT, RootChildOnIterT>::next()
{
    do {
        if (mDone) return false;

        // If the iterator over the current node points to a child,
        // descend to the child (depth-first traversal).
        if (int(mLevel) > mMinLevel && mIterList.test(mLevel)) {
            if (!mIterList.down(mLevel)) return false;
            --mLevel;
        } else {
            // Ascend to the nearest ancestor that has other children.
            while (!mIterList.test(mLevel)) {
                if (mLevel == ROOT_LEVEL) {
                    // Can't ascend higher than the root.
                    mDone = true;
                    return false;
                }
                ++mLevel; // ascend one level
                mIterList.next(mLevel); // advance to the next child, if there is one
            }
            // Descend to the child.
            if (!mIterList.down(mLevel)) return false;
            --mLevel;
        }
    } while (int(mLevel) < mMinLevel || int(mLevel) > mMaxLevel);
    return true;
}


template<typename TreeT, typename RootChildOnIterT>
inline Coord
NodeIteratorBase<TreeT, RootChildOnIterT>::getCoord() const
{
    if (mLevel != ROOT_LEVEL) return  mIterList.getCoord(mLevel + 1);
    RootNodeT* root = nullptr;
    this->getNode(root);
    return root ? root->getMinIndex() : Coord::min();
}


template<typename TreeT, typename RootChildOnIterT>
inline bool
NodeIteratorBase<TreeT, RootChildOnIterT>::getBoundingBox(CoordBBox& bbox) const
{
    if (mLevel == ROOT_LEVEL) {
        RootNodeT* root = nullptr;
        this->getNode(root);
        if (root == nullptr) {
            bbox = CoordBBox();
            return false;
        }
        root->getIndexRange(bbox);
        return true;
    }
    bbox.min() = mIterList.getCoord(mLevel + 1);
    bbox.max() = bbox.min().offsetBy(mIterList.getChildDim(mLevel + 1) - 1);
    return true;
}


template<typename TreeT, typename RootChildOnIterT>
inline std::string
NodeIteratorBase<TreeT, RootChildOnIterT>::summary() const
{
    std::ostringstream ostr;
    for (int lvl = int(ROOT_LEVEL); lvl >= 0 && lvl >= int(mLevel); --lvl) {
        if (lvl == 0) ostr << "leaf";
        else if (lvl == int(ROOT_LEVEL)) ostr << "root";
        else ostr << "int" << (ROOT_LEVEL - lvl);
        ostr << " c" << mIterList.pos(lvl);
        if (lvl > int(mLevel)) ostr << " / ";
    }
    CoordBBox bbox;
    this->getBoundingBox(bbox);
    ostr << " " << bbox;
    return ostr.str();
}


////////////////////////////////////////


/// @brief Base class for tree-traversal iterators over all leaf nodes (but not leaf voxels)
template<typename TreeT, typename RootChildOnIterT>
class LeafIteratorBase
{
public:
    using RootIterT = RootChildOnIterT;
    using RootNodeT = typename RootIterT::NodeType;
    using NCRootNodeT = typename RootIterT::NonConstNodeType;
    static const Index ROOT_LEVEL = RootNodeT::LEVEL;
    using InvTreeT = typename iter::InvertedTree<NCRootNodeT, ROOT_LEVEL>::Type;
    using NCLeafNodeT = typename boost::mpl::front<InvTreeT>::type;
    using LeafNodeT = typename CopyConstness<RootNodeT, NCLeafNodeT>::Type;
    static const Index LEAF_LEVEL = 0, LEAF_PARENT_LEVEL = LEAF_LEVEL + 1;

    using RootIterTraits = IterTraits<NCRootNodeT, RootIterT>;

    LeafIteratorBase(): mIterList(nullptr), mTree(nullptr) {}

    LeafIteratorBase(TreeT& tree): mIterList(nullptr), mTree(&tree)
    {
        // Initialize the iterator list with a root node iterator.
        mIterList.setIter(RootIterTraits::begin(tree.root()));
        // Descend along the first branch, initializing the node iterator at each level.
        Index lvl = ROOT_LEVEL;
        for ( ; lvl > 0 && mIterList.down(lvl); --lvl) {}
        // If the first branch terminated above the leaf level, backtrack to the next branch.
        if (lvl > 0) this->next();
    }

    LeafIteratorBase(const LeafIteratorBase& other): mIterList(other.mIterList), mTree(other.mTree)
    {
        mIterList.updateBackPointers();
    }
    LeafIteratorBase& operator=(const LeafIteratorBase& other)
    {
        if (&other != this) {
            mTree = other.mTree;
            mIterList = other.mIterList;
            mIterList.updateBackPointers();
        }
        return *this;
    }

    //@{
    /// Return the leaf node to which the iterator is pointing.
    LeafNodeT* getLeaf() const
    {
        LeafNodeT* n = nullptr;
        mIterList.getNode(LEAF_LEVEL, n);
        return n;
    }
    LeafNodeT& operator*() const { return *this->getLeaf(); }
    LeafNodeT* operator->() const { return this->getLeaf(); }
    //@}

    bool test() const { return mIterList.test(LEAF_PARENT_LEVEL); }
    operator bool() const { return this->test(); }

    //@{
    /// Advance the iterator to the next leaf node.
    bool next();
    void increment() { this->next(); }
    LeafIteratorBase& operator++() { this->increment(); return *this; }
    //@}
    /// Increment the iterator n times.
    void increment(Index n) { for (Index i = 0; i < n && this->next(); ++i) {} }

    TreeT* getTree() const { return mTree; }

private:
    struct PrevItem { using IterT = RootIterT; };

    /// @note Even though a LeafIterator doesn't iterate over leaf voxels,
    /// the first item of this linked list of node iterators is a leaf node iterator,
    /// whose purpose is only to provide access to its parent leaf node.
    IterListItem<PrevItem, InvTreeT, /*VecSize=*/ROOT_LEVEL+1, LEAF_LEVEL> mIterList;
    TreeT* mTree;
}; // class LeafIteratorBase


template<typename TreeT, typename RootChildOnIterT>
inline bool
LeafIteratorBase<TreeT, RootChildOnIterT>::next()
{
    // If the iterator is valid for the current node one level above the leaf level,
    // advance the iterator to the node's next child.
    if (mIterList.test(LEAF_PARENT_LEVEL) && mIterList.next(LEAF_PARENT_LEVEL)) {
        mIterList.down(LEAF_PARENT_LEVEL); // initialize the leaf iterator
        return true;
    }

    Index lvl = LEAF_PARENT_LEVEL;
    while (!mIterList.test(LEAF_PARENT_LEVEL)) {
        if (mIterList.test(lvl)) {
            mIterList.next(lvl);
        } else {
            do {
                // Ascend to the nearest level at which
                // one of the iterators is not yet exhausted.
                if (lvl == ROOT_LEVEL) return false;
                ++lvl;
                if (mIterList.test(lvl)) mIterList.next(lvl);
            } while (!mIterList.test(lvl));
        }
        // Descend to the lowest child, but not as far as the leaf iterator.
        while (lvl > LEAF_PARENT_LEVEL && mIterList.down(lvl)) --lvl;
    }
    mIterList.down(LEAF_PARENT_LEVEL); // initialize the leaf iterator
    return true;
}


////////////////////////////////////////


/// An IteratorRange wraps a tree or node iterator, giving the iterator TBB
/// splittable range semantics.
template<typename IterT>
class IteratorRange
{
public:
    IteratorRange(const IterT& iter, size_t grainSize = 8):
        mIter(iter),
        mGrainSize(grainSize),
        mSize(0)
    {
        mSize = this->size();
    }
    IteratorRange(IteratorRange& other, tbb::split):
        mIter(other.mIter),
        mGrainSize(other.mGrainSize),
        mSize(other.mSize >> 1)
    {
        other.increment(mSize);
    }

    /// @brief Return a reference to this range's iterator.
    /// @note The reference is const, because the iterator should not be
    /// incremented directly.  Use this range object's increment() instead.
    const IterT& iterator() const { return mIter; }

    bool empty() const { return mSize == 0 || !mIter.test(); }
    bool test() const { return !this->empty(); }
    operator bool() const { return !this->empty(); }

    /// @brief Return @c true if this range is splittable (i.e., if the iterator
    /// can be advanced more than mGrainSize times).
    bool is_divisible() const { return mSize > mGrainSize; }

    /// Advance the iterator @a n times.
    void increment(Index n = 1) { for ( ; n > 0 && mSize > 0; --n, --mSize, ++mIter) {} }
    /// Advance the iterator to the next item.
    IteratorRange& operator++() { this->increment(); return *this; }
    /// @brief Advance the iterator to the next item.
    /// @return @c true if the iterator is not yet exhausted.
    bool next() { this->increment(); return this->test(); }

private:
    Index size() const { Index n = 0; for (IterT it(mIter); it.test(); ++n, ++it) {} return n; }

    IterT mIter;
    size_t mGrainSize;
    /// @note mSize is only an estimate of the number of times mIter can be incremented
    /// before it is exhausted (because the topology of the underlying tree could change
    /// during iteration).  For the purpose of range splitting, though, that should be
    /// sufficient, since the two halves need not be of exactly equal size.
    Index mSize;
};


////////////////////////////////////////


/// @brief Base class for tree-traversal iterators over real and virtual voxel values
/// @todo class TreeVoxelIteratorBase;

} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TREE_TREEITERATOR_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )