File: TestPointAdvect.cc

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (493 lines) | stat: -rw-r--r-- 20,174 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#include <cppunit/extensions/HelperMacros.h>
#include "util.h"
#include <openvdb/points/PointAttribute.h>
#include <openvdb/points/PointDataGrid.h>
#include <openvdb/points/PointConversion.h>
#include <openvdb/points/PointScatter.h>
#include <openvdb/points/PointAdvect.h>
#include <openvdb/tools/LevelSetSphere.h>
#include <openvdb/tools/Composite.h> // csgDifference
#include <openvdb/tools/MeshToVolume.h> // createLevelSetBox
#include <openvdb/openvdb.h>
#include <openvdb/Types.h>
#include <string>
#include <vector>

using namespace openvdb;
using namespace openvdb::points;

class TestPointAdvect: public CppUnit::TestCase
{
public:

    void setUp() override { openvdb::initialize(); }
    void tearDown() override { openvdb::uninitialize(); }

    CPPUNIT_TEST_SUITE(TestPointAdvect);
    CPPUNIT_TEST(testAdvect);
    CPPUNIT_TEST(testZalesaksDisk);
    CPPUNIT_TEST_SUITE_END();

    void testAdvect();
    void testZalesaksDisk();
}; // class TestPointAdvect

CPPUNIT_TEST_SUITE_REGISTRATION(TestPointAdvect);


////////////////////////////////////////


void
TestPointAdvect::testAdvect()
{
    // generate four points

    const float voxelSize = 1.0f;
    std::vector<Vec3s> positions =  {
                                    {5, 2, 3},
                                    {2, 4, 1},
                                    {50, 5, 1},
                                    {3, 20, 1},
                                };

    const PointAttributeVector<Vec3s> pointList(positions);

    math::Transform::Ptr pointTransform(math::Transform::createLinearTransform(voxelSize));

    auto pointIndexGrid = tools::createPointIndexGrid<tools::PointIndexGrid>(
        pointList, *pointTransform);

    auto points = createPointDataGrid<NullCodec, PointDataGrid>(
        *pointIndexGrid, pointList, *pointTransform);

    std::vector<int> id;
    id.push_back(0);
    id.push_back(1);
    id.push_back(2);
    id.push_back(3);

    auto idAttributeType = TypedAttributeArray<int>::attributeType();
    appendAttribute(points->tree(), "id", idAttributeType);

    // create a wrapper around the id vector
    PointAttributeVector<int> idWrapper(id);

    populateAttribute<PointDataTree, tools::PointIndexTree, PointAttributeVector<int>>(
            points->tree(), pointIndexGrid->tree(), "id", idWrapper);

    // create "test" group which only contains third point

    appendGroup(points->tree(), "test");
    std::vector<short> groups(positions.size(), 0);
    groups[2] = 1;
    setGroup(points->tree(), pointIndexGrid->tree(), groups, "test");

    // create "test2" group which contains second and third point

    appendGroup(points->tree(), "test2");
    groups[1] = 1;
    setGroup(points->tree(), pointIndexGrid->tree(), groups, "test2");

    const Vec3s tolerance(1e-3f);

    // advect by velocity using all integration orders

    for (Index integrationOrder = 0; integrationOrder < 5; integrationOrder++) {
        Vec3s velocityBackground(1.0, 2.0, 3.0);
        double timeStep = 1.0;
        int steps = 1;
        auto velocity = Vec3SGrid::create(velocityBackground); // grid with background value only

        auto pointsToAdvect = points->deepCopy();
        const auto& transform = pointsToAdvect->transform();

        advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps);

        for (auto leaf = pointsToAdvect->tree().beginLeaf(); leaf; ++leaf) {
            AttributeHandle<Vec3s> positionHandle(leaf->constAttributeArray("P"));
            AttributeHandle<int> idHandle(leaf->constAttributeArray("id"));
            for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
                int theId = idHandle.get(*iter);
                Vec3s position = transform.indexToWorld(
                    positionHandle.get(*iter) + iter.getCoord().asVec3d());
                Vec3s expectedPosition(positions[theId]);
                if (integrationOrder > 0)   expectedPosition += velocityBackground;
                CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
            }
        }
    }

    // invalid advection scheme

    auto zeroVelocityGrid = Vec3SGrid::create(Vec3s(0));
    CPPUNIT_ASSERT_THROW(advectPoints(*points, *zeroVelocityGrid, 5, 1.0, 1), ValueError);

    { // advect varying dt and steps
        Vec3s velocityBackground(1.0, 2.0, 3.0);
        Index integrationOrder = 4;
        double timeStep = 0.1;
        int steps = 100;
        auto velocity = Vec3SGrid::create(velocityBackground); // grid with background value only

        auto pointsToAdvect = points->deepCopy();
        const auto& transform = pointsToAdvect->transform();

        advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps);

        for (auto leaf = pointsToAdvect->tree().beginLeaf(); leaf; ++leaf) {
            AttributeHandle<Vec3s> positionHandle(leaf->constAttributeArray("P"));
            AttributeHandle<int> idHandle(leaf->constAttributeArray("id"));
            for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
                int theId = idHandle.get(*iter);
                Vec3s position = transform.indexToWorld(
                    positionHandle.get(*iter) + iter.getCoord().asVec3d());
                Vec3s expectedPosition(positions[theId] + velocityBackground * 10);
                CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
            }
        }
    }

    { // perform filtered advection
        Vec3s velocityBackground(1.0, 2.0, 3.0);
        Index integrationOrder = 4;
        double timeStep = 1.0;
        int steps = 1;
        auto velocity = Vec3SGrid::create(velocityBackground); // grid with background value only

        std::vector<std::string> advectIncludeGroups;
        std::vector<std::string> advectExcludeGroups;
        std::vector<std::string> includeGroups;
        std::vector<std::string> excludeGroups;

        { // only advect points in "test" group
            advectIncludeGroups.push_back("test");

            auto leaf = points->tree().cbeginLeaf();
            MultiGroupFilter advectFilter(
                advectIncludeGroups, advectExcludeGroups, leaf->attributeSet());
            MultiGroupFilter filter(includeGroups, excludeGroups, leaf->attributeSet());

            auto pointsToAdvect = points->deepCopy();
            const auto& transform = pointsToAdvect->transform();

            advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps,
                advectFilter, filter);

            CPPUNIT_ASSERT_EQUAL(Index64(4), pointCount(pointsToAdvect->tree()));

            for (auto leafIter = pointsToAdvect->tree().beginLeaf(); leafIter; ++leafIter) {
                AttributeHandle<Vec3s> positionHandle(leafIter->constAttributeArray("P"));
                AttributeHandle<int> idHandle(leafIter->constAttributeArray("id"));
                for (auto iter = leafIter->beginIndexOn(); iter; ++iter) {
                    int theId = idHandle.get(*iter);
                    Vec3s position = transform.indexToWorld(
                        positionHandle.get(*iter) + iter.getCoord().asVec3d());
                    Vec3s expectedPosition(positions[theId]);
                    if (theId == 2)    expectedPosition += velocityBackground;
                    CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
                }
            }

            advectIncludeGroups.clear();
        }

        { // only keep points in "test" group
            includeGroups.push_back("test");

            auto leaf = points->tree().cbeginLeaf();
            MultiGroupFilter advectFilter(
                advectIncludeGroups, advectExcludeGroups, leaf->attributeSet());
            MultiGroupFilter filter(includeGroups, excludeGroups, leaf->attributeSet());

            auto pointsToAdvect = points->deepCopy();
            const auto& transform = pointsToAdvect->transform();

            advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps,
                advectFilter, filter);

            CPPUNIT_ASSERT_EQUAL(Index64(1), pointCount(pointsToAdvect->tree()));

            for (auto leafIter = pointsToAdvect->tree().beginLeaf(); leafIter; ++leafIter) {
                AttributeHandle<Vec3s> positionHandle(leafIter->constAttributeArray("P"));
                AttributeHandle<int> idHandle(leafIter->constAttributeArray("id"));
                for (auto iter = leafIter->beginIndexOn(); iter; ++iter) {
                    int theId = idHandle.get(*iter);
                    Vec3s position = transform.indexToWorld(
                        positionHandle.get(*iter) + iter.getCoord().asVec3d());
                    Vec3s expectedPosition(positions[theId]);
                    expectedPosition += velocityBackground;
                    CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
                }
            }

            includeGroups.clear();
        }

        { // only advect points in "test2" group, delete points in "test" group
            advectIncludeGroups.push_back("test2");
            excludeGroups.push_back("test");

            auto leaf = points->tree().cbeginLeaf();
            MultiGroupFilter advectFilter(
                advectIncludeGroups, advectExcludeGroups, leaf->attributeSet());
            MultiGroupFilter filter(includeGroups, excludeGroups, leaf->attributeSet());

            auto pointsToAdvect = points->deepCopy();
            const auto& transform = pointsToAdvect->transform();

            advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps,
                advectFilter, filter);

            CPPUNIT_ASSERT_EQUAL(Index64(3), pointCount(pointsToAdvect->tree()));

            for (auto leafIter = pointsToAdvect->tree().beginLeaf(); leafIter; ++leafIter) {
                AttributeHandle<Vec3s> positionHandle(leafIter->constAttributeArray("P"));
                AttributeHandle<int> idHandle(leafIter->constAttributeArray("id"));
                for (auto iter = leafIter->beginIndexOn(); iter; ++iter) {
                    int theId = idHandle.get(*iter);
                    Vec3s position = transform.indexToWorld(
                        positionHandle.get(*iter) + iter.getCoord().asVec3d());
                    Vec3s expectedPosition(positions[theId]);
                    if (theId == 1)    expectedPosition += velocityBackground;
                    CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
                }
            }

            advectIncludeGroups.clear();
            excludeGroups.clear();
        }

        { // advect all points, caching disabled
            auto pointsToAdvect = points->deepCopy();
            const auto& transform = pointsToAdvect->transform();

            auto leaf = points->tree().cbeginLeaf();
            MultiGroupFilter advectFilter(
                advectIncludeGroups, advectExcludeGroups, leaf->attributeSet());
            MultiGroupFilter filter(includeGroups, excludeGroups, leaf->attributeSet());

            advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps,
                advectFilter, filter, false);

            CPPUNIT_ASSERT_EQUAL(Index64(4), pointCount(pointsToAdvect->tree()));

            for (auto leafIter = pointsToAdvect->tree().beginLeaf(); leafIter; ++leafIter) {
                AttributeHandle<Vec3s> positionHandle(leafIter->constAttributeArray("P"));
                AttributeHandle<int> idHandle(leafIter->constAttributeArray("id"));
                for (auto iter = leafIter->beginIndexOn(); iter; ++iter) {
                    int theId = idHandle.get(*iter);
                    Vec3s position = transform.indexToWorld(
                        positionHandle.get(*iter) + iter.getCoord().asVec3d());
                    Vec3s expectedPosition(positions[theId]);
                    expectedPosition += velocityBackground;
                    CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
                }
            }
        }

        { // only advect points in "test2" group, delete points in "test" group, caching disabled
            advectIncludeGroups.push_back("test2");
            excludeGroups.push_back("test");

            auto leaf = points->tree().cbeginLeaf();
            MultiGroupFilter advectFilter(
                advectIncludeGroups, advectExcludeGroups, leaf->attributeSet());
            MultiGroupFilter filter(includeGroups, excludeGroups, leaf->attributeSet());

            auto pointsToAdvect = points->deepCopy();
            const auto& transform = pointsToAdvect->transform();

            advectPoints(*pointsToAdvect, *velocity, integrationOrder, timeStep, steps,
                advectFilter, filter, false);

            CPPUNIT_ASSERT_EQUAL(Index64(3), pointCount(pointsToAdvect->tree()));

            for (auto leafIter = pointsToAdvect->tree().beginLeaf(); leafIter; ++leafIter) {
                AttributeHandle<Vec3s> positionHandle(leafIter->constAttributeArray("P"));
                AttributeHandle<int> idHandle(leafIter->constAttributeArray("id"));
                for (auto iter = leafIter->beginIndexOn(); iter; ++iter) {
                    int theId = idHandle.get(*iter);
                    Vec3s position = transform.indexToWorld(
                        positionHandle.get(*iter) + iter.getCoord().asVec3d());
                    Vec3s expectedPosition(positions[theId]);
                    if (theId == 1)    expectedPosition += velocityBackground;
                    CPPUNIT_ASSERT(math::isApproxEqual(position, expectedPosition, tolerance));
                }
            }

            advectIncludeGroups.clear();
            excludeGroups.clear();
        }
    }
}


void
TestPointAdvect::testZalesaksDisk()
{
    // advect a notched sphere known as Zalesak's disk in a rotational velocity field

    // build the level set sphere

    Vec3s center(0, 0, 0);
    float radius = 10;
    float voxelSize = 0.2f;

    auto zalesak = tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize);

    // create box for notch using width and depth relative to radius

    const math::Transform::Ptr xform = math::Transform::createLinearTransform(voxelSize);

    Vec3f min(center);
    Vec3f max(center);
    float notchWidth = 0.5f;
    float notchDepth = 1.5f;

    min.x() -= (radius * notchWidth) / 2;
    min.y() -= (radius * (notchDepth - 1));
    min.z() -= radius * 1.1f;

    max.x() += (radius * notchWidth) / 2;
    max.y() += radius * 1.1f;
    max.z() += radius * 1.1f;

    math::BBox<Vec3f> bbox(min, max);

    auto notch = tools::createLevelSetBox<FloatGrid>(bbox, *xform);

    // subtract notch from the sphere

    tools::csgDifference(*zalesak, *notch);

    // scatter points inside the sphere

    auto points = points::denseUniformPointScatter(*zalesak, /*pointsPerVoxel=*/8);

    // append an integer "id" attribute

    auto idAttributeType = TypedAttributeArray<int>::attributeType();
    appendAttribute(points->tree(), "id", idAttributeType);

    // populate it in serial based on iteration order

    int id = 0;
    for (auto leaf = points->tree().beginLeaf(); leaf; ++leaf) {
        AttributeWriteHandle<int> handle(leaf->attributeArray("id"));
        for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
            handle.set(*iter, id++);
        }
    }

    // copy grid into new grid for advecting

    auto pointsToAdvect = points->deepCopy();

    // populate a velocity grid that rotates in X

    auto velocity = Vec3SGrid::create(Vec3s(0));
    velocity->setTransform(xform);

    CoordBBox activeBbox(zalesak->evalActiveVoxelBoundingBox());
    activeBbox.expand(5);

    velocity->denseFill(activeBbox, Vec3s(0));

    for (auto leaf = velocity->tree().beginLeaf(); leaf; ++leaf) {
        for (auto iter = leaf->beginValueOn(); iter; ++iter) {
            Vec3s position = xform->indexToWorld(iter.getCoord().asVec3d());
            Vec3s vel = (position.cross(Vec3s(0, 0, 1)) * 2 * M_PI) / 10;
            iter.setValue(vel);
        }
    }

    // extract original positions

    const Index count = Index(pointCount(points->constTree()));

    std::vector<Vec3f> preAdvectPositions(count, Vec3f(0));

    for (auto leaf = points->constTree().cbeginLeaf(); leaf; ++leaf) {
        AttributeHandle<int> idHandle(leaf->constAttributeArray("id"));
        AttributeHandle<Vec3f> posHandle(leaf->constAttributeArray("P"));
        for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
            Vec3f position = posHandle.get(*iter) + iter.getCoord().asVec3d();
            preAdvectPositions[idHandle.get(*iter)] = Vec3f(xform->indexToWorld(position));
        }
    }

    // advect points a half revolution

    points::advectPoints(*pointsToAdvect, *velocity, Index(4), 1.0, 5);

    // extract new positions

    std::vector<Vec3f> postAdvectPositions(count, Vec3f(0));

    for (auto leaf = pointsToAdvect->constTree().cbeginLeaf(); leaf; ++leaf) {
        AttributeHandle<int> idHandle(leaf->constAttributeArray("id"));
        AttributeHandle<Vec3f> posHandle(leaf->constAttributeArray("P"));
        for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
            Vec3f position = posHandle.get(*iter) + iter.getCoord().asVec3d();
            postAdvectPositions[idHandle.get(*iter)] = Vec3f(xform->indexToWorld(position));
        }
    }

    for (Index i = 0; i < count; i++) {
        CPPUNIT_ASSERT(!math::isApproxEqual(
            preAdvectPositions[i], postAdvectPositions[i], Vec3f(0.1)));
    }

    // advect points another half revolution

    points::advectPoints(*pointsToAdvect, *velocity, Index(4), 1.0, 5);

    for (auto leaf = pointsToAdvect->constTree().cbeginLeaf(); leaf; ++leaf) {
        AttributeHandle<int> idHandle(leaf->constAttributeArray("id"));
        AttributeHandle<Vec3f> posHandle(leaf->constAttributeArray("P"));
        for (auto iter = leaf->beginIndexOn(); iter; ++iter) {
            Vec3f position = posHandle.get(*iter) + iter.getCoord().asVec3d();
            postAdvectPositions[idHandle.get(*iter)] = Vec3f(xform->indexToWorld(position));
        }
    }

    for (Index i = 0; i < count; i++) {
        CPPUNIT_ASSERT(math::isApproxEqual(
            preAdvectPositions[i], postAdvectPositions[i], Vec3f(0.1)));
    }
}

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )