File: TestPoissonSolver.cc

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (542 lines) | stat: -rw-r--r-- 21,059 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

/// @file unittest/TestPoissonSolver.cc
/// @authors D.J. Hill, Peter Cucka

#include <cppunit/extensions/HelperMacros.h>
#include <openvdb/openvdb.h>
#include <openvdb/Types.h>
//#include <openvdb/math/Math.h> // for math::isApproxEqual()
#include <openvdb/math/ConjGradient.h> // for JacobiPreconditioner
#include <openvdb/tools/Composite.h> // for csgDifference/Union/Intersection
#include <openvdb/tools/LevelSetSphere.h> // for tools::createLevelSetSphere()
#include <openvdb/tools/LevelSetUtil.h> // for tools::sdfToFogVolume()
#include <openvdb/tools/MeshToVolume.h> // for createLevelSetBox()
#include <openvdb/tools/Morphology.h> // for tools::erodeVoxels()
#include <openvdb/tools/PoissonSolver.h>
#include <boost/math/constants/constants.hpp> // for boost::math::constants::pi
#include <cmath>


class TestPoissonSolver: public CppUnit::TestCase
{
public:
    CPPUNIT_TEST_SUITE(TestPoissonSolver);
    CPPUNIT_TEST(testIndexTree);
    CPPUNIT_TEST(testTreeToVectorToTree);
    CPPUNIT_TEST(testLaplacian);
    CPPUNIT_TEST(testSolve);
    CPPUNIT_TEST(testSolveWithBoundaryConditions);
    CPPUNIT_TEST(testSolveWithSegmentedDomain);
    CPPUNIT_TEST_SUITE_END();

    void testIndexTree();
    void testTreeToVectorToTree();
    void testLaplacian();
    void testSolve();
    void testSolveWithBoundaryConditions();
    void testSolveWithSegmentedDomain();
};

CPPUNIT_TEST_SUITE_REGISTRATION(TestPoissonSolver);


////////////////////////////////////////


void
TestPoissonSolver::testIndexTree()
{
    using namespace openvdb;
    using tools::poisson::VIndex;

    using VIdxTree = FloatTree::ValueConverter<VIndex>::Type;
    using LeafNodeType = VIdxTree::LeafNodeType;

    VIdxTree tree;
    /// @todo populate tree
    tree::LeafManager<const VIdxTree> leafManager(tree);

    VIndex testOffset = 0;
    for (size_t n = 0, N = leafManager.leafCount(); n < N; ++n) {
        const LeafNodeType& leaf = leafManager.leaf(n);
        for (LeafNodeType::ValueOnCIter it = leaf.cbeginValueOn(); it; ++it, testOffset++) {
            CPPUNIT_ASSERT_EQUAL(testOffset, *it);
        }
    }

    //if (testOffset != VIndex(tree.activeVoxelCount())) {
    //    std::cout << "--Testing offsetmap - "
    //              << testOffset<<" != "
    //              << tree.activeVoxelCount()
    //              << " has active tile count "
    //              << tree.activeTileCount()<<std::endl;
    //}

    CPPUNIT_ASSERT_EQUAL(VIndex(tree.activeVoxelCount()), testOffset);
}


void
TestPoissonSolver::testTreeToVectorToTree()
{
    using namespace openvdb;
    using tools::poisson::VIndex;

    using VIdxTree = FloatTree::ValueConverter<VIndex>::Type;

    FloatGrid::Ptr sphere = tools::createLevelSetSphere<FloatGrid>(
        /*radius=*/10.f, /*center=*/Vec3f(0.f), /*voxelSize=*/0.25f);
    tools::sdfToFogVolume(*sphere);
    FloatTree& inputTree = sphere->tree();

    const Index64 numVoxels = inputTree.activeVoxelCount();

    // Generate an index tree.
    VIdxTree::Ptr indexTree = tools::poisson::createIndexTree(inputTree);
    CPPUNIT_ASSERT(bool(indexTree));

    // Copy the values of the active voxels of the tree into a vector.
    math::pcg::VectorS::Ptr vec =
        tools::poisson::createVectorFromTree<float>(inputTree, *indexTree);
    CPPUNIT_ASSERT_EQUAL(math::pcg::SizeType(numVoxels), vec->size());

    {
        // Convert the vector back to a tree.
        FloatTree::Ptr inputTreeCopy = tools::poisson::createTreeFromVector(
            *vec, *indexTree, /*bg=*/0.f);

        // Check that voxel values were preserved.
        FloatGrid::ConstAccessor inputAcc = sphere->getConstAccessor();
        for (FloatTree::ValueOnCIter it = inputTreeCopy->cbeginValueOn(); it; ++it) {
            const Coord ijk = it.getCoord();
            //if (!math::isApproxEqual(*it, inputTree.getValue(ijk))) {
            //    std::cout << " value error " << *it << " "
            //        << inputTree.getValue(ijk) << std::endl;
            //}
            CPPUNIT_ASSERT_DOUBLES_EQUAL(inputAcc.getValue(ijk), *it, /*tolerance=*/1.0e-6);
        }
    }
}


void
TestPoissonSolver::testLaplacian()
{
    using namespace openvdb;
    using tools::poisson::VIndex;

    using VIdxTree = FloatTree::ValueConverter<VIndex>::Type;

    // For two different problem sizes, N = 8 and N = 20...
    for (int N = 8; N <= 20; N += 12) {
        // Construct an N x N x N volume in which the value of voxel (i, j, k)
        // is sin(i) * sin(j) * sin(k), using a voxel spacing of pi / N.
        const double delta = boost::math::constants::pi<double>() / N;
        FloatTree inputTree(/*background=*/0.f);
        Coord ijk(0);
        Int32 &i = ijk[0], &j = ijk[1], &k = ijk[2];
        for (i = 1; i < N; ++i) {
            for (j = 1; j < N; ++j) {
                for (k = 1; k < N; ++k) {
                    inputTree.setValue(ijk, static_cast<float>(
                        std::sin(delta * i) * std::sin(delta * j) * std::sin(delta * k)));
                }
            }
        }
        const Index64 numVoxels = inputTree.activeVoxelCount();

        // Generate an index tree.
        VIdxTree::Ptr indexTree = tools::poisson::createIndexTree(inputTree);
        CPPUNIT_ASSERT(bool(indexTree));

        // Copy the values of the active voxels of the tree into a vector.
        math::pcg::VectorS::Ptr source =
            tools::poisson::createVectorFromTree<float>(inputTree, *indexTree);
        CPPUNIT_ASSERT_EQUAL(math::pcg::SizeType(numVoxels), source->size());

        // Create a mask of the interior voxels of the source tree.
        BoolTree interiorMask(/*background=*/false);
        interiorMask.fill(CoordBBox(Coord(2), Coord(N-2)), /*value=*/true, /*active=*/true);

        // Compute the Laplacian of the source:
        //     D^2 sin(i) * sin(j) * sin(k) = -3 sin(i) * sin(j) * sin(k)
        tools::poisson::LaplacianMatrix::Ptr laplacian =
            tools::poisson::createISLaplacian(*indexTree, interiorMask, /*staggered=*/true);
        laplacian->scale(1.0 / (delta * delta)); // account for voxel spacing
        CPPUNIT_ASSERT_EQUAL(math::pcg::SizeType(numVoxels), laplacian->size());

        math::pcg::VectorS result(source->size());
        laplacian->vectorMultiply(*source, result);

        // Dividing the result by the source should produce a vector of uniform value -3.
        // Due to finite differencing, the actual ratio will be somewhat different, though.
        const math::pcg::VectorS& src = *source;
        const float expected = // compute the expected ratio using one of the corner voxels
            float((3.0 * src[1] - 6.0 * src[0]) / (delta * delta * src[0]));
        for (math::pcg::SizeType n = 0; n < result.size(); ++n) {
            result[n] /= src[n];
            CPPUNIT_ASSERT_DOUBLES_EQUAL(expected, result[n], /*tolerance=*/1.0e-4);
        }
    }
}


void
TestPoissonSolver::testSolve()
{
    using namespace openvdb;

    FloatGrid::Ptr sphere = tools::createLevelSetSphere<FloatGrid>(
        /*radius=*/10.f, /*center=*/Vec3f(0.f), /*voxelSize=*/0.25f);
    tools::sdfToFogVolume(*sphere);

    math::pcg::State result = math::pcg::terminationDefaults<float>();
    result.iterations = 100;
    result.relativeError = result.absoluteError = 1.0e-4;

    FloatTree::Ptr outTree = tools::poisson::solve(sphere->tree(), result);

    CPPUNIT_ASSERT(result.success);
    CPPUNIT_ASSERT(result.iterations < 60);
}


////////////////////////////////////////


namespace {

struct BoundaryOp {
    void operator()(const openvdb::Coord& ijk, const openvdb::Coord& neighbor,
        double& source, double& diagonal) const
    {
        if (neighbor.x() == ijk.x() && neighbor.z() == ijk.z()) {
            // Workaround for spurious GCC 4.8 -Wstrict-overflow warning:
            const openvdb::Coord::ValueType dy = (ijk.y() - neighbor.y());
            if (dy > 0) source -= 1.0;
            else diagonal -= 1.0;
        }
    }
};


template<typename TreeType>
void
doTestSolveWithBoundaryConditions()
{
    using namespace openvdb;

    using ValueType = typename TreeType::ValueType;

    // Solve for the pressure in a cubic tank of liquid that is open at the top.
    // Boundary conditions are P = 0 at the top, dP/dy = -1 at the bottom
    // and dP/dx = 0 at the sides.
    //
    //               P = 0
    //              +------+ (N,-1,N)
    //             /|     /|
    //   (0,-1,0) +------+ |
    //            | |    | | dP/dx = 0
    //  dP/dx = 0 | +----|-+
    //            |/     |/
    // (0,-N-1,0) +------+ (N,-N-1,0)
    //           dP/dy = -1

    const int N = 9;
    const ValueType zero = zeroVal<ValueType>();
    const double epsilon = math::Delta<ValueType>::value();

    TreeType source(/*background=*/zero);
    source.fill(CoordBBox(Coord(0, -N-1, 0), Coord(N, -1, N)), /*value=*/zero);

    math::pcg::State state = math::pcg::terminationDefaults<ValueType>();
    state.iterations = 100;
    state.relativeError = state.absoluteError = epsilon;

    util::NullInterrupter interrupter;

    typename TreeType::Ptr solution = tools::poisson::solveWithBoundaryConditions(
        source, BoundaryOp(), state, interrupter, /*staggered=*/true);

    CPPUNIT_ASSERT(state.success);
    CPPUNIT_ASSERT(state.iterations < 60);

    // Verify that P = -y throughout the solution space.
    for (typename TreeType::ValueOnCIter it = solution->cbeginValueOn(); it; ++it) {
        CPPUNIT_ASSERT_DOUBLES_EQUAL(
            double(-it.getCoord().y()), double(*it), /*tolerance=*/10.0 * epsilon);
    }
}

} // unnamed namespace


void
TestPoissonSolver::testSolveWithBoundaryConditions()
{
    doTestSolveWithBoundaryConditions<openvdb::FloatTree>();
    doTestSolveWithBoundaryConditions<openvdb::DoubleTree>();
}


namespace {

openvdb::FloatGrid::Ptr
newCubeLS(
    const int outerLength, // in voxels
    const int innerLength, // in voxels
    const openvdb::Vec3I& centerIS, // in index space
    const float dx, // grid spacing
    bool openTop)
{
    using namespace openvdb;

    using BBox = math::BBox<Vec3f>;

    // World space dimensions and center for this box
    const float outerWS = dx * float(outerLength);
    const float innerWS = dx * float(innerLength);
    Vec3f centerWS(centerIS);
    centerWS *= dx;

    // Construct world space bounding boxes
    BBox outerBBox(
        Vec3f(-outerWS / 2, -outerWS / 2, -outerWS / 2),
        Vec3f( outerWS / 2,  outerWS / 2,  outerWS / 2));
    BBox innerBBox;
    if (openTop) {
        innerBBox = BBox(
            Vec3f(-innerWS / 2, -innerWS / 2, -innerWS / 2),
            Vec3f( innerWS / 2,  innerWS / 2,  outerWS));
    } else {
        innerBBox = BBox(
            Vec3f(-innerWS / 2, -innerWS / 2, -innerWS / 2),
            Vec3f( innerWS / 2,  innerWS / 2,  innerWS / 2));
    }
    outerBBox.translate(centerWS);
    innerBBox.translate(centerWS);

    math::Transform::Ptr xform = math::Transform::createLinearTransform(dx);
    FloatGrid::Ptr cubeLS = tools::createLevelSetBox<FloatGrid>(outerBBox, *xform);
    FloatGrid::Ptr inside = tools::createLevelSetBox<FloatGrid>(innerBBox, *xform);
    tools::csgDifference(*cubeLS, *inside);

    return cubeLS;
}


class LSBoundaryOp
{
public:
    LSBoundaryOp(const openvdb::FloatTree& lsTree): mLS(&lsTree) {}
    LSBoundaryOp(const LSBoundaryOp& other): mLS(other.mLS) {}

    void operator()(const openvdb::Coord& ijk, const openvdb::Coord& neighbor,
        double& source, double& diagonal) const
    {
        // Doing nothing is equivalent to imposing dP/dn = 0 boundary condition

        if (neighbor.x() == ijk.x() && neighbor.y() == ijk.y()) { // on top or bottom
            if (mLS->getValue(neighbor) <= 0.f) {
                // closed boundary
                source -= 1.0;
            } else {
                // open boundary
                diagonal -= 1.0;
            }
        }
    }

private:
    const openvdb::FloatTree* mLS;
};

} // unnamed namespace


void
TestPoissonSolver::testSolveWithSegmentedDomain()
{
    // In fluid simulations, incompressibility is enforced by the pressure, which is
    // computed as a solution of a Poisson equation.  Often, procedural animation
    // of objects (e.g., characters) interacting with liquid will result in boundary
    // conditions that describe multiple disjoint regions: regions of free surface flow
    // and regions of trapped fluid.  It is this second type of region for which
    // there may be no consistent pressure (e.g., a shrinking watertight region
    // filled with incompressible liquid).
    //
    // This unit test demonstrates how to use a level set and topological tools
    // to separate the well-posed problem of a liquid with a free surface
    // from the possibly ill-posed problem of fully enclosed liquid regions.
    //
    // For simplicity's sake, the physical boundaries are idealized as three
    // non-overlapping cubes, one with an open top and two that are fully closed.
    // All three contain incompressible liquid (x), and one of the closed cubes
    // will be partially filled so that two of the liquid regions have a free surface
    // (Dirichlet boundary condition on one side) while the totally filled cube
    // would have no free surface (Neumann boundary conditions on all sides).
    //                              ________________        ________________
    //      __            __       |   __________   |      |   __________   |
    //     |  |x x x x x |  |      |  |          |  |      |  |x x x x x |  |
    //     |  |x x x x x |  |      |  |x x x x x |  |      |  |x x x x x |  |
    //     |  |x x x x x |  |      |  |x x x x x |  |      |  |x x x x x |  |
    //     |   ——————————   |      |   ——————————   |      |   ——————————   |
    //     |________________|      |________________|      |________________|
    //
    // The first two regions are clearly well-posed, while the third region
    // may have no solution (or multiple solutions).
    // -D.J.Hill

    using namespace openvdb;

    using PreconditionerType =
        math::pcg::IncompleteCholeskyPreconditioner<tools::poisson::LaplacianMatrix>;

    // Grid spacing
    const float dx = 0.05f;

    // Construct the solid boundaries in a single grid.
    FloatGrid::Ptr solidBoundary;
    {
        // Create three non-overlapping cubes.
        const int outerDim = 41;
        const int innerDim = 31;
        FloatGrid::Ptr
            openDomain = newCubeLS(outerDim, innerDim, /*ctr=*/Vec3I(0, 0, 0), dx, /*open=*/true),
            closedDomain0 = newCubeLS(outerDim, innerDim, /*ctr=*/Vec3I(60, 0, 0), dx, false),
            closedDomain1 = newCubeLS(outerDim, innerDim, /*ctr=*/Vec3I(120, 0, 0), dx, false);

        // Union all three cubes into one grid.
        tools::csgUnion(*openDomain, *closedDomain0);
        tools::csgUnion(*openDomain, *closedDomain1);

        // Strictly speaking the solidBoundary level set should be rebuilt
        // (with tools::levelSetRebuild()) after the csgUnions to insure a proper
        // signed distance field, but we will forgo the rebuild in this example.
        solidBoundary = openDomain;
    }

    // Generate the source for the Poisson solver.
    // For a liquid simulation this will be the divergence of the velocity field
    // and will coincide with the liquid location.
    //
    // We activate by hand cells in distinct solution regions.

    FloatTree source(/*background=*/0.f);

    // The source is active in the union of the following "liquid" regions:

    // Fill the open box.
    const int N = 15;
    CoordBBox liquidInOpenDomain(Coord(-N, -N, -N), Coord(N, N, N));
    source.fill(liquidInOpenDomain, 0.f);

    // Totally fill closed box 0.
    CoordBBox liquidInClosedDomain0(Coord(-N, -N, -N), Coord(N, N, N));
    liquidInClosedDomain0.translate(Coord(60, 0, 0));
    source.fill(liquidInClosedDomain0, 0.f);

    // Half fill closed box 1.
    CoordBBox liquidInClosedDomain1(Coord(-N, -N, -N), Coord(N, N, 0));
    liquidInClosedDomain1.translate(Coord(120, 0, 0));
    source.fill(liquidInClosedDomain1, 0.f);

    // Compute the number of voxels in the well-posed region of the source.
    const Index64 expectedWellPosedVolume =
        liquidInOpenDomain.volume() + liquidInClosedDomain1.volume();

    // Generate a mask that defines the solution domain.
    // Inactive values of the source map to false and active values map to true.
    const BoolTree totalSourceDomain(source, /*inactive=*/false, /*active=*/true, TopologyCopy());

    // Extract the "interior regions" from the solid boundary.
    // The result will correspond to the the walls of the boxes unioned with inside of the full box.
    const BoolTree::ConstPtr interiorMask = tools::extractEnclosedRegion(
        solidBoundary->tree(), /*isovalue=*/float(0), &totalSourceDomain);

    // Identify the well-posed part of the problem.
    BoolTree wellPosedDomain(source, /*inactive=*/false, /*active=*/true, TopologyCopy());
    wellPosedDomain.topologyDifference(*interiorMask);
    CPPUNIT_ASSERT_EQUAL(expectedWellPosedVolume, wellPosedDomain.activeVoxelCount());

    // Solve the well-posed Poisson equation.

    const double epsilon = math::Delta<float>::value();
    math::pcg::State state = math::pcg::terminationDefaults<float>();
    state.iterations = 200;
    state.relativeError = state.absoluteError = epsilon;

    util::NullInterrupter interrupter;

    // Define boundary conditions that are consistent with solution = 0
    // at the liquid/air boundary and with a linear response with depth.
    LSBoundaryOp boundaryOp(solidBoundary->tree());

    // Compute the solution
    FloatTree::Ptr wellPosedSolutionP =
        tools::poisson::solveWithBoundaryConditionsAndPreconditioner<PreconditionerType>(
            source, wellPosedDomain, boundaryOp, state, interrupter, /*staggered=*/true);

    CPPUNIT_ASSERT_EQUAL(expectedWellPosedVolume, wellPosedSolutionP->activeVoxelCount());
    CPPUNIT_ASSERT(state.success);
    CPPUNIT_ASSERT(state.iterations < 68);

    // Verify that the solution is linear with depth.
    for (FloatTree::ValueOnCIter it = wellPosedSolutionP->cbeginValueOn(); it; ++it) {
        Index32 depth;
        if (liquidInOpenDomain.isInside(it.getCoord())) {
            depth = 1 + liquidInOpenDomain.max().z() - it.getCoord().z();
        } else {
            depth = 1 + liquidInClosedDomain1.max().z() - it.getCoord().z();
        }
        CPPUNIT_ASSERT_DOUBLES_EQUAL(double(depth), double(*it), /*tolerance=*/10.0 * epsilon);
    }

#if 0
    // Optionally, one could attempt to compute the solution in the enclosed regions.
    {
        // Identify the potentially ill-posed part of the problem.
        BoolTree illPosedDomain(source, /*inactive=*/false, /*active=*/true, TopologyCopy());
        illPosedDomain.topologyIntersection(source);

        // Solve the Poisson equation in the two unconnected regions.
        FloatTree::Ptr illPosedSoln =
            tools::poisson::solveWithBoundaryConditionsAndPreconditioner<PreconditionerType>(
                source, illPosedDomain, LSBoundaryOp(*solidBoundary->tree()),
                state, interrupter, /*staggered=*/true);
    }
#endif
}

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )