File: TestPotentialFlow.cc

package info (click to toggle)
openvdb 5.2.0-5
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 8,132 kB
  • sloc: cpp: 110,785; ansic: 5,195; makefile: 845; python: 518
file content (460 lines) | stat: -rw-r--r-- 18,063 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

/// @file unittest/TestPotentialFlow.cc

#include <cppunit/extensions/HelperMacros.h>
#include <openvdb/openvdb.h>
#include <openvdb/tools/LevelSetSphere.h>
#include <openvdb/tools/PotentialFlow.h>


class TestPotentialFlow: public CppUnit::TestCase
{
public:
    CPPUNIT_TEST_SUITE(TestPotentialFlow);
    CPPUNIT_TEST(testMask);
    CPPUNIT_TEST(testNeumannVelocities);
    CPPUNIT_TEST(testUniformStream);
    CPPUNIT_TEST(testFlowAroundSphere);
    CPPUNIT_TEST_SUITE_END();
    void testMask();
    void testNeumannVelocities();
    void testUniformStream();
    void testFlowAroundSphere();
};

CPPUNIT_TEST_SUITE_REGISTRATION(TestPotentialFlow);


void
TestPotentialFlow::testMask()
{
    using namespace openvdb;

    const float radius = 1.5f;
    const Vec3f center(0.0f, 0.0f, 0.0f);
    const float voxelSize = 0.25f;
    const float halfWidth = 3.0f;

    FloatGrid::Ptr sphere =
        tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, halfWidth);

    const int dilation = 5;

    MaskGrid::Ptr mask = tools::createPotentialFlowMask(*sphere, dilation);
    MaskGrid::Ptr defaultMask = tools::createPotentialFlowMask(*sphere);
    CPPUNIT_ASSERT(*mask == *defaultMask);

    auto acc = mask->getAccessor();

    // the isosurface of this sphere is at y = 6
    // this mask forms a band dilated outwards from the isosurface by 5 voxels

    CPPUNIT_ASSERT(!acc.isValueOn(Coord(0, 5, 0)));
    CPPUNIT_ASSERT(acc.isValueOn(Coord(0, 6, 0)));
    CPPUNIT_ASSERT(acc.isValueOn(Coord(0, 10, 0)));
    CPPUNIT_ASSERT(!acc.isValueOn(Coord(0, 11, 0)));

    { // error on non-uniform voxel size
        FloatGrid::Ptr nonUniformSphere =
            tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, halfWidth);
        math::Transform::Ptr nonUniformTransform(new math::Transform(
            math::MapBase::Ptr(new math::ScaleMap(Vec3d(0.1, 0.2, 0.3)))));
        nonUniformSphere->setTransform(nonUniformTransform);

        CPPUNIT_ASSERT_THROW(tools::createPotentialFlowMask(*nonUniformSphere, dilation),
            openvdb::ValueError);
    }

    // this is the minimum mask of one voxel either side of the isosurface

    mask = tools::createPotentialFlowMask(*sphere, 2);

    acc = mask->getAccessor();

    CPPUNIT_ASSERT(!acc.isValueOn(Coord(0, 5, 0)));
    CPPUNIT_ASSERT(acc.isValueOn(Coord(0, 6, 0)));
    CPPUNIT_ASSERT(acc.isValueOn(Coord(0, 7, 0)));
    CPPUNIT_ASSERT(!acc.isValueOn(Coord(0, 8, 0)));

    // these should all produce the same masks as the dilation value is clamped

    MaskGrid::Ptr negativeMask = tools::createPotentialFlowMask(*sphere, -1);
    MaskGrid::Ptr zeroMask = tools::createPotentialFlowMask(*sphere, 0);
    MaskGrid::Ptr oneMask = tools::createPotentialFlowMask(*sphere, 1);

    CPPUNIT_ASSERT(*negativeMask == *mask);
    CPPUNIT_ASSERT(*zeroMask == *mask);
    CPPUNIT_ASSERT(*oneMask == *mask);
}


void
TestPotentialFlow::testNeumannVelocities()
{
    using namespace openvdb;

    const float radius = 1.5f;
    const Vec3f center(0.0f, 0.0f, 0.0f);
    const float voxelSize = 0.25f;
    const float halfWidth = 3.0f;

    FloatGrid::Ptr sphere =
        tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, halfWidth);

    MaskGrid::Ptr domain = tools::createPotentialFlowMask(*sphere);

    {
        // test identical potential from a wind velocity supplied through grid or background value

        Vec3d windVelocityValue(0, 0, 10);

        Vec3dTree::Ptr windTree(new Vec3dTree(sphere->tree(), zeroVal<Vec3d>(), TopologyCopy()));
        dilateVoxels(*windTree, 2, tools::NN_FACE_EDGE_VERTEX);
        windTree->voxelizeActiveTiles();

        for (auto leaf = windTree->beginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->beginValueOn(); iter; ++iter) {
                iter.setValue(windVelocityValue);
            }
        }

        Vec3dGrid::Ptr windGrid(Vec3dGrid::create(windTree));
        windGrid->setTransform(sphere->transform().copy());

        auto windPotentialFromGrid = tools::createPotentialFlowNeumannVelocities(
            *sphere, *domain, windGrid, Vec3d(0));

        CPPUNIT_ASSERT_EQUAL(windPotentialFromGrid->transform(), sphere->transform());

        auto windPotentialFromBackground = tools::createPotentialFlowNeumannVelocities(
            *sphere, *domain, Vec3dGrid::Ptr(), windVelocityValue);

        auto accessor = windPotentialFromGrid->getConstAccessor();
        auto accessor2 = windPotentialFromBackground->getConstAccessor();

        CPPUNIT_ASSERT_EQUAL(windPotentialFromGrid->activeVoxelCount(),
            windPotentialFromBackground->activeVoxelCount());

        for (auto leaf = windPotentialFromGrid->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT_EQUAL(accessor.isValueOn(iter.getCoord()),
                    accessor2.isValueOn(iter.getCoord()));
                CPPUNIT_ASSERT_EQUAL(accessor.getValue(iter.getCoord()),
                    accessor2.getValue(iter.getCoord()));
            }
        }

        // test potential from a wind velocity supplied through grid background value

        Vec3dTree::Ptr emptyWindTree(
            new Vec3dTree(sphere->tree(), windVelocityValue, TopologyCopy()));
        Vec3dGrid::Ptr emptyWindGrid(Vec3dGrid::create(emptyWindTree));
        emptyWindGrid->setTransform(sphere->transform().copy());

        auto windPotentialFromGridBackground = tools::createPotentialFlowNeumannVelocities(
            *sphere, *domain, emptyWindGrid, Vec3d(0));

        CPPUNIT_ASSERT_EQUAL(windPotentialFromGridBackground->transform(), sphere->transform());

        accessor = windPotentialFromGridBackground->getConstAccessor();
        accessor2 = windPotentialFromBackground->getConstAccessor();

        CPPUNIT_ASSERT_EQUAL(windPotentialFromGridBackground->activeVoxelCount(),
            windPotentialFromBackground->activeVoxelCount());

        for (auto leaf = windPotentialFromGridBackground->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT_EQUAL(accessor.isValueOn(iter.getCoord()),
                    accessor2.isValueOn(iter.getCoord()));
                CPPUNIT_ASSERT_EQUAL(accessor.getValue(iter.getCoord()),
                    accessor2.getValue(iter.getCoord()));
            }
        }

        // test potential values are double when applying wind velocity
        // through grid and background values

        auto windPotentialFromBoth = tools::createPotentialFlowNeumannVelocities(
            *sphere, *domain, windGrid, windVelocityValue);

        tools::prune(windPotentialFromBoth->tree(), Vec3d(1e-3));
        tools::prune(windPotentialFromBackground->tree(), Vec3d(1e-3));

        accessor = windPotentialFromBoth->getConstAccessor();
        accessor2 = windPotentialFromBackground->getConstAccessor();

        for (auto leaf = windPotentialFromBoth->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT_EQUAL(accessor.isValueOn(iter.getCoord()),
                    accessor2.isValueOn(iter.getCoord()));
                CPPUNIT_ASSERT_EQUAL(accessor.getValue(iter.getCoord()),
                    accessor2.getValue(iter.getCoord()) * 2);
            }
        }

        CPPUNIT_ASSERT(*windPotentialFromBoth == *windPotentialFromBackground);
    }

    Vec3dGrid::Ptr zeroVelocity = Vec3dGrid::create(Vec3d(0));

    { // error if grid is not a levelset
        FloatGrid::Ptr nonLevelSetSphere =
            tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, halfWidth);
        nonLevelSetSphere->setGridClass(GRID_FOG_VOLUME);

        CPPUNIT_ASSERT_THROW(tools::createPotentialFlowNeumannVelocities(
            *nonLevelSetSphere, *domain, zeroVelocity, Vec3d(5)), openvdb::TypeError);
    }

    { // accept double level set grid
        DoubleGrid::Ptr doubleSphere =
            tools::createLevelSetSphere<DoubleGrid>(radius, center, voxelSize, halfWidth);

        CPPUNIT_ASSERT_NO_THROW(tools::createPotentialFlowNeumannVelocities(
            *doubleSphere, *domain, zeroVelocity, Vec3d(5)));
    }

    { // zero boundary velocities and background velocity
        Vec3d zeroVelocityValue(zeroVal<Vec3d>());
        auto neumannVelocities = tools::createPotentialFlowNeumannVelocities(
            *sphere, *domain, zeroVelocity, zeroVelocityValue);
        CPPUNIT_ASSERT_EQUAL(neumannVelocities->activeVoxelCount(), Index64(0));
    }
}


void
TestPotentialFlow::testUniformStream()
{
    // this unit test checks the scalar potential and velocity flow field
    // for a uniform stream which consists of a 100x100x100 cube of
    // neumann voxels with constant velocity (0, 0, 1)

    using namespace openvdb;

    auto transform = math::Transform::createLinearTransform(1.0);

    auto mask = MaskGrid::create(false);
    mask->setTransform(transform);
    auto maskAccessor = mask->getAccessor();

    auto neumann = Vec3dGrid::create(Vec3d(0));
    auto neumannAccessor = neumann->getAccessor();

    for (int i = -50; i < 50; i++) {
        for (int j = -50; j < 50; j++) {
            for (int k = -50; k < 50; k++) {
                Coord ijk(i, j, k);
                maskAccessor.setValueOn(ijk, true);
                neumannAccessor.setValueOn(ijk, Vec3d(0, 0, 1));
            }
        }
    }

    openvdb::math::pcg::State state = math::pcg::terminationDefaults<float>();

    state.iterations = 2000;
    state.absoluteError = 1e-8;

    auto potential = tools::computeScalarPotential(*mask, *neumann, state);

    // check convergence

    CPPUNIT_ASSERT(state.success);
    CPPUNIT_ASSERT(state.iterations > 0 && state.iterations < 1000);
    CPPUNIT_ASSERT(state.absoluteError < 1e-6);

    CPPUNIT_ASSERT_EQUAL(potential->activeVoxelCount(), mask->activeVoxelCount());

    // for uniform flow along the z-axis, the scalar potential should be equal to the z co-ordinate

    for (auto leaf = potential->tree().cbeginLeaf(); leaf; ++leaf) {
        for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
            const double staggeredZ = iter.getCoord().z() + 0.5;
            CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue(), staggeredZ, /*tolerance*/0.1));
        }
    }

    auto flow = tools::computePotentialFlow(*potential, *neumann);

    CPPUNIT_ASSERT_EQUAL(flow->activeVoxelCount(), mask->activeVoxelCount());

    // flow velocity should be equal to the input velocity (0, 0, 1)

    for (auto leaf = flow->tree().cbeginLeaf(); leaf; ++leaf) {
        for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
            CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue().x(), 0.0, /*tolerance*/1e-6));
            CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue().y(), 0.0, /*tolerance*/1e-6));
            CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue().z(), 1.0, /*tolerance*/1e-6));
        }
    }
}


void
TestPotentialFlow::testFlowAroundSphere()
{
    using namespace openvdb;

    const float radius = 1.5f;
    const Vec3f center(0.0f, 0.0f, 0.0f);
    const float voxelSize = 0.25f;
    const float halfWidth = 3.0f;

    const int dilation = 50;

    FloatGrid::Ptr sphere =
        tools::createLevelSetSphere<FloatGrid>(radius, center, voxelSize, halfWidth);

    MaskGrid::Ptr domain = tools::createPotentialFlowMask(*sphere, dilation);

    { // compute potential flow for a global wind velocity around a sphere

        Vec3f windVelocity(0, 0, 1);
        Vec3fGrid::Ptr neumann = tools::createPotentialFlowNeumannVelocities(*sphere,
            *domain, Vec3fGrid::Ptr(), windVelocity);

        openvdb::math::pcg::State state = math::pcg::terminationDefaults<float>();

        state.iterations = 2000;
        state.absoluteError = 1e-8;

        FloatGrid::Ptr potential = tools::computeScalarPotential(*domain, *neumann, state);

        // compute a laplacian of the potential within the domain (excluding neumann voxels)
        // and ensure it evaluates to zero

        auto mask = BoolGrid::create(/*background=*/false);
        mask->setTransform(potential->transform().copy());
        mask->topologyUnion(*potential);

        auto dilatedSphereMask = tools::interiorMask(*sphere);
        tools::dilateActiveValues(dilatedSphereMask->tree(), 1);
        mask->topologyDifference(*dilatedSphereMask);

        FloatGrid::Ptr laplacian = tools::laplacian(*potential, *mask);

        for (auto leaf = laplacian->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue(), 0.0f, /*tolerance*/1e-3f));
            }
        }

        Vec3fGrid::Ptr flowVel = tools::computePotentialFlow(*potential, *neumann);

        // compute the divergence of the flow velocity within the domain
        // (excluding neumann voxels and exterior voxels)
        // and ensure it evaluates to zero

        tools::erodeVoxels(mask->tree(), 2, tools::NN_FACE);

        FloatGrid::Ptr divergence = tools::divergence(*flowVel, *mask);

        for (auto leaf = divergence->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue(), 0.0f, /*tolerance*/0.1f));
            }
        }

        // check the background velocity has been applied correctly

        Vec3fGrid::Ptr flowVelBackground =
            tools::computePotentialFlow(*potential, *neumann, windVelocity);

        CPPUNIT_ASSERT_EQUAL(flowVelBackground->activeVoxelCount(),
            flowVelBackground->activeVoxelCount());

        auto maskAccessor = mask->getConstAccessor();

        auto accessor = flowVel->getConstAccessor();
        auto accessor2 = flowVelBackground->getConstAccessor();

        for (auto leaf = flowVelBackground->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                // ignore values near the neumann boundary
                if (!maskAccessor.isValueOn(iter.getCoord()))    continue;

                const Vec3f value1 = accessor.getValue(iter.getCoord());
                const Vec3f value2 = accessor2.getValue(iter.getCoord()) + windVelocity;

                CPPUNIT_ASSERT(math::isApproxEqual(value1.x(), value2.x(), /*tolerance=*/1e-3f));
                CPPUNIT_ASSERT(math::isApproxEqual(value1.y(), value2.y(), /*tolerance=*/1e-3f));
                CPPUNIT_ASSERT(math::isApproxEqual(value1.z(), value2.z(), /*tolerance=*/1e-3f));
            }
        }
    }

    { // check double-precision solve
        DoubleGrid::Ptr sphereDouble =
            tools::createLevelSetSphere<DoubleGrid>(radius, center, voxelSize, halfWidth);

        Vec3d windVelocity(0, 0, 1);
        Vec3dGrid::Ptr neumann = tools::createPotentialFlowNeumannVelocities(*sphereDouble,
            *domain, Vec3dGrid::Ptr(), windVelocity);

        openvdb::math::pcg::State state = math::pcg::terminationDefaults<float>();

        state.iterations = 2000;
        state.absoluteError = 1e-8;

        DoubleGrid::Ptr potential = tools::computeScalarPotential(*domain, *neumann, state);

        CPPUNIT_ASSERT(potential);

        // compute a laplacian of the potential within the domain (excluding neumann voxels)
        // and ensure it evaluates to zero

        auto mask = BoolGrid::create(/*background=*/false);
        mask->setTransform(potential->transform().copy());
        mask->topologyUnion(*potential);

        auto dilatedSphereMask = tools::interiorMask(*sphereDouble);
        tools::dilateActiveValues(dilatedSphereMask->tree(), 1);
        mask->topologyDifference(*dilatedSphereMask);

        DoubleGrid::Ptr laplacian = tools::laplacian(*potential, *mask);

        for (auto leaf = laplacian->tree().cbeginLeaf(); leaf; ++leaf) {
            for (auto iter = leaf->cbeginValueOn(); iter; ++iter) {
                CPPUNIT_ASSERT(math::isApproxEqual(iter.getValue(), 0.0, /*tolerance*/1e-5));
            }
        }

        Vec3dGrid::Ptr flowVel = tools::computePotentialFlow(*potential, *neumann);

        CPPUNIT_ASSERT(flowVel);
    }
}

// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )