1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2018 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_UNITTEST_UTIL_HAS_BEEN_INCLUDED
#define OPENVDB_UNITTEST_UTIL_HAS_BEEN_INCLUDED
#include <openvdb/openvdb.h>
#include <openvdb/math/Math.h> // for math::Random01
#include <openvdb/tools/Prune.h>// for pruneLevelSet
#include <sstream>
namespace unittest_util {
enum SphereMode { SPHERE_DENSE, SPHERE_DENSE_NARROW_BAND, SPHERE_SPARSE_NARROW_BAND };
/// @brief Generates the signed distance to a sphere located at @a center
/// and with a specified @a radius (both in world coordinates). Only voxels
/// in the domain [0,0,0] -> @a dim are considered. Also note that the
/// level set is either dense, dense narrow-band or sparse narrow-band.
///
/// @note This method is VERY SLOW and should only be used for debugging purposes!
/// However it works for any transform and even with open level sets.
/// A faster approch for closed narrow band generation is to only set voxels
/// sparsely and then use grid::signedFloodFill to define the sign
/// of the background values and tiles! This is implemented in openvdb/tools/LevelSetSphere.h
template<class GridType>
inline void
makeSphere(const openvdb::Coord& dim, const openvdb::Vec3f& center, float radius,
GridType& grid, SphereMode mode)
{
typedef typename GridType::ValueType ValueT;
const ValueT
zero = openvdb::zeroVal<ValueT>(),
outside = grid.background(),
inside = -outside;
typename GridType::Accessor acc = grid.getAccessor();
openvdb::Coord xyz;
for (xyz[0]=0; xyz[0]<dim[0]; ++xyz[0]) {
for (xyz[1]=0; xyz[1]<dim[1]; ++xyz[1]) {
for (xyz[2]=0; xyz[2]<dim[2]; ++xyz[2]) {
const openvdb::Vec3R p = grid.transform().indexToWorld(xyz);
const float dist = float((p-center).length() - radius);
ValueT val = ValueT(zero + dist);
switch (mode) {
case SPHERE_DENSE:
acc.setValue(xyz, val);
break;
case SPHERE_DENSE_NARROW_BAND:
acc.setValue(xyz, val < inside ? inside : outside < val ? outside : val);
break;
case SPHERE_SPARSE_NARROW_BAND:
if (val < inside)
acc.setValueOff(xyz, inside);
else if (outside < val)
acc.setValueOff(xyz, outside);
else
acc.setValue(xyz, val);
}
}
}
}
//if (mode == SPHERE_SPARSE_NARROW_BAND) grid.tree().prune();
if (mode == SPHERE_SPARSE_NARROW_BAND) openvdb::tools::pruneLevelSet(grid.tree());
}
// Template specialization for boolean trees (mostly a dummy implementation)
template<>
inline void
makeSphere<openvdb::BoolGrid>(const openvdb::Coord& dim, const openvdb::Vec3f& center,
float radius, openvdb::BoolGrid& grid, SphereMode)
{
openvdb::BoolGrid::Accessor acc = grid.getAccessor();
openvdb::Coord xyz;
for (xyz[0]=0; xyz[0]<dim[0]; ++xyz[0]) {
for (xyz[1]=0; xyz[1]<dim[1]; ++xyz[1]) {
for (xyz[2]=0; xyz[2]<dim[2]; ++xyz[2]) {
const openvdb::Vec3R p = grid.transform().indexToWorld(xyz);
const float dist = static_cast<float>((p-center).length() - radius);
if (dist <= 0) acc.setValue(xyz, true);
}
}
}
}
// This method will soon be replaced by the one above!!!!!
template<class GridType>
inline void
makeSphere(const openvdb::Coord& dim, const openvdb::Vec3f& center, float radius,
GridType &grid, float dx, SphereMode mode)
{
grid.setTransform(openvdb::math::Transform::createLinearTransform(/*voxel size=*/dx));
makeSphere<GridType>(dim, center, radius, grid, mode);
}
// Generate random points by uniformly distributing points
// on a unit-sphere.
inline void genPoints(const int numPoints, std::vector<openvdb::Vec3R>& points)
{
// init
openvdb::math::Random01 randNumber(0);
const int n = int(std::sqrt(double(numPoints)));
const double xScale = (2.0 * M_PI) / double(n);
const double yScale = M_PI / double(n);
double x, y, theta, phi;
openvdb::Vec3R pos;
points.reserve(n*n);
// loop over a [0 to n) x [0 to n) grid.
for (int a = 0; a < n; ++a) {
for (int b = 0; b < n; ++b) {
// jitter, move to random pos. inside the current cell
x = double(a) + randNumber();
y = double(b) + randNumber();
// remap to a lat/long map
theta = y * yScale; // [0 to PI]
phi = x * xScale; // [0 to 2PI]
// convert to cartesian coordinates on a unit sphere.
// spherical coordinate triplet (r=1, theta, phi)
pos[0] = std::sin(theta)*std::cos(phi);
pos[1] = std::sin(theta)*std::sin(phi);
pos[2] = std::cos(theta);
points.push_back(pos);
}
}
}
// @todo makePlane
} // namespace unittest_util
#endif // OPENVDB_UNITTEST_UTIL_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2018 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|