1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
|
// OpenVPN -- An application to securely tunnel IP networks
// over a single port, with support for SSL/TLS-based
// session authentication and key exchange,
// packet encryption, packet authentication, and
// packet compression.
//
// Copyright (C) 2012-2022 OpenVPN Inc.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License Version 3
// as published by the Free Software Foundation.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program in the COPYING file.
// If not, see <http://www.gnu.org/licenses/>.
// A basic reference-counting garbage collection scheme based
// on intrusive pointers, where the reference count is embedded in
// the object via inheritance. Simply inherit from RC to create an
// object that can be tracked with an RCPtr.
//
// We use tend to use RCPtr (or RCWeakPtr) rather than the other
// smart pointer classes (std or boost) for flexibility and
// performance.
//
// Smart pointers have two basic attributes that determine
// their performance. Either of these attributes, when required,
// will degrade the performance of the smart pointer:
//
// 1. whether the smart pointer is thread-safe, i.e. it uses an
// atomic reference counter
// 2. whether the smart pointer can be referrred to via a
// weak reference
//
// In keeping with the oft-stated C++ motto of only paying for
// what you use, both attributes can be independently controlled.
//
// * thread-unsafe/not-weak-referenceable -- class Foo : public RC<thread_unsafe_refcount>
// * thread-safe/not-weak-referenceable -- class Foo : public RC<thread_safe_refcount>
// * thread-unsafe/weak-referenceable -- class Foo : public RCWeak<thread_unsafe_refcount>
// * thread-safe/weak-referenceable -- class Foo : public RCWeak<thread_safe_refcount>
//
// Thread-safe reference counting can be significantly more expensive
// because an atomic object must be used for the reference count.
// Therefore, thread-safe reference counting should only be used for
// objects that have visibility across multiple threads.
//
// In addition, having an object be weak-referenceable also
// imposes a cost, so it should be avoided unless necessary.
//
// For clarity and as a general convention in the OpenVPN code,
// any object that inherits from RC should also declare a Ptr
// typedef that defines the smart pointer type that should be used to
// track the object, e.g.:
//
// class Foo : public RC<thread_unsafe_refcount> {
// public:
// typedef RCPtr<Foo> Ptr; // strong pointer
// typedef RCWeakPtr<Foo> WPtr; // weak pointer
// };
//
// This allows a smart-pointer to Foo to be referred to
// as Foo::Ptr or Foo::WPtr.
//
// Note that RC/RCWeak fully supports virtual inheritance. For
// example, consider the diamond inheritance pattern below, where
// both A and B objects contain their own reference count, but C
// inherits from both A and B. To prevent C objects from
// having two separate reference counts, it is necessary to
// virtually inherit from RC.
//
// class A : public virtual RC<thread_unsafe_refcount> {}
// class B : public virtual RC<thread_unsafe_refcount> {}
// class C : public A, public B {}
#ifndef OPENVPN_COMMON_RC_H
#define OPENVPN_COMMON_RC_H
#include <atomic>
#include <utility>
#include <openvpn/common/olong.hpp>
#ifdef OPENVPN_RC_DEBUG
#include <iostream>
#include <openvpn/common/demangle.hpp>
#endif
namespace openvpn {
/**
@brief The smart pointer class
@tparam T an RC enabled type
Defines a template class called RCPtr that implements a smart pointer for
reference counted objects.
RCPtr is a template class, meaning it can be instantiated for any type T that
supports reference counting. It keeps track of a pointer to an object of type T,
and handles incrementing and decrementing the reference count automatically.
The purpose of RCPtr is to automate reference counting for any reference-counted
object (any class that inherits from RC). It provides a safe way to have multiple
pointers to an object without worrying about memory leaks or double-frees.
RCPtr has a pointer member variable px that holds a pointer to the T object it
references. It overloads operators like * and -> to dereference the pointer and
access the referenced object.
The key methods are the constructors and destructor. The constructors increment
the reference count, and the destructor decrements it. This ensures the object
will stay allocated as long as any RCPtr points to it, and be freed when the
last RCPtr is destructed.
Copy and move constructors increment the refcount before assigning px, while
move assignment operators decrement the old refcount after reassigning px.
RCPtr is a smart pointer class that automates reference counting for any
reference-counted type T, allowing multiple pointer ownership without leaks or
double-frees.
*/
template <typename T>
class RCPtr
{
public:
typedef T element_type;
RCPtr() noexcept;
RCPtr(T *p, const bool add_ref = true) noexcept;
RCPtr(const RCPtr &rhs) noexcept;
RCPtr(RCPtr &&rhs) noexcept;
template <typename U>
RCPtr(const RCPtr<U> &rhs) noexcept;
~RCPtr();
RCPtr &operator=(const RCPtr &rhs) noexcept;
RCPtr &operator=(RCPtr &&rhs) noexcept;
void reset() noexcept;
void reset(T *rhs) noexcept;
void swap(RCPtr &rhs) noexcept;
T *get() const noexcept;
T &operator*() const noexcept;
T *operator->() const noexcept;
explicit operator bool() const noexcept;
bool operator==(const RCPtr &rhs) const;
bool operator!=(const RCPtr &rhs) const;
RCPtr<T> move_strong() noexcept;
template <typename U>
RCPtr<U> static_pointer_cast() const noexcept;
template <typename U>
RCPtr<U> dynamic_pointer_cast() const noexcept;
private:
T *px; ///< Pointer to the controlled object
};
/**
@brief Construct a new RCPtr<T>::RCPtr object
@tparam T an RC enabled type
The default constructor for the RCPtr class
This constructor initializes the RCPtr class with no referenced object. It sets the
internal px pointer to nullptr. The purpose of this default constructor is to allow
creating an RCPtr instance that doesn't yet reference anything. This is useful when
you need to declare an RCPtr variable but don't have an object to assign it to yet.
*/
template <typename T>
RCPtr<T>::RCPtr() noexcept
: px(nullptr){};
/**
@brief Construct a new RCPtr<T>::RCPtr object
@tparam T an RC enabled type
@param p pointer to an RC enabled object
@param add_ref bool that determines whether the RC of p is incremented
The RCPtr constructor taking a pointer and bool
This constructor initializes an RCPtr instance to point to a provided object pointer p.
It takes two inputs:
- p - a pointer to an object of type T that inherits from RC (reference counted).
- add_ref - a bool indicating if the reference count of p should be incremented.
It does not return anything directly. Its purpose is to construct an RCPtr instance.
The key logic is:
- The px member is assigned the provided pointer p.
- If add_ref is true, and px is non-null, the reference count of px is incremented
via intrusive_ptr_add_ref(px).
This achieves the goal of constructing an RCPtr that points to the provided object pointer
p. If add_ref is true, it will also increment the ref count of p, indicating that RCPtr
now owns a count on that object.
*/
template <typename T>
RCPtr<T>::RCPtr(T *p, const bool add_ref) noexcept
: px(p)
{
if (px && add_ref)
intrusive_ptr_add_ref(px);
}
/**
@brief Copy constructor for RCPtr
@tparam T an RC enabled type
@param rhs the RCPtr to be copied
*/
template <typename T>
RCPtr<T>::RCPtr(const RCPtr &rhs) noexcept
: px(rhs.px)
{
if (px)
intrusive_ptr_add_ref(px);
}
/**
@brief Construct a new RCPtr object via move
@tparam T an RC enabled type
@param rhs object from which to move
*/
template <typename T>
RCPtr<T>::RCPtr(RCPtr &&rhs) noexcept
: px(rhs.px)
{
rhs.px = nullptr;
}
/**
@brief Construct a new RCPtr<T>::RCPtr object to type T and make it track an object of type U
@tparam T an RC enabled type
@tparam U an RC enabled type
@param rhs RCPtr<U> pointing to the object the new RCPtr<T> will reference as well
This achieves the goal of creating an RCPtr<T> that points to the same object as the RCPtr<U>.
*/
template <typename T>
template <typename U>
RCPtr<T>::RCPtr(const RCPtr<U> &rhs) noexcept
: px(rhs.get())
{
if (px)
intrusive_ptr_add_ref(px);
}
/**
@brief Destroy the RCPtr<T>::RCPtr object
@tparam T an RC enabled type
This achieves the goal of reducing the refcount when the RCPtr is destructed, possibly deleting
the object if no other RCPtrs reference it anymore. The key data transformation is decrementing
the refcount via intrusive_ptr_release(px).
*/
template <typename T>
RCPtr<T>::~RCPtr()
{
if (px)
intrusive_ptr_release(px);
}
/**
@brief Assigns an existing RCPtr<T> to point to a different T
@tparam T an RC enabled type
@param rhs other RCPtr<T>
@return reference to this
Assigns an existing RCPtr<T> to point to a different T, which is already controlled by another
RCPtr<T>. Reduces the refcount on the current T.
*/
template <typename T>
RCPtr<T> &RCPtr<T>::operator=(const RCPtr &rhs) noexcept
{
// notice that RCPtr(rhs) is a temp built from rhs, which will decrement old T when scope ends
RCPtr(rhs).swap(*this);
return *this;
}
/**
@brief Assigns an existing RCPtr<T> to point to a different T using move
@tparam T an RC enabled type
@param rhs other RCPtr<T>
@return reference to this
Assigns an existing RCPtr<T> to point to a different T using move, by stealing the guts of another
RCPtr.
*/
template <typename T>
RCPtr<T> &RCPtr<T>::operator=(RCPtr &&rhs) noexcept
{
RCPtr(std::move(rhs)).swap(*this);
return *this;
}
/**
@brief Points this RCPtr<T> to nullptr safely
@tparam T an RC enabled type
*/
template <typename T>
void RCPtr<T>::reset() noexcept
{
RCPtr().swap(*this);
}
/**
@brief Points this RCPtr to an RC enabled object T
@note It's critical that the object in question be allocated via new.
@tparam T an RC enabled type
@param rhs pointer to the object that will be managed by this pointer
*/
template <typename T>
void RCPtr<T>::reset(T *rhs) noexcept
{
RCPtr(rhs).swap(*this);
}
/**
@brief swaps the contents of two RCPtr<T>
@tparam T an RC enabled type
@param rhs the other RCPtr<T>
*/
template <typename T>
void RCPtr<T>::swap(RCPtr &rhs) noexcept
{
std::swap(px, rhs.px);
}
/**
@brief Returns the raw pointer to the object T, or nullptr.
@tparam T an RC enabled type
@return T* pointer we are tracking, or nullptr.
*/
template <typename T>
T *RCPtr<T>::get() const noexcept
{
return px;
}
/**
@brief Operator returns a ref to the pointed to T
@tparam T an RC enabled type
@return T& reference to the object this RCPtr points to
Operator returns a ref to the pointed to T, or if the RCPtr does not point
to a valid T, undefined behavior due to dereference of invalid pointer. This
is identical to the behavior of a C ptr or the STL smart pointers.
*/
template <typename T>
T &RCPtr<T>::operator*() const noexcept
{
return *px;
}
/**
@brief Returns the raw pointer to the object T, or nullptr.
@tparam T an RC enabled type
@return T* pointer we are tracking, or nullptr.
*/
template <typename T>
T *RCPtr<T>::operator->() const noexcept
{
return px;
}
/**
@brief Evaluates to true if the internal pointer is not equal to nullptr
@tparam T an RC enabled type
@return true if internal pointer is not equal to nullptr
@return false if internal pointer is equal to nullptr
*/
template <typename T>
RCPtr<T>::operator bool() const noexcept
{
return px != nullptr;
}
/**
@brief Evaluates to true if the two RCPtr<T> point to the same object.
@note Does not check equality of the pointed two object, rather checks for identity.
@tparam T an RC enabled type
@param rhs other RCPtr<T>
@return true if *this and rhs point to the same instance or both equal nullptr
@return false if *this and rhs point to different instances or do not both equal nullptr
*/
template <typename T>
bool RCPtr<T>::operator==(const RCPtr &rhs) const
{
return px == rhs.px;
}
/**
@brief Evaluates to true if the two RCPtr<T> point to different objects.
@tparam T an RC enabled type
@param rhs other RCPtr<T>
@return true if *this and rhs point to different instances or do not both equal nullptr
@return false if *this and rhs point to the same instance or both equal nullptr
*/
template <typename T>
bool RCPtr<T>::operator!=(const RCPtr &rhs) const
{
return px != rhs.px;
}
/**
@brief Moves ownership of the internal pointer to the returned RCPtr<T>
@tparam T an RC enabled type
@return The new owning RCPtr<T>
*/
template <typename T>
RCPtr<T> RCPtr<T>::move_strong() noexcept
{
T *p = px;
px = nullptr;
return RCPtr<T>(p, false);
}
/**
@brief Returns a RCPtr<U> that points to our T object
@tparam T an RC enabled type
@tparam U an RC enabled type
@return RCPtr<U> that points to the same object this points to
Performs a static_cast from T * to U * and then wraps the cast pointer in a new RCPtr<U>
*/
template <typename T>
template <typename U>
RCPtr<U> RCPtr<T>::static_pointer_cast() const noexcept
{
return RCPtr<U>(static_cast<U *>(px));
}
/**
@brief Returns a RCPtr<U> that points to our T object
@tparam T an RC enabled type
@tparam U an RC enabled type
@return RCPtr<U> that points to the same object this points to, or nullptr
Performs a dynamic_cast from T * to U * and then wraps the cast pointer in a new RCPtr<U>,
or if the dynamic_cast fails the result will equal nullptr cast to U * in a new RCPtr<U>.
*/
template <typename T>
template <typename U>
RCPtr<U> RCPtr<T>::dynamic_pointer_cast() const noexcept
{
return RCPtr<U>(dynamic_cast<U *>(px));
}
/**
@brief implements a weak pointer for reference counted objects.
@tparam T RCWeak enabled type
RCWeakPtr takes a template parameter T which is the type of the object it will hold a weak pointer
to. T must be a reference counted type. The purpose of RCWeakPtr is to hold a non-owning pointer to
a reference counted object that can be converted to a strong owning pointer if the object still
exists. It allows having a pointer to an object without affecting its reference count.
RCWeakPtr contains a member variable controller which holds a pointer to the reference count
controller object of the T object it points to. This allows it to query the reference count and
check if the object still exists.
The class provides methods to initialize the weak pointer from a strong pointer or raw pointer to a
T object. This sets the controller to point to the T object's reference count controller.
It also provides methods to reset the pointer, check if it has expired (if the object was deleted),
get a strong owning pointer via lock() if the object still exists, and get the reference count.
The key benefit of RCWeakPtr is being able to hold a non-owning pointer to a reference counted object
without affecting its lifetime. It allows referencing the object without incrementing the reference
count and can check if the object was deleted.
*/
template <typename T>
class RCWeakPtr
{
typedef RCPtr<T> Strong;
public:
typedef T element_type;
RCWeakPtr() noexcept;
RCWeakPtr(const Strong &p) noexcept;
RCWeakPtr(T *p) noexcept;
void reset(const Strong &p) noexcept;
void reset(T *p) noexcept;
void reset() noexcept;
void swap(RCWeakPtr &other) noexcept;
olong use_count() const noexcept;
bool expired() const noexcept;
Strong lock() const noexcept;
Strong move_strong() noexcept;
private:
typename T::Controller::Ptr controller; ///< Smart pointer to the T::ControllerF
};
/**
@brief Construct a new RCWeakPtr<T>::RCWeakPtr object
@tparam T RCWeak enabled type
*/
template <typename T>
RCWeakPtr<T>::RCWeakPtr() noexcept {};
/**
@brief Construct a new RCWeakPtr<T>::RCWeakPtr object
@tparam T RCWeak enabled type
@param p RCPtr<> that holds a reference to an RCWeak::Controller
*/
template <typename T>
RCWeakPtr<T>::RCWeakPtr(const Strong &p) noexcept
{
if (p)
controller = p->refcount_.controller;
}
/**
@brief Construct a new RCWeakPtr<T>::RCWeakPtr object
@tparam T RCWeak enabled type
@param p raw pointer to T
*/
template <typename T>
RCWeakPtr<T>::RCWeakPtr(T *p) noexcept
{
if (p)
controller = p->refcount_.controller;
}
/**
@brief Reassign this weak ptr to the object referenced by the given strong (RCPtr) pointer
@tparam T RCWeak enabled type
@param p Strong pointer to an RCWeak enabled object instance
*/
template <typename T>
void RCWeakPtr<T>::reset(const Strong &p) noexcept
{
if (p)
controller = p->refcount_.controller;
else
controller.reset();
}
/**
@brief Reassign this weak pointer to reference the controller within the specified object
@tparam T RCWeak enabled type
@param p an instance of an RCWeak enabled type
*/
template <typename T>
void RCWeakPtr<T>::reset(T *p) noexcept
{
if (p)
controller = p->refcount_.controller;
else
controller.reset();
}
/**
@brief remove any existing reference
@tparam T RCWeak enabled type
*/
template <typename T>
void RCWeakPtr<T>::reset() noexcept
{
controller.reset();
}
/**
@brief Swaps thing pointed to by *this withthing pointed to by other
@tparam T RCWeak enabled type
@param other the WeakPtr with which *this is to be swapped
*/
template <typename T>
void RCWeakPtr<T>::swap(RCWeakPtr &other) noexcept
{
controller.swap(other.controller);
}
/**
@brief Returns count of references to the object
@tparam T RCWeak enabled type
@return olong ref count
If we point to a controller, we return the object use count for the object the controller
refers to. Otherwise we return zero.
*/
template <typename T>
olong RCWeakPtr<T>::use_count() const noexcept
{
if (controller)
return controller->use_count();
else
return 0;
}
/**
@brief Returns true if the underlying object is already freed.
@tparam T RCWeak enabled type
@return true if the object has been freed.
@return false if the object still exists.
*/
template <typename T>
bool RCWeakPtr<T>::expired() const noexcept
{
return use_count() == 0;
}
/**
@brief Tries to upgrade the weak reference to a strong reference and returns that result
@tparam T RCWeak enabled type
@return RCWeakPtr<T>::Strong
If the underlying object has been freed, returns empty Strong ptr, otherwise returns a
Strong referring to the object.
*/
template <typename T>
typename RCWeakPtr<T>::Strong RCWeakPtr<T>::lock() const noexcept
{
if (controller)
return controller->template lock<Strong>();
else
return Strong();
}
/**
@brief Try to move the weak pointer into a strong pointer
@tparam T RCWeak enabled type
@return RCWeakPtr<T>::Strong to the weakly referred to T or nullptr if the T is no longer available
Releases the weak reference and either takes and returns a strong reference if possible
or nullptr if the lock cannot be accomplished.
*/
template <typename T>
typename RCWeakPtr<T>::Strong RCWeakPtr<T>::move_strong() noexcept
{
typename T::Controller::Ptr c;
c.swap(controller);
if (c)
return c->template lock<Strong>();
else
return Strong();
}
/* We're pretty sure these are false positives. They only occur with very
specific compiler versions and/or architectures.
For some reason some gcc versions think that the reference counter goes
away too soon when destructing certain MultiCompleteType objects. The
warnings/errors do not tell us why they think that.
So for now we display the warnings, but do not fail -Werror builds over
them. So that we can fail them for any other new warnings.
*/
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#if __GNUC__ == 12
#pragma GCC diagnostic warning "-Wuse-after-free"
#endif
#if __GNUC__ == 13
#pragma GCC diagnostic warning "-Wstringop-overflow"
#endif
#endif
/**
@brief implements a simple reference count for objects.
The purpose of thread_unsafe_refcount is to keep track of how many references exist to an
object and automatically delete the object when the reference count reaches zero. It
provides methods to increment, decrement, and read the current reference count.
thread_unsafe_refcount contains a member variable rc which holds the current reference count
number as a type olong. Overall, thread_unsafe_refcount provides simple reference counting
functionality to track object references in a single-threaded context. It could be used to
implement basic automatic memory management based on scope and references for objects.
*/
class thread_unsafe_refcount
{
public:
thread_unsafe_refcount() noexcept;
void operator++() noexcept;
olong operator--() noexcept;
bool inc_if_nonzero() noexcept;
olong use_count() const noexcept;
static constexpr bool is_thread_safe();
#ifdef OPENVPN_RC_NOTIFY
void notify_release() noexcept;
#endif
#ifdef OPENVPN_RC_NOTIFY
template <typename T>
class ListHead;
#endif
private:
thread_unsafe_refcount(const thread_unsafe_refcount &) = delete;
thread_unsafe_refcount &operator=(const thread_unsafe_refcount &) = delete;
olong rc; ///< The reference count, platform efficient integer type
};
/**
@brief Construct a new thread unsafe refcount::thread unsafe refcount object
initializes rc to 0 for a new object with no references.
*/
inline thread_unsafe_refcount::thread_unsafe_refcount() noexcept
: rc(olong(0)){};
/**
@brief Increment ref count by 1
*/
inline void thread_unsafe_refcount::operator++() noexcept
{
++rc;
}
/**
@brief Decrement ref count by 1
@return olong
*/
inline olong thread_unsafe_refcount::operator--() noexcept
{
return --rc;
}
/**
@brief Increments refcount by 1 if refcount is not 0, returns true if it incremented refcount
@return true if the ref count was incremented
@return false if the ref count was not incremented
*/
inline bool thread_unsafe_refcount::inc_if_nonzero() noexcept
{
if (rc)
{
++rc;
return true;
}
else
return false;
}
/**
@brief Returns the internal use count
@return olong ref count
*/
inline olong thread_unsafe_refcount::use_count() const noexcept
{
return rc;
}
/**
@brief Returns false for this type
@return false
This allows a uniform way to check at compile time or runtime and determine if the
refcount type is thread safe or not. This one is not.
*/
inline constexpr bool thread_unsafe_refcount::is_thread_safe()
{
return false;
}
#ifdef OPENVPN_RC_NOTIFY
inline void thread_unsafe_refcount::notify_release() noexcept
{
}
#endif
#ifdef OPENVPN_RC_NOTIFY
template <typename T>
class thread_unsafe_refcount::ListHead
{
public:
ListHead() noexcept
: ptr(nullptr)
{
}
T *load() noexcept
{
return ptr;
}
void insert(T *item) noexcept
{
item->next = ptr;
ptr = item;
}
private:
ListHead(const ListHead &) = delete;
ListHead &operator=(const ListHead &) = delete;
T *ptr;
};
#endif
/**
@brief Implements a memory fenced ref count
*/
class thread_safe_refcount
{
public:
thread_safe_refcount() noexcept;
void operator++() noexcept;
olong operator--() noexcept;
bool inc_if_nonzero() noexcept;
olong use_count() const noexcept;
static constexpr bool is_thread_safe();
#ifdef OPENVPN_RC_NOTIFY
void notify_release() noexcept;
#endif
#ifdef OPENVPN_RC_NOTIFY
template <typename T>
class ListHead;
#endif
private:
thread_safe_refcount(const thread_safe_refcount &) = delete;
thread_safe_refcount &operator=(const thread_safe_refcount &) = delete;
std::atomic<olong> rc;
};
/**
@brief Construct a new thread safe refcount object
*/
inline thread_safe_refcount::thread_safe_refcount() noexcept
: rc(olong(0))
{
}
/**
@brief Atomically increment the refcount by 1
*/
inline void thread_safe_refcount::operator++() noexcept
{
rc.fetch_add(1, std::memory_order_relaxed);
}
/**
@brief Atomically decrement the internal counter by 1
@return olong decremented ref count
*/
inline olong thread_safe_refcount::operator--() noexcept
{
// http://www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html
const olong ret = rc.fetch_sub(1, std::memory_order_release) - 1;
if (ret == 0)
std::atomic_thread_fence(std::memory_order_acquire);
return ret;
}
/**
@brief Atomically increments refcount by 1 if refcount is not 0, returns true if it incremented refcount
@return true if refcount was incremented
@return false if refcount was not incremented
If refcount is 0, do nothing and return false. If refcount != 0, increment it and return true.
*/
inline bool thread_safe_refcount::inc_if_nonzero() noexcept
{
olong previous = rc.load(std::memory_order_relaxed);
while (true)
{
if (!previous)
break;
if (rc.compare_exchange_weak(previous, previous + 1, std::memory_order_relaxed))
break;
}
return previous > 0;
}
/**
@brief Returns the internal use count
@return olong ref count
*/
inline olong thread_safe_refcount::use_count() const noexcept
{
return rc.load(std::memory_order_relaxed);
}
/**
@brief Returns true for this class
@return true
This allows a uniform way to check at compile time or runtime and determine if the
refcount type is thread safe or not. This one is thread safe.
*/
inline constexpr bool thread_safe_refcount::is_thread_safe()
{
return true;
}
#ifdef OPENVPN_RC_NOTIFY
inline void thread_safe_refcount::notify_release() noexcept
{
}
#endif
#ifdef OPENVPN_RC_NOTIFY
template <typename T>
class thread_safe_refcount::ListHead
{
public:
ListHead() noexcept
: ptr(nullptr)
{
}
T *load() noexcept
{
return ptr;
}
void insert(T *item) noexcept
{
item->next = ptr;
ptr = item;
}
private:
ListHead(const ListHead &) = delete;
ListHead &operator=(const ListHead &) = delete;
T *ptr;
};
#endif
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
/**
@brief Reference count base class for objects tracked by RCPtr. Disallows copying and assignment.
Implements basic reference counting functionality for objects.
The purpose of RC is to provide a base class that other classes can inherit from to enable
reference counting and automatic memory management. It takes a template parameter RCImpl which
specifies the actual reference count implementation class that will be used, either
thread_safe_refcount or thread_unsafe_refcount.
RC provides a common base class for enabling reference counting on other classes via inheritance.
It delegates the actual reference count tracking to the RCImpl implementation specified as a
template parameter. It also prohibits copy or assignment of the inheriting object.
The member functions just delegate to the refcount_ object that's injected via template.
@tparam RCImpl The ref count implementation that will be used - thread_safe_refcount or thread_unsafe_refcount
*/
template <typename RCImpl>
class RC
{
public:
typedef RCPtr<RC> Ptr;
RC()
noexcept = default;
virtual ~RC() = default;
RC(const RC &) = delete;
RC &operator=(const RC &) = delete;
olong use_count() const noexcept;
static constexpr bool is_thread_safe();
private:
template <typename R>
friend void intrusive_ptr_add_ref(R *p) noexcept;
template <typename R>
friend void intrusive_ptr_release(R *p) noexcept;
RCImpl refcount_;
};
/**
@brief Delegates call to RCImpl and returns the result
@tparam RCImpl a suitable ref count implementation
@return olong ref count
*/
template <typename RCImpl>
olong RC<RCImpl>::use_count() const noexcept
{
return refcount_.use_count();
}
/**
@brief Delegates call to RCImpl and returns the result
@tparam RCImpl a suitable ref count implementation
@return true if the underlying RCImpl is thread safe
@return false if the underlying RCImpl is not thread safe
*/
template <typename RCImpl>
constexpr bool RC<RCImpl>::is_thread_safe()
{
return RCImpl::is_thread_safe();
}
/**
@brief Reference count base class for objects tracked by RCPtr. Allows copying and assignment.
@tparam RCImpl The ref count implementation that will be used - thread_safe_refcount or thread_unsafe_refcount
Implements basic reference counting functionality for objects plus copy/assign.
The purpose of RCCopyable is to provide a base class that other classes can inherit from to
enable reference counting and automatic memory management. It takes a template parameter
RCImpl which specifies the actual reference count implementation class that will be used, either
thread_safe_refcount or thread_unsafe_refcount.
RCCopyable provides a common base class for enabling reference counting on other classes via
inheritance. It delegates the actual reference count tracking to the RCImpl implementation
specified as a template parameter.
Since copy and assignment are allowed and this is a reference counted type, some atypical logic
is implemented to make those operations work properly. This means that while the rest of the
inheriting object will be copied as per usual, for this object we will give the copy a fresh
reference count, since the count is bookkeeping metadata. The referencing pointers to the individual
objects will then take care of properly maintaining the RC of the new and the donor object as
per usual.
The member functions just delegate to the refcount_ object that's injected via template.
*/
template <typename RCImpl>
class RCCopyable
{
public:
virtual ~RCCopyable(){};
RCCopyable() noexcept {};
RCCopyable(const RCCopyable &) noexcept;
RCCopyable(RCCopyable &&) noexcept;
RCCopyable &operator=(const RCCopyable &) noexcept;
RCCopyable &operator=(RCCopyable &&) noexcept;
olong use_count() const noexcept;
private:
template <typename R>
friend void intrusive_ptr_add_ref(R *p) noexcept;
template <typename R>
friend void intrusive_ptr_release(R *p) noexcept;
RCImpl refcount_;
};
/**
@brief Construct a new RCCopyable object
@tparam RCImpl RC compatible type to use as ref count
Copy/move construction/assignment are no-ops because we always want to
default-construct the refcount from scratch. We never want to actually copy
or move the refcount because that would break any referencing smart pointers.
We make a fresh object (by copy/move/assignment) and we want a new ref count.
*/
template <typename RCImpl>
RCCopyable<RCImpl>::RCCopyable(const RCCopyable &) noexcept {};
/**
@brief Construct a new RCCopyable object by move
@tparam RCImpl RC compatible type to use as ref count
Copy/move construction/assignment are no-ops because we always want to
default-construct the refcount from scratch. We never want to actually copy
or move the refcount because that would break any referencing smart pointers.
We make a fresh object (by copy/move/assignment) and we want a new ref count.
*/
template <typename RCImpl>
RCCopyable<RCImpl>::RCCopyable(RCCopyable &&) noexcept {};
/**
@brief Ensures the new ref count is not copied with the rest of the object.
@tparam RCImpl
@return RCCopyable<RCImpl>&
Copy/move construction/assignment are no-ops because we always want to
default-construct the refcount from scratch. We never want to actually copy
or move the refcount because that would break any referencing smart pointers.
We make a fresh object (by copy/move/assignment) and we want a new ref count.
*/
template <typename RCImpl>
RCCopyable<RCImpl> &RCCopyable<RCImpl>::operator=(const RCCopyable &) noexcept
{
return *this;
}
/**
@brief Ensures the new ref count is not moved with the rest of the object.
@tparam RCImpl
@return RCCopyable<RCImpl>&
Copy/move construction/assignment are no-ops because we always want to
default-construct the refcount from scratch. We never want to actually copy
or move the refcount because that would break any referencing smart pointers.
We make a fresh object (by copy/move/assignment) and we want a new ref count.
*/
template <typename RCImpl>
RCCopyable<RCImpl> &RCCopyable<RCImpl>::operator=(RCCopyable &&) noexcept
{
return *this;
}
/**
@brief Returns the use count as reported by defering to the injected ref count type.
@tparam RCImpl the injected ref count implementation
@return olong current ref count
*/
template <typename RCImpl>
olong RCCopyable<RCImpl>::use_count() const noexcept
{
return refcount_.use_count();
}
/**
@brief Reference count base class for objects tracked by RCPtr. Like RC, but also allows weak
pointers and release notification callables.
@tparam RCImpl The ref count implementation that will be used - thread_safe_refcount or thread_unsafe_refcount
Implements basic reference counting functionality for objects plus weak pointer capability.
The purpose of RCWeak is to provide a base class that other classes can inherit from to
enable reference counting and automatic memory management. It takes a template parameter
RCImpl which specifies the actual reference count implementation class that will be used,
either thread_safe_refcount or thread_unsafe_refcount.
RCWeak provides a common base class for enabling reference counting on other classes via
inheritance. It delegates the actual reference count tracking to the RCImpl implementation
specified as a template parameter. It also disables copy but enables move.
Nested classes are used to facilitate the requirements of weak pointers and those classes
are documented seperately. The member functions just delegate to the refcount_ object
that's injected via template, with the previously mentionend nested classes changing the
way ref counts work as required.
@see RCWeak::Controller for more details
@see RCWeak::ControllerRef for more details
*/
template <typename RCImpl> // RCImpl = thread_safe_refcount or thread_unsafe_refcount
class RCWeak
{
template <typename T>
friend class RCWeakPtr;
#ifdef OPENVPN_RC_NOTIFY
// Base class of release notification callables
class NotifyBase;
// A release notification callable
template <typename CALLABLE>
class NotifyItem;
// Head of a linked-list of release notification callables
class NotifyListHead;
#endif
struct Controller;
struct ControllerRef;
public:
typedef RCPtr<RCWeak> Ptr;
typedef RCWeakPtr<RCWeak> WPtr;
RCWeak() noexcept
: refcount_(this){};
virtual ~RCWeak() = default;
RCWeak(const RCWeak &) = delete;
RCWeak &operator=(const RCWeak &) = delete;
#ifdef OPENVPN_RC_NOTIFY
// Add observers to be called just prior to object deletion,
// but after refcount has been decremented to 0. At this
// point, all weak pointers have expired, and no strong
// pointers are outstanding. Callables can access the
// object by raw pointer but must NOT attempt to create a
// strong pointer referencing the object.
template <typename CALLABLE>
void rc_release_notify(const CALLABLE &c) noexcept
{
refcount_.notify.add(c);
}
template <typename CALLABLE>
void rc_release_notify(CALLABLE &&c) noexcept
{
refcount_.notify.add(std::move(c));
}
#endif
private:
template <typename R>
friend void intrusive_ptr_add_ref(R *rcptr) noexcept;
template <typename R>
friend void intrusive_ptr_release(R *rcptr) noexcept;
ControllerRef refcount_; ///< Adapter instance that allows RCPtr to properly interact with RCWeak
};
/**
@brief Controller structure for our ptr/weakptr implementation
@tparam RCImpl The ref count implementation
For weak-referenceable objects, we must detach the refcount from the object and place it
in Controller.
This struct implements 3 essential elements:
- A pointer to the parent (RCWeak enabled) object.
- A ref count on Controller via RC<RCImpl> inheritance.
- A ref count inside Controller via the RCImpl member 'rc'.
They are used as follows.
Controller::rc is the ref count of the object, and the inherited RCImpl is the ref count of the
Controller itself. The 'parent' pointer is used to form a Strong (owning) pointer on demand if
the Controller::rc refcount is greater than zero, or if not a nullptr Strong is returned.
An RCPtr<> will call intrusive_ptr_add_ref and intrusive_ptr_release helpers which will
increment and decrement refcount_, which for RCWeak is an instance of RCWeak<>::ControllerRef.
This ControllerRef instance will delegate those operations to the 'controller' member, which
is an RCWeak<>::Controller referenced via an RCPtr<> instance inside ControllerRef. This is
where the composed 'rc' refcount is modified.
The inherited RCImpl is controlled by the 'Controller::Ptr controller' member in ControllerRef
via the member refcount_ and by the RCWeakPtr reaching in and manipulating it. Thus the object
itself has 1 refcount on the controller and each weak ptr also holds a refcount on the controller.
When the last RCPtr on the object goes out of scope and decrements Controller::rc to zero, the
object will be destroyed. If the only refcount on the controller is the ControllerRef, then the
Controller instance will also be destroyed at this time. Otherwise the weak pointers to the
controller will control that object's lifespan, but no further Strong pointers to the (now
nonexistant) object will be allowed. This test for zero is what allows 'parent' to dangle
harmlessly in some cases.
*/
template <typename RCImpl>
struct RCWeak<RCImpl>::Controller : public RC<RCImpl>
{
typedef RCPtr<Controller> Ptr;
Controller(RCWeak *parent_arg) noexcept;
olong use_count() const noexcept;
template <typename PTR>
PTR lock() noexcept;
RCWeak *const parent; ///< Pointer to object, dangles (harmlessly) after rc decrements to 0
RCImpl rc; ///< refcount implementation for 'parent' object
};
/**
@brief Construct a new RCWeak<RCImpl>::Controller object
@tparam RCImpl The ref count implementation
@param parent_arg raw pointer to the RCWeak enabled object instance
*/
template <typename RCImpl>
RCWeak<RCImpl>::Controller::Controller(RCWeak *parent_arg) noexcept
: parent(parent_arg){};
/**
@brief Get the use count of the underlying ref count implementation
@tparam RCImpl the ref count implementation
@return olong ref count
*/
template <typename RCImpl>
olong RCWeak<RCImpl>::Controller::use_count() const noexcept
{
return rc.use_count();
}
/**
@brief Used internally to try a to get a pointer to the controlled instance
@tparam RCImpl the injected ref count implementation
@tparam PTR explicit return type
@return PTR pointer type referring to either the weakly ref'd object or nullptr
Will return the requested pointer to the object if the ref count could be incremented,
or the specified pointer type set to nullptr
*/
template <typename RCImpl>
template <typename PTR>
PTR RCWeak<RCImpl>::Controller::lock() noexcept
{
if (rc.inc_if_nonzero())
return PTR(static_cast<typename PTR::element_type *>(parent), false);
else
return PTR();
}
/**
@brief Adapter object for RCWeak::Controller <---> RCPtr
@tparam RCImpl the injected ref count implementation
Serves as an adapter that changes the normal RCPtr/RC interaction such that the embedded controller
rc member is used as the ref count.
*/
template <typename RCImpl>
struct RCWeak<RCImpl>::ControllerRef
{
explicit ControllerRef(RCWeak *parent) noexcept;
void operator++() noexcept;
olong operator--() noexcept;
#ifdef OPENVPN_RC_NOTIFY
void notify_release() noexcept;
#endif
typename Controller::Ptr controller; ///< object containing actual refcount
#ifdef OPENVPN_RC_NOTIFY
NotifyListHead notify; // linked list of callables to be notified on object release
#endif
};
/**
@brief Construct a new RCWeak<RCImpl>::ControllerRef object
@tparam RCImpl The ref count implementation
@param parent raw pointer to RCWeak enabled type
Creates a ControllerRef and associates that adapter with the specified instance
*/
template <typename RCImpl>
RCWeak<RCImpl>::ControllerRef::ControllerRef(RCWeak *parent) noexcept
: controller(new Controller(parent)){};
/**
@brief Increments the ref count
@tparam RCImpl the injected ref count implementation
The adapter changes the usual implementation of this operator to increment a ref count 'rc'
that's inside the controller object for the controlled instance.
*/
template <typename RCImpl>
void RCWeak<RCImpl>::ControllerRef::operator++() noexcept
{
++controller->rc;
}
/**
@brief Decrements the ref count
@tparam RCImpl the injected ref count implementation
The adapter changes the usual implementation of this operator to decrement a ref count 'rc'
that's inside the controller object for the controlled instance.
*/
template <typename RCImpl>
olong RCWeak<RCImpl>::ControllerRef::operator--() noexcept
{
return --controller->rc;
}
#ifdef OPENVPN_RC_NOTIFY
template <typename RCImpl>
void RCWeak<RCImpl>::ControllerRef::notify_release() noexcept
{
notify.release();
}
#endif
#ifdef OPENVPN_RC_NOTIFY
// Base class of release notification callables
template <typename RCImpl>
class RCWeak<RCImpl>::NotifyBase
{
public:
NotifyBase() noexcept
{
}
virtual void call() noexcept = 0;
virtual ~NotifyBase()
{
}
NotifyBase *next = nullptr;
private:
NotifyBase(const NotifyBase &) = delete;
NotifyBase &operator=(const NotifyBase &) = delete;
};
// A release notification callable
template <typename RCImpl>
template <typename CALLABLE>
class RCWeak<RCImpl>::NotifyItem : public NotifyBase
{
public:
NotifyItem(const CALLABLE &c) noexcept
: callable(c)
{
}
NotifyItem(CALLABLE &&c) noexcept
: callable(std::move(c))
{
}
private:
virtual void call() noexcept override
{
callable();
}
CALLABLE callable;
};
// Head of a linked-list of release notification callables
template <typename RCImpl>
class RCWeak<RCImpl>::NotifyListHead
{
public:
NotifyListHead() noexcept
{
}
template <typename CALLABLE>
void add(const CALLABLE &c) noexcept
{
NotifyBase *item = new NotifyItem<CALLABLE>(c);
head.insert(item);
}
template <typename CALLABLE>
void add(CALLABLE &&c) noexcept
{
NotifyBase *item = new NotifyItem<CALLABLE>(std::move(c));
head.insert(item);
}
void release() noexcept
{
// In thread-safe mode, list traversal is guaranteed to be
// contention-free because we are not called until refcount
// reaches zero and after a std::memory_order_acquire fence.
NotifyBase *nb = head.load();
while (nb)
{
NotifyBase *next = nb->next;
nb->call();
delete nb;
nb = next;
}
}
private:
NotifyListHead(const NotifyListHead &) = delete;
NotifyListHead &operator=(const NotifyListHead &) = delete;
typename RCImpl::template ListHead<NotifyBase> head;
};
#endif
/**
@brief Helper to increment a ref count
@tparam R type that has an incrementable member refcount_
@param rcptr pointer to instance of R
@todo consider removing debug cout
Helper function template to implement incrementing of a member 'refcount_' of a type R; acts as an
adapter layer to implement this funtionality as well as some conditionally built debug logging.
*/
template <typename R>
inline void intrusive_ptr_add_ref(R *rcptr) noexcept
{
#ifdef OPENVPN_RC_DEBUG
std::cout << "ADD REF " << cxx_demangle(typeid(rcptr).name()) << std::endl;
#endif
++rcptr->refcount_;
}
/**
@brief Helper to decrement a ref count
@tparam R type that has an decrementable member refcount_
@param rcptr pointer to instance of R
@todo consider removing debug cout
Helper function template to implement decrementing of a member 'refcount_' of a type R; acts as an
adapter layer to implement this funtionality as well as some conditionally built debug logging and
a conditionally built notify hook.
*/
template <typename R>
inline void intrusive_ptr_release(R *rcptr) noexcept
{
if (--rcptr->refcount_ == 0)
{
#ifdef OPENVPN_RC_DEBUG
std::cout << "DEL OBJ " << cxx_demangle(typeid(rcptr).name()) << std::endl;
#endif
#ifdef OPENVPN_RC_NOTIFY
rcptr->refcount_.notify_release();
#endif
delete rcptr;
}
else
{
#ifdef OPENVPN_RC_DEBUG
std::cout << "REL REF " << cxx_demangle(typeid(rcptr).name()) << std::endl;
#endif
}
}
} // namespace openvpn
#endif // OPENVPN_COMMON_RC_H
|