1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
// OpenVPN -- An application to securely tunnel IP networks
// over a single port, with support for SSL/TLS-based
// session authentication and key exchange,
// packet encryption, packet authentication, and
// packet compression.
//
// Copyright (C) 2012- OpenVPN Inc.
//
// SPDX-License-Identifier: MPL-2.0 OR AGPL-3.0-only WITH openvpn3-openssl-exception
//
// OpenVPN AEAD data channel interface
#ifndef OPENVPN_CRYPTO_CRYPTO_AEAD_H
#define OPENVPN_CRYPTO_CRYPTO_AEAD_H
#include <cstring> // for std::memcpy, std::memset
#include <openvpn/common/size.hpp>
#include <openvpn/common/exception.hpp>
#include <openvpn/common/clamp_typerange.hpp>
#include <openvpn/buffer/buffer.hpp>
#include <openvpn/frame/frame.hpp>
#include <openvpn/crypto/static_key.hpp>
#include <openvpn/crypto/packet_id_data.hpp>
#include <openvpn/log/sessionstats.hpp>
#include <openvpn/crypto/cryptodc.hpp>
// Sample AES-GCM head:
// 48000001 00000005 7e7046bd 444a7e28 cc6387b1 64a4d6c1 380275a...
// [ OP32 ] [seq # ] [ auth tag ] [ payload ... ]
// [4-byte
// IV head]
using openvpn::numeric_util::clamp_to_default;
namespace openvpn::AEAD {
OPENVPN_EXCEPTION(aead_error);
template <typename CRYPTO_API>
class Crypto : public CryptoDCInstance
{
class Nonce
{
public:
Nonce()
{
static_assert(4 + CRYPTO_API::CipherContextAEAD::IV_LEN == sizeof(data),
"AEAD IV_LEN inconsistency");
ad_op32 = false;
std::memset(data, 0, sizeof(data));
}
/**
* Sets the IV tail for AEAD operations
*
* The IV for AEAD ciphers (both AES-GCM and Chacha20-Poly1305) consists of 96 bits/12 bytes
* (It then gets concatenated with internal 32 bits for block counter to form a 128 bit counter for the
* encryption).
*
* Since we only use 4 bytes (32 bit packet ID) on the wire, we fill out the rest of the IV with
* pseudorandom bytes that come from the negotiated key for the HMAC key (this key is not used
* by AEAD ciphers, so we reuse it for this purpose in AEAD mode).
*/
void set_tail(const StaticKey &sk)
{
constexpr size_t implicit_iv_len = 8;
if (sk.size() < implicit_iv_len)
throw aead_error("insufficient key material for nonce tail");
/* 4 bytes opcode + 4 bytes on wire IV */
constexpr size_t implicit_iv_offset = data_offset_pkt_id + (12 - implicit_iv_len);
std::memcpy(data + implicit_iv_offset, sk.data(), implicit_iv_len);
}
// for encrypt
Nonce(const Nonce &ref, PacketIDDataSend &pid_send, const unsigned char *op32)
{
/** Copy op code and tail of packet ID */
std::memcpy(data, ref.data, sizeof(data));
Buffer buf(data + data_offset_pkt_id, PacketIDData::long_id_size, false);
pid_send.write_next(buf);
if (op32)
{
ad_op32 = true;
std::memcpy(data, op32, op32_size);
}
else
ad_op32 = false;
}
// for encrypt
void prepend_ad(Buffer &buf, const PacketIDDataSend &pid_send) const
{
buf.prepend(data + data_offset_pkt_id, pid_send.length());
}
// for decrypt
Nonce(const Nonce &ref, const PacketIDDataReceive &recv_pid, Buffer &buf, const unsigned char *op32)
{
/* Copy opcode and tail of packet ID */
std::memcpy(data, ref.data, sizeof(data));
/* copy dynamic packet of IV into */
buf.read(data + data_offset_pkt_id, recv_pid.length());
if (op32)
{
ad_op32 = true;
std::memcpy(data, op32, op32_size);
}
else
ad_op32 = false;
}
// for decrypt
bool verify_packet_id(PacketIDDataReceive &pid_recv, const PacketIDControl::time_t now, const SessionStats::Ptr &stats_arg)
{
Buffer buf(data + data_offset_pkt_id, PacketIDData::long_id_size, true);
const PacketIDData pid = pid_recv.read_next(buf);
return pid_recv.test_add(pid, now, stats_arg); // verify packet ID
}
const unsigned char *iv() const
{
return data + data_offset_pkt_id;
}
const unsigned char *ad() const
{
return ad_op32 ? data : data + data_offset_pkt_id;
}
size_t ad_len(const PacketIDDataSend &pid_send) const
{
return (ad_op32 ? op32_size : 0) + pid_send.length();
}
size_t ad_len(const PacketIDDataReceive &pid_recv) const
{
return (ad_op32 ? op32_size : 0) + pid_recv.length();
}
private:
bool ad_op32; // true if AD (authenticated data) includes op32 opcode
// Sample data:
// [ OP32 (optional) ] [ pkt ID ] [ nonce tail ]
// [ 48 00 00 01 ] [ 00 00 00 05 ] [ 7f 45 64 db 33 5b 6c 29 ]
unsigned char data[16];
static constexpr std::size_t data_offset_pkt_id = 4;
static constexpr std::size_t op32_size = 4;
};
struct Encrypt
{
typename CRYPTO_API::CipherContextAEAD impl;
Nonce nonce;
PacketIDDataSend pid_send{};
BufferAllocated work;
};
struct Decrypt
{
typename CRYPTO_API::CipherContextAEAD impl;
Nonce nonce;
PacketIDDataReceive pid_recv{};
BufferAllocated work;
};
public:
typedef CryptoDCInstance Base;
Crypto(SSLLib::Ctx libctx_arg,
CryptoDCSettingsData dc_settings_data,
const Frame::Ptr &frame_arg,
const SessionStats::Ptr &stats_arg)
: dc_settings(dc_settings_data),
frame(frame_arg),
stats(stats_arg),
libctx(libctx_arg)
{
}
// Encrypt/Decrypt
// returns true if packet ID is close to wrapping
bool encrypt(BufferAllocated &buf, const unsigned char *op32) override
{
// only process non-null packets
if (buf.size())
{
// build nonce/IV/AD
Nonce nonce(e.nonce, e.pid_send, op32);
// encrypt to work buf
frame->prepare(Frame::ENCRYPT_WORK, e.work);
if (e.work.max_size() < buf.size())
throw aead_error("encrypt work buffer too small");
unsigned char *work_data = e.work.write_alloc(buf.size());
unsigned char *auth_tag_tmp = nullptr;
// alloc auth tag in buffer at the start of the packet
// Create a temporary auth tag at the end if the implementation and mode require it
unsigned char *auth_tag = e.work.prepend_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
if (e.impl.requires_authtag_at_end())
{
auth_tag_tmp = e.work.write_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
// encrypt
e.impl.encrypt(buf.data(), work_data, buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len(e.pid_send));
if (auth_tag_tmp)
{
/* move the auth tag to the front */
std::memcpy(auth_tag, auth_tag_tmp, CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
/* Ignore the auth tag at the end */
e.work.inc_size(-CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
buf.swap(e.work);
// prepend additional data
nonce.prepend_ad(buf, e.pid_send);
}
return e.pid_send.wrap_warning() || e.impl.get_usage_limit().usage_limit_warn();
}
Error::Type decrypt(BufferAllocated &buf, const std::time_t now, const unsigned char *op32) override
{
// only process non-null packets
if (buf.size())
{
// get nonce/IV/AD
Nonce nonce(d.nonce, d.pid_recv, buf, op32);
// get auth tag if it is at the front. If the auth tag is at the end
// the decrypt function will just treat it as part of the input
unsigned char *auth_tag = nullptr;
auth_tag = buf.read_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
// initialize work buffer.
frame->prepare(Frame::DECRYPT_WORK, d.work);
if (d.work.max_size() < buf.size())
throw aead_error("decrypt work buffer too small");
if (auth_tag && e.impl.requires_authtag_at_end())
{
unsigned char *auth_tag_end = buf.write_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
std::memcpy(auth_tag_end, auth_tag, CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
auth_tag = nullptr;
}
// decrypt from buf -> work
if (!d.impl.decrypt(buf.c_data(), d.work.data(), buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len(d.pid_recv)))
{
buf.reset_size();
return Error::DECRYPT_ERROR;
}
if (e.impl.requires_authtag_at_end())
{
d.work.set_size(buf.size() - CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN);
}
else
{
d.work.set_size(buf.size());
}
// verify packet ID
if (!nonce.verify_packet_id(d.pid_recv, now, stats))
{
buf.reset_size();
return Error::REPLAY_ERROR;
}
// return cleartext result in buf
buf.swap(d.work);
}
return Error::SUCCESS;
}
// Initialization
// TODO: clamp_to_default probably will cause an error further along if triggered, investigate
void init_cipher(StaticKey &&encrypt_key, StaticKey &&decrypt_key) override
{
e.impl.init(libctx,
dc_settings.cipher(),
encrypt_key.data(),
clamp_to_default<unsigned int>(encrypt_key.size(), 0),
CRYPTO_API::CipherContextAEAD::ENCRYPT);
d.impl.init(libctx,
dc_settings.cipher(),
decrypt_key.data(),
clamp_to_default<unsigned int>(decrypt_key.size(), 0),
CRYPTO_API::CipherContextAEAD::DECRYPT);
}
void init_hmac(StaticKey &&encrypt_key,
StaticKey &&decrypt_key) override
{
e.nonce.set_tail(encrypt_key);
d.nonce.set_tail(decrypt_key);
}
void init_pid(const char *recv_name,
const int recv_unit,
const SessionStats::Ptr &recv_stats_arg) override
{
e.pid_send = PacketIDDataSend{};
d.pid_recv.init(recv_name, recv_unit, false);
stats = recv_stats_arg;
}
// Indicate whether or not cipher/digest is defined
unsigned int defined() const override
{
unsigned int ret = CRYPTO_DEFINED;
// AEAD mode doesn't use HMAC, but we still indicate HMAC_DEFINED
// because we want to use the HMAC keying material for the AEAD nonce tail.
if (CryptoAlgs::defined(dc_settings.cipher()))
ret |= (CIPHER_DEFINED | HMAC_DEFINED);
return ret;
}
bool consider_compression(const CompressContext &comp_ctx) override
{
return true;
}
// Rekeying
void rekey(const typename Base::RekeyType type) override
{
}
private:
CryptoDCSettingsData dc_settings;
Frame::Ptr frame;
SessionStats::Ptr stats;
SSLLib::Ctx libctx;
Encrypt e;
Decrypt d;
};
template <typename CRYPTO_API>
class CryptoContext : public CryptoDCContext
{
public:
typedef RCPtr<CryptoContext> Ptr;
CryptoContext(SSLLib::Ctx libctx_arg,
CryptoDCSettingsData dc_settings_data,
const Frame::Ptr &frame_arg,
const SessionStats::Ptr &stats_arg)
: CryptoDCContext(dc_settings_data.key_derivation()),
dc_settings(std::move(dc_settings_data)),
frame(frame_arg),
stats(stats_arg),
libctx(libctx_arg)
{
/* Check if the cipher is legal for AEAD and otherwise throw */
legal_dc_cipher(dc_settings.cipher());
dc_settings.set_digest(CryptoAlgs::NONE);
}
CryptoDCInstance::Ptr new_obj(const unsigned int key_id) override
{
return new Crypto<CRYPTO_API>(libctx, dc_settings, frame, stats);
}
// cipher/HMAC/key info
CryptoDCSettingsData crypto_info() override
{
return dc_settings;
}
// Info for ProtoContext::link_mtu_adjust
size_t encap_overhead() const override
{
return CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN;
}
private:
CryptoDCSettingsData dc_settings;
Frame::Ptr frame;
SessionStats::Ptr stats;
SSLLib::Ctx libctx;
};
} // namespace openvpn::AEAD
#endif
|