File: relack.hpp

package info (click to toggle)
openvpn3-client 25%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,276 kB
  • sloc: cpp: 190,085; python: 7,218; ansic: 1,866; sh: 1,361; java: 402; lisp: 81; makefile: 17
file content (195 lines) | stat: -rw-r--r-- 4,847 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
//    OpenVPN -- An application to securely tunnel IP networks
//               over a single port, with support for SSL/TLS-based
//               session authentication and key exchange,
//               packet encryption, packet authentication, and
//               packet compression.
//
//    Copyright (C) 2012- OpenVPN Inc.
//
//    SPDX-License-Identifier: MPL-2.0 OR AGPL-3.0-only WITH openvpn3-openssl-exception
//

// Handle ACK tracking for reliability layer

#pragma once


#include <deque>
#include <algorithm>
#include <limits>

#include <openvpn/common/socktypes.hpp>
#include <openvpn/buffer/buffer.hpp>
#include <openvpn/crypto/packet_id_control.hpp>
#include <openvpn/reliable/relcommon.hpp>

namespace openvpn {

class ReliableAck
{
  public:
    static constexpr size_t maximum_acks_ack_v1 = 8;
    static constexpr size_t maximum_acks_control_v1 = 4;
    typedef reliable::id_t id_t;

    explicit ReliableAck() = default;
    size_t size() const;
    bool empty() const;
    bool acks_ready() const;
    void push_back(id_t value)
    {
        data.push_back(value);
    }
    id_t front() const
    {
        return data.front();
    }
    void pop_front()
    {
        data.pop_front();
    }

    // Called to read incoming ACK IDs from buf and mark them as ACKed in rel_send.
    // If live is false, read the ACK IDs, but don't modify rel_send.
    // Return the number of ACK IDs read.
    template <typename REL_SEND>
    static size_t ack(REL_SEND &rel_send, Buffer &buf, const bool live)
    {
        const size_t len = buf.pop_front();
        for (size_t i = 0; i < len; ++i)
        {
            const id_t id = read_id(buf);
            if (live)
                rel_send.ack(id);
        }
        return len;
    }

    static size_t ack_skip(Buffer &buf)
    {
        const size_t len = buf.pop_front();
        for (size_t i = 0; i < len; ++i)
            read_id(buf);
        return len;
    }

    // copy ACKs from buffer to self
    void read(Buffer &buf)
    {
        const size_t len = buf.pop_front();
        for (size_t i = 0; i < len; ++i)
        {
            const id_t id = read_id(buf);
            data.push_back(id);
        }
    }

    /**
     * handles the reACK logic and reACK/ACK list manipulation. pulls as many repeated ACKs as we can fit
     * into the packet from the reACK queue, and pushes the fresh never-been-ACKed ids into the other end
     * of the reACK queue. Enforces a limit on the size of the reACK queue and may discard reACKs sometimes.
     *
     */
    void prepend(Buffer &buf, bool ackv1)
    {
        size_t max_acks = ackv1 ? maximum_acks_ack_v1 : maximum_acks_control_v1;

        size_t acks_added = 0;

        while (acks_added < max_acks && data.size() > 0)
        {
            auto ack = data.front();
            data.pop_front();

            prepend_id(buf, ack);
            acks_added++;
            add_ack_to_reack(ack);
        }

        /* the already pushed acks are in front of the re_acks list, so we
         * skip over them */
        while (acks_added < re_acks.size() && acks_added < max_acks)
        {
            prepend_id(buf, re_acks[acks_added]);
            acks_added++;
        }
        buf.push_front((unsigned char)acks_added);
    }

    static void prepend_id(Buffer &buf, const id_t id)
    {
        const id_t net_id = htonl(id);
        buf.prepend((unsigned char *)&net_id, sizeof(net_id));
    }

    static id_t read_id(Buffer &buf)
    {
        id_t net_id;
        buf.read((unsigned char *)&net_id, sizeof(net_id));
        return ntohl(net_id);
    }

    size_t resend_size();

  private:
    void add_ack_to_reack(id_t ack);

    std::deque<id_t> data;
    std::deque<id_t> re_acks;
};

/**
 * Returns the number of outstanding ACKs that have been sent.
 */
inline size_t ReliableAck::size() const
{
    return data.size();
}

/**
 * Returns true if all outstanding ACKs are empty, otherwise false. Acks
 * that can be resend are ignored.
 *
 * @return Returns true if all ACKs are empty, otherwise false;
 *
 */
inline bool ReliableAck::empty() const
{
    return data.empty();
}

/**
 * Returns true if either outstanding acks are present or ACKs for resending
 * are present.
 *
 */
inline bool ReliableAck::acks_ready() const
{
    return !data.empty() || !re_acks.empty();
}

inline void ReliableAck::add_ack_to_reack(id_t ack)
{
    /* Check if the element is already in the array to avoid duplicates */
    for (auto it = re_acks.begin(); it != re_acks.end(); it++)
    {
        if (*it == ack)
        {
            re_acks.erase(it);
            break;
        }
    }

    re_acks.push_front(ack);
    if (re_acks.size() > maximum_acks_ack_v1)
    {
        re_acks.pop_back();
    }
}

inline size_t ReliableAck::resend_size()
{
    return re_acks.size();
}

} // namespace openvpn