1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
# DEL_NAMESPACES(ns [, ns ... ])
#
# Delete namespaces from the running OS
m4_define([DEL_NAMESPACES],
[m4_foreach([ns], [$@],
[ip netns del ns
])
]
)
# ADD_NAMESPACES(ns [, ns ... ])
#
# Add new namespaces, if ns exists, the old one
# will be remove before new ones are installed.
m4_define([ADD_NAMESPACES],
[m4_foreach([ns], [$@],
[DEL_NAMESPACES(ns)
AT_CHECK([ip netns add ns || return 77])
on_exit 'DEL_NAMESPACES(ns)'
ip netns exec ns sysctl -w net.netfilter.nf_conntrack_helper=0
])
]
)
# NS_EXEC([namespace], [command])
#
# Execute 'command' in 'namespace'
m4_define([NS_EXEC],
[ip netns exec $1 sh << NS_EXEC_HEREDOC
$2
NS_EXEC_HEREDOC])
# NS_CHECK_EXEC([namespace], [command], other_params...)
#
# Wrapper for AT_CHECK that executes 'command' inside 'namespace'.
# 'other_params' as passed as they are to AT_CHECK.
m4_define([NS_CHECK_EXEC],
[ AT_CHECK([NS_EXEC([$1], [$2])], m4_shift(m4_shift($@))) ]
)
# ADD_BR([name], [vsctl-args])
#
# Expands into the proper ovs-vsctl commands to create a bridge with the
# appropriate type, and allows additional arguments to be passed.
m4_define([ADD_BR], [ovs-vsctl _ADD_BR([$1]) -- $2])
# ADD_INT([port], [namespace], [ovs-br], [ip_addr])
#
# Add an internal port to 'ovs-br', then shift it into 'namespace' and
# configure it with 'ip_addr' (specified in CIDR notation).
m4_define([ADD_INT],
[ AT_CHECK([ovs-vsctl add-port $3 $1 -- set int $1 type=internal])
AT_CHECK([ip link set $1 netns $2])
NS_CHECK_EXEC([$2], [ip addr add $4 dev $1])
NS_CHECK_EXEC([$2], [ip link set dev $1 up])
]
)
# ADD_VETH([port], [namespace], [ovs-br], [ip_addr] [mac_addr], [gateway],
# [ip_addr_flags])
#
# Add a pair of veth ports. 'port' will be added to name space 'namespace',
# and "ovs-'port'" will be added to ovs bridge 'ovs-br'.
#
# The 'port' in 'namespace' will be brought up with static IP address
# with 'ip_addr' in CIDR notation.
#
# Optionally, one can specify the 'mac_addr' for 'port' and the default
# 'gateway'.
#
# The existing 'port' or 'ovs-port' will be removed before new ones are added.
#
m4_define([ADD_VETH],
[ AT_CHECK([ip link add $1 type veth peer name ovs-$1 || return 77])
CONFIGURE_VETH_OFFLOADS([$1])
AT_CHECK([ip link set $1 netns $2])
AT_CHECK([ip link set dev ovs-$1 up])
AT_CHECK([ovs-vsctl add-port $3 ovs-$1 -- \
set interface ovs-$1 external-ids:iface-id="$1"])
NS_CHECK_EXEC([$2], [ip addr add $4 dev $1 $7])
NS_CHECK_EXEC([$2], [ip link set dev $1 up])
if test -n "$5"; then
NS_CHECK_EXEC([$2], [ip link set dev $1 address $5])
fi
if test -n "$6"; then
NS_CHECK_EXEC([$2], [ip route add default via $6])
fi
on_exit 'ip link del ovs-$1'
]
)
# ADD_VETH_BOND([ports], [namespace], [ovs-br], [bond], [mode], [ip_addr])
#
# Add a set of veth port pairs. Ports named in the list 'ports' will be added
# to 'namespace', and the corresponding port names, prefixed by 'ovs-' will
# be included in an OVS bond 'bond' which is added to bridge 'ovs-br'.
#
# The 'bond' in 'namespace' will be brought up with static IP address
# with 'ip_addr' in CIDR notation.
#
m4_define([ADD_VETH_BOND],
[
BONDPORTS=""
for port in $1; do
AT_CHECK([ip link add $port type veth peer name ovs-$port])
CONFIGURE_VETH_OFFLOADS([$port])
AT_CHECK([ip link set $port netns $2])
AT_CHECK([ip link set dev ovs-$port up])
BONDPORTS="$BONDPORTS ovs-$port"
on_exit 'ip link del ovs-$port'
done
NS_CHECK_EXEC([$2], [ip link add name $4 type bond])
case "$(echo $5 | sed 's/.*lacp=//' | sed 's/ .*//')" in
active|passive)
NS_CHECK_EXEC([$2], [sh -c "echo 802.3ad > /sys/class/net/$4/bonding/mode"])
NS_CHECK_EXEC([$2], [sh -c "echo 100 > /sys/class/net/$4/bonding/miimon"])
;;
esac
for port in $1; do
NS_CHECK_EXEC([$2], [ip link set dev $port master $4])
done
NS_CHECK_EXEC([$2], [ip addr add $6 dev $4])
NS_CHECK_EXEC([$2], [ip link set dev $4 up])
AT_CHECK([ovs-vsctl add-bond $3 ovs-$4 $BONDPORTS $5])
on_exit 'ip link del ovs-$4'
]
)
# ADD_VLAN([port], [namespace], [vlan-id], [ip-addr])
#
# Add a VLAN device named 'port' within 'namespace'. It will be configured
# with the ID 'vlan-id' and the address 'ip-addr'.
m4_define([ADD_VLAN],
[ NS_CHECK_EXEC([$2], [ip link add link $1 name $1.$3 type vlan proto 802.1q id $3])
NS_CHECK_EXEC([$2], [ip link set dev $1.$3 up])
NS_CHECK_EXEC([$2], [ip addr add dev $1.$3 $4])
]
)
# ADD_SVLAN([port], [namespace], [vlan-id], [ip-addr])
#
# Add a SVLAN device named 'port' within 'namespace'. It will be configured
# with the ID 'vlan-id' and the address 'ip-addr'.
m4_define([ADD_SVLAN],
[ NS_CHECK_EXEC([$2], [ip link add link $1 name $1.$3 type vlan proto 802.1ad id $3])
NS_CHECK_EXEC([$2], [ip link set dev $1.$3 up])
NS_CHECK_EXEC([$2], [ip addr add dev $1.$3 $4])
NS_CHECK_EXEC([$2], [ip link set $1.$3 mtu 1496])
]
)
# ADD_CVLAN([port], [namespace], [vlan-id], [ip-addr])
#
# Similar to ADD_VLAN(), but sets MTU. Lower MTU here instead of increase MTU
# on bridge/SVLAN because older kernels didn't work.
#
m4_define([ADD_CVLAN],
[ ADD_VLAN([$1], [$2], [$3], [$4])
NS_CHECK_EXEC([$2], [ip link set $1.$3 mtu 1492])
]
)
# ADD_OVS_TUNNEL([type], [bridge], [port], [remote-addr], [overlay-addr],
# [tunnel-args])
#
# Add an ovs-based tunnel device in the root namespace, with name 'port' and
# type 'type'. The tunnel device will be configured as point-to-point with the
# 'remote-addr' as the underlay address of the remote tunnel endpoint.
#
# 'port will be configured with the address 'overlay-addr'.
#
m4_define([ADD_OVS_TUNNEL],
[AT_CHECK([ovs-vsctl add-port $2 $3 -- \
set int $3 type=$1 options:remote_ip=$4 $6])
AT_CHECK([ip addr add dev $2 $5])
AT_CHECK([ip link set dev $2 up])
AT_CHECK([ip link set dev $2 mtu 1450])
on_exit 'ip addr del dev $2 $5'
]
)
# ADD_OVS_TUNNEL6([type], [bridge], [port], [remote-addr], [overlay-addr],
# [tunnel-args])
#
# Same as ADD_OVS_TUNNEL, but drops MTU enough for the IPv6 underlay.
#
m4_define([ADD_OVS_TUNNEL6],
[ADD_OVS_TUNNEL([$1], [$2], [$3], [$4], [$5], [$6])
AT_CHECK([ip link set dev $2 mtu 1430])
]
)
# ADD_NATIVE_TUNNEL([type], [port], [namespace], [remote-addr], [overlay-addr],
# [type-args], [link-args])
#
# Add a native tunnel device within 'namespace', with name 'port' and type
# 'type'. The tunnel device will be configured as point-to-point with the
# 'remote-addr' as the underlay address of the remote tunnel endpoint (as
# viewed from the perspective of that namespace).
#
# 'port' will be configured with the address 'overlay-addr'. 'type-args' is
# made available so that additional arguments can be passed to "ip link add"
# for configuring specific link type's arguments, for instance to configure
# the vxlan destination port. 'link-args' is made for arguments passed to
# "ip link set", for instance to configure MAC address.
#
m4_define([ADD_NATIVE_TUNNEL],
[NS_CHECK_EXEC([$3], [ip link add dev $2 type $1 remote $4 $6])
NS_CHECK_EXEC([$3], [ip addr add dev $2 $5])
NS_CHECK_EXEC([$3], [ip link set dev $2 mtu 1450 $7 up])
]
)
# ADD_NATIVE_TUNNEL6([type], [port], [namespace], [remote-addr], [overlay-addr],
# [type-args], [link-args])
#
# Same as ADD_NATIVE_TUNNEL, but drops MTU enough for the IPv6 underlay.
#
m4_define([ADD_NATIVE_TUNNEL6],
[ADD_NATIVE_TUNNEL([$1], [$2], [$3], [$4], [$5], [$6], [$7])
NS_CHECK_EXEC([$3], [ip link set dev $2 mtu 1430])
]
)
# FORMAT_PING([])
#
# Strip variant pieces from ping output so the output can be reliably compared.
#
m4_define([FORMAT_PING], [grep "transmitted" | sed 's/time.*ms$/time 0ms/'])
# STRIP_MONITOR_CSUM([])
#
# Strip the csum value from ovs-ofctl monitor.
#
m4_define([STRIP_MONITOR_CSUM], [grep "csum:" | sed 's/csum:.*/csum: <skip>/'])
# FORMAT_CT([ip-addr])
#
# Strip content from the piped input which would differ from test to test
# and limit the output to the rows containing 'ip-addr'.
#
m4_define([FORMAT_CT],
[[grep "dst=$1" | sed -e 's/port=[0-9]*/port=<cleared>/g' -e 's/id=[0-9]*/id=<cleared>/g' -e 's/state=[0-9_A-Z]*/state=<cleared>/g' | sort | uniq]])
# NETNS_DAEMONIZE([namespace], [command], [pidfile])
#
# Run 'command' as a background process within 'namespace' and record its pid
# to 'pidfile' to allow cleanup on exit.
#
m4_define([NETNS_DAEMONIZE],
[ip netns exec $1 $2 & echo $! > $3
echo "kill \`cat $3\`" >> cleanup
]
)
# OVS_CHECK_FIREWALL()
#
# Check if firewalld is active, skip the test if it is on.
# The following command currently only supports RHEL and CentOS.
m4_define([OVS_CHECK_FIREWALL],
[AT_SKIP_IF([systemctl status firewalld 2>&1 | grep running > /dev/null])])
# OVS_START_L7([namespace], [protocol])
#
# Start a server serving 'protocol' within 'namespace'. The server will exit
# when the test finishes.
#
m4_define([OVS_START_L7],
[PIDFILE=$(mktemp $2XXX.pid)
NETNS_DAEMONIZE([$1], [[$PYTHON $srcdir/test-l7.py $2]], [$PIDFILE])
dnl netstat doesn't print http over IPv6 as "http6"; drop the number.
PROTO=$(echo $2 | sed -e 's/\([[a-zA-Z]]*\).*/\1/')
OVS_WAIT_UNTIL([NS_EXEC([$1], [netstat -l | grep $PROTO])])
]
)
# OVS_CHECK_VXLAN()
#
# Do basic check for vxlan functionality, skip the test if it's not there.
m4_define([OVS_CHECK_VXLAN],
[AT_SKIP_IF([! ip link add foo type vxlan help 2>&1 | grep dstport >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_VXLAN_UDP6ZEROCSUM()
m4_define([OVS_CHECK_VXLAN_UDP6ZEROCSUM],
[AT_SKIP_IF([! ip link add foo type vxlan help 2>&1 | grep udp6zerocsum >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_VXLAN_GPE()
m4_define([OVS_CHECK_VXLAN_GPE],
[OVS_CHECK_VXLAN()
AT_SKIP_IF([! ip link add foo type vxlan help 2>&1 | grep gpe >/dev/null])])
# OVS_CHECK_GRE()
m4_define([OVS_CHECK_GRE],
[AT_SKIP_IF([! ip link add foo type gretap help 2>&1 | grep gretap >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_ERSPAN()
m4_define([OVS_CHECK_ERSPAN],
[AT_SKIP_IF([! ip link add foo type erspan help 2>&1 | grep erspan >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_GRE_L3()
m4_define([OVS_CHECK_GRE_L3],
[AT_SKIP_IF([! ip link add foo type gre help 2>&1 | grep "gre " >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_GENEVE()
m4_define([OVS_CHECK_GENEVE],
[AT_SKIP_IF([! ip link add foo type geneve help 2>&1 | grep geneve >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_GENEVE_UDP6ZEROCSUM()
m4_define([OVS_CHECK_GENEVE_UDP6ZEROCSUM],
[AT_SKIP_IF([! ip link add foo type geneve help 2>&1 | grep udp6zerocsum >/dev/null])
OVS_CHECK_FIREWALL()])
# OVS_CHECK_8021AD()
m4_define([OVS_CHECK_8021AD],
[AT_SKIP_IF([! grep -q "VLAN header stack length probed as" ovs-vswitchd.log])
AT_SKIP_IF([[test `sed -n 's/.*VLAN header stack length probed as \([0-9]\+\).*/\1/p' ovs-vswitchd.log` -lt 2]])])
# OVS_CHECK_IPROUTE_ENCAP()
m4_define([OVS_CHECK_IPROUTE_ENCAP],
[AT_SKIP_IF([! ip route help 2>&1 |grep encap >/dev/null])])
# OVS_CHECK_CT_CLEAR()
m4_define([OVS_CHECK_CT_CLEAR],
[AT_SKIP_IF([! grep -q "Datapath supports ct_clear action" ovs-vswitchd.log])])
|