1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
/*
* Copyright (c) 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef OVS_THREAD_H
#define OVS_THREAD_H 1
#include <pthread.h>
#include <stddef.h>
#include <sys/types.h>
#include "ovs-atomic.h"
#include "util.h"
struct seq;
/* Mutex. */
struct OVS_LOCKABLE ovs_mutex {
pthread_mutex_t lock;
const char *where; /* NULL if and only if uninitialized. */
};
/* Poll-block()-able barrier similar to pthread_barrier_t. */
struct ovs_barrier {
uint32_t size; /* Number of threads to wait. */
atomic_uint32_t count; /* Number of threads already hit the barrier. */
struct seq *seq;
};
/* "struct ovs_mutex" initializer. */
#ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
#define OVS_MUTEX_INITIALIZER { PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP, \
"<unlocked>" }
#else
#define OVS_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, "<unlocked>" }
#endif
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
#define OVS_ADAPTIVE_MUTEX_INITIALIZER \
{ PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP, "<unlocked>" }
#else
#define OVS_ADAPTIVE_MUTEX_INITIALIZER OVS_MUTEX_INITIALIZER
#endif
/* ovs_mutex functions analogous to pthread_mutex_*() functions.
*
* Most of these functions abort the process with an error message on any
* error. ovs_mutex_trylock() is an exception: it passes through a 0 or EBUSY
* return value to the caller and aborts on any other error. */
void ovs_mutex_init(const struct ovs_mutex *);
void ovs_mutex_init_recursive(const struct ovs_mutex *);
void ovs_mutex_init_adaptive(const struct ovs_mutex *);
void ovs_mutex_destroy(const struct ovs_mutex *);
void ovs_mutex_unlock(const struct ovs_mutex *mutex) OVS_RELEASES(mutex);
void ovs_mutex_lock_at(const struct ovs_mutex *mutex, const char *where)
OVS_ACQUIRES(mutex);
#define ovs_mutex_lock(mutex) \
ovs_mutex_lock_at(mutex, SOURCE_LOCATOR)
int ovs_mutex_trylock_at(const struct ovs_mutex *mutex, const char *where)
OVS_TRY_LOCK(0, mutex);
#define ovs_mutex_trylock(mutex) \
ovs_mutex_trylock_at(mutex, SOURCE_LOCATOR)
void ovs_mutex_cond_wait(pthread_cond_t *, const struct ovs_mutex *);
/* Wrappers for pthread_mutex_*() that abort the process on any error.
* This is still needed when ovs-atomic-pthreads.h is used. */
void xpthread_mutex_lock(pthread_mutex_t *mutex);
void xpthread_mutex_unlock(pthread_mutex_t *mutex);
/* Wrappers for pthread_mutexattr_*() that abort the process on any error. */
void xpthread_mutexattr_init(pthread_mutexattr_t *);
void xpthread_mutexattr_destroy(pthread_mutexattr_t *);
void xpthread_mutexattr_settype(pthread_mutexattr_t *, int type);
void xpthread_mutexattr_gettype(pthread_mutexattr_t *, int *typep);
/* Read-write lock.
*
* An ovs_rwlock does not support recursive readers, because POSIX allows
* taking the reader lock recursively to deadlock when a thread is waiting on
* the write-lock. (NetBSD does deadlock.) glibc rwlocks in their default
* configuration do not deadlock, but ovs_rwlock_init() initializes rwlocks as
* non-recursive (which will deadlock) for two reasons:
*
* - glibc only provides fairness to writers in this mode.
*
* - It's better to find bugs in the primary Open vSwitch target rather
* than exposing them only to porters. */
struct OVS_LOCKABLE ovs_rwlock {
pthread_rwlock_t lock;
const char *where; /* NULL if and only if uninitialized. */
};
/* Initializer. */
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
#define OVS_RWLOCK_INITIALIZER \
{ PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP, "<unlocked>" }
#else
#define OVS_RWLOCK_INITIALIZER { PTHREAD_RWLOCK_INITIALIZER, "<unlocked>" }
#endif
/* ovs_rwlock functions analogous to pthread_rwlock_*() functions.
*
* Most of these functions abort the process with an error message on any
* error. The "trylock" functions are exception: they pass through a 0 or
* EBUSY return value to the caller and abort on any other error. */
void ovs_rwlock_init(const struct ovs_rwlock *);
void ovs_rwlock_destroy(const struct ovs_rwlock *);
void ovs_rwlock_unlock(const struct ovs_rwlock *rwlock) OVS_RELEASES(rwlock);
/* Wrappers for pthread_rwlockattr_*() that abort the process on any error. */
void xpthread_rwlockattr_init(pthread_rwlockattr_t *);
void xpthread_rwlockattr_destroy(pthread_rwlockattr_t *);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
void xpthread_rwlockattr_setkind_np(pthread_rwlockattr_t *, int kind);
#endif
void ovs_rwlock_wrlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_ACQ_WRLOCK(rwlock);
#define ovs_rwlock_wrlock(rwlock) \
ovs_rwlock_wrlock_at(rwlock, SOURCE_LOCATOR)
int ovs_rwlock_trywrlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_TRY_WRLOCK(0, rwlock);
#define ovs_rwlock_trywrlock(rwlock) \
ovs_rwlock_trywrlock_at(rwlock, SOURCE_LOCATOR)
void ovs_rwlock_rdlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_ACQ_RDLOCK(rwlock);
#define ovs_rwlock_rdlock(rwlock) \
ovs_rwlock_rdlock_at(rwlock, SOURCE_LOCATOR)
int ovs_rwlock_tryrdlock_at(const struct ovs_rwlock *rwlock, const char *where)
OVS_TRY_RDLOCK(0, rwlock);
#define ovs_rwlock_tryrdlock(rwlock) \
ovs_rwlock_tryrdlock_at(rwlock, SOURCE_LOCATOR)
/* ovs_barrier functions analogous to pthread_barrier_*() functions. */
void ovs_barrier_init(struct ovs_barrier *, uint32_t count);
void ovs_barrier_destroy(struct ovs_barrier *);
void ovs_barrier_block(struct ovs_barrier *);
/* Wrappers for xpthread_cond_*() that abort the process on any error.
*
* Use ovs_mutex_cond_wait() to wait for a condition. */
void xpthread_cond_init(pthread_cond_t *, pthread_condattr_t *);
void xpthread_cond_destroy(pthread_cond_t *);
void xpthread_cond_signal(pthread_cond_t *);
void xpthread_cond_broadcast(pthread_cond_t *);
void xpthread_key_create(pthread_key_t *, void (*destructor)(void *));
void xpthread_key_delete(pthread_key_t);
void xpthread_setspecific(pthread_key_t, const void *);
pthread_t ovs_thread_create(const char *name, void *(*)(void *), void *);
void xpthread_join(pthread_t, void **);
/* Per-thread data.
*
*
* Standard Forms
* ==============
*
* Multiple forms of standard per-thread data exist, each with its own pluses
* and minuses. In general, if one of these forms is appropriate, then it's a
* good idea to use it:
*
* - POSIX per-thread data via pthread_key_t is portable to any pthreads
* implementation, and allows a destructor function to be defined. It
* only (directly) supports per-thread pointers, which are always
* initialized to NULL. It requires once-only allocation of a
* pthread_key_t value. It is relatively slow. Typically few
* "pthread_key_t"s are available (POSIX requires only at least 128,
* glibc supplies only 1024).
*
* - The thread_local feature newly defined in C11 <threads.h> works with
* any data type and initializer, and it is fast. thread_local does not
* require once-only initialization like pthread_key_t. C11 does not
* define what happens if one attempts to access a thread_local object
* from a thread other than the one to which that object belongs. There
* is no provision to call a user-specified destructor when a thread
* ends. Typical implementations allow for an arbitrary amount of
* thread_local storage, but statically allocated only.
*
* - The __thread keyword is a GCC extension similar to thread_local but
* with a longer history. __thread is not portable to every GCC version
* or environment. __thread does not restrict the use of a thread-local
* object outside its own thread.
*
* Here's a handy summary:
*
* pthread_key_t thread_local __thread
* ------------- ------------ -------------
* portability high low medium
* speed low high high
* supports destructors? yes no no
* needs key allocation? yes no no
* arbitrary initializer? no yes yes
* cross-thread access? yes no yes
* amount available? few arbitrary arbitrary
* dynamically allocated? yes no no
*
*
* Extensions
* ==========
*
* OVS provides some extensions and wrappers:
*
* - In a situation where the performance of thread_local or __thread is
* desirable, but portability is required, DEFINE_STATIC_PER_THREAD_DATA
* and DECLARE_EXTERN_PER_THREAD_DATA/DEFINE_EXTERN_PER_THREAD_DATA may
* be appropriate (see below).
*
* - DEFINE_PER_THREAD_MALLOCED_DATA can be convenient for simple
* per-thread malloc()'d buffers.
*
* - struct ovs_tsd provides an alternative to pthread_key_t that isn't
* limited to a small number of keys.
*/
/* For static data, use this macro in a source file:
*
* DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, INITIALIZER).
*
* For global data, "declare" the data in the header and "define" it in
* the source file, with:
*
* DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME).
* DEFINE_EXTERN_PER_THREAD_DATA(NAME, INITIALIZER).
*
* One should prefer to use POSIX per-thread data, via pthread_key_t, when its
* performance is acceptable, because of its portability (see the table above).
* This macro is an alternatives that takes advantage of thread_local (and
* __thread), for its performance, when it is available, and falls back to
* POSIX per-thread data otherwise.
*
* Defines per-thread variable NAME with the given TYPE, initialized to
* INITIALIZER (which must be valid as an initializer for a variable with
* static lifetime).
*
* The public interface to the variable is:
*
* TYPE *NAME_get(void)
* TYPE *NAME_get_unsafe(void)
*
* Returns the address of this thread's instance of NAME.
*
* Use NAME_get() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_get_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_get() has already been called previously.
*
* There is no "NAME_set()" (or "NAME_set_unsafe()") function. To set the
* value of the per-thread variable, dereference the pointer returned by
* TYPE_get() or TYPE_get_unsafe(), e.g. *TYPE_get() = 0.
*/
#if HAVE_THREAD_LOCAL || HAVE___THREAD
#if HAVE_THREAD_LOCAL
#include <threads.h>
#elif HAVE___THREAD
#define thread_local __thread
#else
#error
#endif
#define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
typedef TYPE NAME##_type; \
\
static NAME##_type * \
NAME##_get_unsafe(void) \
{ \
static thread_local NAME##_type var = __VA_ARGS__; \
return &var; \
} \
\
static NAME##_type * \
NAME##_get(void) \
{ \
return NAME##_get_unsafe(); \
}
#define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
typedef TYPE NAME##_type; \
extern thread_local NAME##_type NAME##_var; \
\
static inline NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return &NAME##_var; \
} \
\
static inline NAME##_type * \
NAME##_get(void) \
{ \
return NAME##_get_unsafe(); \
}
#define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
thread_local NAME##_type NAME##_var = __VA_ARGS__;
#else /* no C implementation support for thread-local storage */
#define DEFINE_STATIC_PER_THREAD_DATA(TYPE, NAME, ...) \
typedef TYPE NAME##_type; \
static pthread_key_t NAME##_key; \
\
static NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
static NAME##_type * \
NAME##_get(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
NAME##_type *value; \
\
pthread_once(&once, NAME##_once_init); \
value = NAME##_get_unsafe(); \
if (!value) { \
static const NAME##_type initial_value = __VA_ARGS__; \
\
value = malloc(sizeof *value); \
if (value == NULL) { \
out_of_memory(); \
} \
*value = initial_value; \
xpthread_setspecific(NAME##_key, value); \
} \
return value; \
}
#define DECLARE_EXTERN_PER_THREAD_DATA(TYPE, NAME) \
typedef TYPE NAME##_type; \
static pthread_key_t NAME##_key; \
\
static inline NAME##_type * \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
NAME##_type *NAME##_get(void);
#define DEFINE_EXTERN_PER_THREAD_DATA(NAME, ...) \
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
NAME##_type * \
NAME##_get(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
NAME##_type *value; \
\
pthread_once(&once, NAME##_once_init); \
value = NAME##_get_unsafe(); \
if (!value) { \
static const NAME##_type initial_value = __VA_ARGS__; \
\
value = malloc(sizeof *value); \
if (value == NULL) { \
out_of_memory(); \
} \
*value = initial_value; \
xpthread_setspecific(NAME##_key, value); \
} \
return value; \
}
#endif
/* DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME).
*
* This is a simple wrapper around POSIX per-thread data primitives. It
* defines per-thread variable NAME with the given TYPE, which must be a
* pointer type. In each thread, the per-thread variable is initialized to
* NULL. When a thread terminates, the variable is freed with free().
*
* The public interface to the variable is:
*
* TYPE NAME_get(void)
* TYPE NAME_get_unsafe(void)
*
* Returns the value of per-thread variable NAME in this thread.
*
* Use NAME_get() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_get_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_get() has already been called previously.
*
* TYPE NAME_set(TYPE new_value)
* TYPE NAME_set_unsafe(TYPE new_value)
*
* Sets the value of per-thread variable NAME to 'new_value' in this
* thread, and returns its previous value.
*
* Use NAME_set() in a context where this might be the first use of the
* per-thread variable in the program. Use NAME_set_unsafe(), which
* avoids a conditional test and is thus slightly faster, in a context
* where one knows that NAME_set() has already been called previously.
*/
#define DEFINE_PER_THREAD_MALLOCED_DATA(TYPE, NAME) \
static pthread_key_t NAME##_key; \
\
static void \
NAME##_once_init(void) \
{ \
if (pthread_key_create(&NAME##_key, free)) { \
abort(); \
} \
} \
\
static void \
NAME##_init(void) \
{ \
static pthread_once_t once = PTHREAD_ONCE_INIT; \
pthread_once(&once, NAME##_once_init); \
} \
\
static TYPE \
NAME##_get_unsafe(void) \
{ \
return pthread_getspecific(NAME##_key); \
} \
\
static OVS_UNUSED TYPE \
NAME##_get(void) \
{ \
NAME##_init(); \
return NAME##_get_unsafe(); \
} \
\
static TYPE \
NAME##_set_unsafe(TYPE value) \
{ \
TYPE old_value = NAME##_get_unsafe(); \
xpthread_setspecific(NAME##_key, value); \
return old_value; \
} \
\
static OVS_UNUSED TYPE \
NAME##_set(TYPE value) \
{ \
NAME##_init(); \
return NAME##_set_unsafe(value); \
}
/* Dynamically allocated thread-specific data with lots of slots.
*
* pthread_key_t can provide as few as 128 pieces of thread-specific data (even
* glibc is limited to 1,024). Thus, one must be careful to allocate only a
* few keys globally. One cannot, for example, allocate a key for every
* instance of a data structure if there might be an arbitrary number of those
* data structures.
*
* This API is similar to the pthread one (simply search and replace pthread_
* by ovsthread_) but it a much larger limit that can be raised if necessary
* (by recompiling). Thus, one may more freely use this form of
* thread-specific data.
*
* ovsthread_key_t also differs from pthread_key_t in the following ways:
*
* - Destructors must not access thread-specific data (via ovsthread_key).
*
* - The pthread_key_t API allows concurrently exiting threads to start
* executing the destructor after pthread_key_delete() returns. The
* ovsthread_key_t API guarantees that, when ovsthread_key_delete()
* returns, all destructors have returned and no new ones will start
* execution.
*/
typedef struct ovsthread_key *ovsthread_key_t;
void ovsthread_key_create(ovsthread_key_t *, void (*destructor)(void *));
void ovsthread_key_delete(ovsthread_key_t);
void ovsthread_setspecific(ovsthread_key_t, const void *);
void *ovsthread_getspecific(ovsthread_key_t);
/* Convenient once-only execution.
*
*
* Problem
* =======
*
* POSIX provides pthread_once_t and pthread_once() as primitives for running a
* set of code only once per process execution. They are used like this:
*
* static void run_once(void) { ...initialization... }
* static pthread_once_t once = PTHREAD_ONCE_INIT;
* ...
* pthread_once(&once, run_once);
*
* pthread_once() does not allow passing any parameters to the initialization
* function, which is often inconvenient, because it means that the function
* can only access data declared at file scope.
*
*
* Solution
* ========
*
* Use ovsthread_once, like this, instead:
*
* static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
*
* if (ovsthread_once_start(&once)) {
* ...initialization...
* ovsthread_once_done(&once);
* }
*/
struct ovsthread_once {
atomic_bool done;
struct ovs_mutex mutex;
};
#define OVSTHREAD_ONCE_INITIALIZER \
{ \
ATOMIC_VAR_INIT(false), \
OVS_MUTEX_INITIALIZER, \
}
static inline bool ovsthread_once_start(struct ovsthread_once *once)
OVS_TRY_LOCK(true, once->mutex);
void ovsthread_once_done(struct ovsthread_once *once)
OVS_RELEASES(once->mutex);
bool ovsthread_once_start__(struct ovsthread_once *once)
OVS_TRY_LOCK(false, once->mutex);
static inline bool
ovsthread_once_is_done__(struct ovsthread_once *once)
{
bool done;
atomic_read_explicit(&once->done, &done, memory_order_relaxed);
return done;
}
/* Returns true if this is the first call to ovsthread_once_start() for
* 'once'. In this case, the caller should perform whatever initialization
* actions it needs to do, then call ovsthread_once_done() for 'once'.
*
* Returns false if this is not the first call to ovsthread_once_start() for
* 'once'. In this case, the call will not return until after
* ovsthread_once_done() has been called. */
static inline bool
ovsthread_once_start(struct ovsthread_once *once)
{
return OVS_UNLIKELY(!ovsthread_once_is_done__(once)
&& !ovsthread_once_start__(once));
}
/* Thread ID.
*
* pthread_t isn't so nice for some purposes. Its size and representation are
* implementation dependent, which means that there is no way to hash it.
* This thread ID avoids the problem.
*/
DECLARE_EXTERN_PER_THREAD_DATA(unsigned int, ovsthread_id);
/* Returns a per-thread identifier unique within the lifetime of the
* process. */
static inline unsigned int
ovsthread_id_self(void)
{
return *ovsthread_id_get();
}
/* Simulated global counter.
*
* Incrementing such a counter is meant to be cheaper than incrementing a
* global counter protected by a lock. It is probably more expensive than
* incrementing a truly thread-local variable, but such a variable has no
* straightforward way to get the sum.
*
*
* Thread-safety
* =============
*
* Fully thread-safe. */
struct ovsthread_stats {
struct ovs_mutex mutex;
void *volatile buckets[16];
};
void ovsthread_stats_init(struct ovsthread_stats *);
void ovsthread_stats_destroy(struct ovsthread_stats *);
void *ovsthread_stats_bucket_get(struct ovsthread_stats *,
void *(*new_bucket)(void));
#define OVSTHREAD_STATS_FOR_EACH_BUCKET(BUCKET, IDX, STATS) \
for ((IDX) = ovs_thread_stats_next_bucket(STATS, 0); \
((IDX) < ARRAY_SIZE((STATS)->buckets) \
? ((BUCKET) = (STATS)->buckets[IDX], true) \
: false); \
(IDX) = ovs_thread_stats_next_bucket(STATS, (IDX) + 1))
size_t ovs_thread_stats_next_bucket(const struct ovsthread_stats *, size_t);
bool single_threaded(void);
void assert_single_threaded_at(const char *where);
#define assert_single_threaded() assert_single_threaded_at(SOURCE_LOCATOR)
#ifndef _WIN32
pid_t xfork_at(const char *where);
#define xfork() xfork_at(SOURCE_LOCATOR)
#endif
void forbid_forking(const char *reason);
bool may_fork(void);
/* Useful functions related to threading. */
int count_cpu_cores(void);
#endif /* ovs-thread.h */
|