1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
|
/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <config.h>
#include "ofproto-dpif-upcall.h"
#include <errno.h>
#include <stdbool.h>
#include <inttypes.h>
#include "connmgr.h"
#include "coverage.h"
#include "dpif.h"
#include "dynamic-string.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "latch.h"
#include "list.h"
#include "netlink.h"
#include "ofpbuf.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-xlate.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "poll-loop.h"
#include "seq.h"
#include "unixctl.h"
#include "vlog.h"
#define MAX_QUEUE_LENGTH 512
#define FLOW_MISS_MAX_BATCH 50
#define REVALIDATE_MAX_BATCH 50
VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
COVERAGE_DEFINE(upcall_duplicate_flow);
COVERAGE_DEFINE(revalidate_missed_dp_flow);
/* A thread that reads upcalls from dpif, forwards each upcall's packet,
* and possibly sets up a kernel flow as a cache. */
struct handler {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
uint32_t handler_id; /* Handler id. */
};
/* A thread that processes datapath flows, updates OpenFlow statistics, and
* updates or removes them if necessary. */
struct revalidator {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
unsigned int id; /* ovsthread_id_self(). */
struct hmap *ukeys; /* Points into udpif->ukeys for this
revalidator. Used for GC phase. */
};
/* An upcall handler for ofproto_dpif.
*
* udpif keeps records of two kind of logically separate units:
*
* upcall handling
* ---------------
*
* - An array of 'struct handler's for upcall handling and flow
* installation.
*
* flow revalidation
* -----------------
*
* - Revalidation threads which read the datapath flow table and maintains
* them.
*/
struct udpif {
struct list list_node; /* In all_udpifs list. */
struct dpif *dpif; /* Datapath handle. */
struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
uint32_t secret; /* Random seed for upcall hash. */
struct handler *handlers; /* Upcall handlers. */
size_t n_handlers;
struct revalidator *revalidators; /* Flow revalidators. */
size_t n_revalidators;
struct latch exit_latch; /* Tells child threads to exit. */
/* Revalidation. */
struct seq *reval_seq; /* Incremented to force revalidation. */
bool need_revalidate; /* As indicated by 'reval_seq'. */
bool reval_exit; /* Set by leader on 'exit_latch. */
struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
struct dpif_flow_dump dump; /* DPIF flow dump state. */
long long int dump_duration; /* Duration of the last flow dump. */
struct seq *dump_seq; /* Increments each dump iteration. */
/* There are 'n_revalidators' ukey hmaps. Each revalidator retains a
* reference to one of these for garbage collection.
*
* During the flow dump phase, revalidators insert into these with a random
* distribution. During the garbage collection phase, each revalidator
* takes care of garbage collecting one of these hmaps. */
struct {
struct ovs_mutex mutex; /* Guards the following. */
struct hmap hmap OVS_GUARDED; /* Datapath flow keys. */
} *ukeys;
/* Datapath flow statistics. */
unsigned int max_n_flows;
unsigned int avg_n_flows;
/* Following fields are accessed and modified by different threads. */
atomic_uint flow_limit; /* Datapath flow hard limit. */
/* n_flows_mutex prevents multiple threads updating these concurrently. */
atomic_ulong n_flows; /* Number of flows in the datapath. */
atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
struct ovs_mutex n_flows_mutex;
};
enum upcall_type {
BAD_UPCALL, /* Some kind of bug somewhere. */
MISS_UPCALL, /* A flow miss. */
SFLOW_UPCALL, /* sFlow sample. */
FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
IPFIX_UPCALL /* Per-bridge sampling. */
};
struct upcall {
struct flow_miss *flow_miss; /* This upcall's flow_miss. */
/* Raw upcall plus data for keeping track of the memory backing it. */
struct dpif_upcall dpif_upcall; /* As returned by dpif_recv() */
struct ofpbuf upcall_buf; /* Owns some data in 'dpif_upcall'. */
uint64_t upcall_stub[512 / 8]; /* Buffer to reduce need for malloc(). */
};
/* 'udpif_key's are responsible for tracking the little bit of state udpif
* needs to do flow expiration which can't be pulled directly from the
* datapath. They may be created or maintained by any revalidator during
* the dump phase, but are owned by a single revalidator, and are destroyed
* by that revalidator during the garbage-collection phase.
*
* While some elements of a udpif_key are protected by a mutex, the ukey itself
* is not. Therefore it is not safe to destroy a udpif_key except when all
* revalidators are in garbage collection phase, or they aren't running. */
struct udpif_key {
struct hmap_node hmap_node; /* In parent revalidator 'ukeys' map. */
/* These elements are read only once created, and therefore aren't
* protected by a mutex. */
const struct nlattr *key; /* Datapath flow key. */
size_t key_len; /* Length of 'key'. */
struct ovs_mutex mutex; /* Guards the following. */
struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
long long int created OVS_GUARDED; /* Estimate of creation time. */
bool mark OVS_GUARDED; /* For mark and sweep garbage
collection. */
bool flow_exists OVS_GUARDED; /* Ensures flows are only deleted
once. */
struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
* are affected by this ukey.
* Used for stats and learning.*/
struct odputil_keybuf key_buf; /* Memory for 'key'. */
};
/* Flow miss batching.
*
* Some dpifs implement operations faster when you hand them off in a batch.
* To allow batching, "struct flow_miss" queues the dpif-related work needed
* for a given flow. Each "struct flow_miss" corresponds to sending one or
* more packets, plus possibly installing the flow in the dpif. */
struct flow_miss {
struct hmap_node hmap_node;
struct ofproto_dpif *ofproto;
struct flow flow;
const struct nlattr *key;
size_t key_len;
enum dpif_upcall_type upcall_type;
struct dpif_flow_stats stats;
odp_port_t odp_in_port;
uint64_t slow_path_buf[128 / 8];
struct odputil_keybuf mask_buf;
struct xlate_out xout;
bool put;
};
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static struct list all_udpifs = LIST_INITIALIZER(&all_udpifs);
static size_t read_upcalls(struct handler *,
struct upcall upcalls[FLOW_MISS_MAX_BATCH],
struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH],
struct hmap *);
static void handle_upcalls(struct handler *, struct hmap *, struct upcall *,
size_t n_upcalls);
static void udpif_stop_threads(struct udpif *);
static void udpif_start_threads(struct udpif *, size_t n_handlers,
size_t n_revalidators);
static void *udpif_upcall_handler(void *);
static void *udpif_revalidator(void *);
static unsigned long udpif_get_n_flows(struct udpif *);
static void revalidate(struct revalidator *);
static void revalidator_sweep(struct revalidator *);
static void revalidator_purge(struct revalidator *);
static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static struct udpif_key *ukey_create(const struct nlattr *key, size_t key_len,
long long int used);
static void ukey_delete(struct revalidator *, struct udpif_key *);
static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);
struct udpif *
udpif_create(struct dpif_backer *backer, struct dpif *dpif)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct udpif *udpif = xzalloc(sizeof *udpif);
if (ovsthread_once_start(&once)) {
unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
NULL);
unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
upcall_unixctl_disable_megaflows, NULL);
unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
upcall_unixctl_enable_megaflows, NULL);
unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
upcall_unixctl_set_flow_limit, NULL);
ovsthread_once_done(&once);
}
udpif->dpif = dpif;
udpif->backer = backer;
atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
udpif->secret = random_uint32();
udpif->reval_seq = seq_create();
udpif->dump_seq = seq_create();
latch_init(&udpif->exit_latch);
list_push_back(&all_udpifs, &udpif->list_node);
atomic_init(&udpif->n_flows, 0);
atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
ovs_mutex_init(&udpif->n_flows_mutex);
return udpif;
}
void
udpif_destroy(struct udpif *udpif)
{
udpif_stop_threads(udpif);
list_remove(&udpif->list_node);
latch_destroy(&udpif->exit_latch);
seq_destroy(udpif->reval_seq);
seq_destroy(udpif->dump_seq);
ovs_mutex_destroy(&udpif->n_flows_mutex);
free(udpif);
}
/* Stops the handler and revalidator threads, must be enclosed in
* ovsrcu quiescent state unless when destroying udpif. */
static void
udpif_stop_threads(struct udpif *udpif)
{
if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
size_t i;
latch_set(&udpif->exit_latch);
for (i = 0; i < udpif->n_handlers; i++) {
struct handler *handler = &udpif->handlers[i];
xpthread_join(handler->thread, NULL);
}
for (i = 0; i < udpif->n_revalidators; i++) {
xpthread_join(udpif->revalidators[i].thread, NULL);
}
for (i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
/* Delete ukeys, and delete all flows from the datapath to prevent
* double-counting stats. */
revalidator_purge(revalidator);
hmap_destroy(&udpif->ukeys[i].hmap);
ovs_mutex_destroy(&udpif->ukeys[i].mutex);
}
latch_poll(&udpif->exit_latch);
ovs_barrier_destroy(&udpif->reval_barrier);
free(udpif->revalidators);
udpif->revalidators = NULL;
udpif->n_revalidators = 0;
free(udpif->handlers);
udpif->handlers = NULL;
udpif->n_handlers = 0;
free(udpif->ukeys);
udpif->ukeys = NULL;
}
}
/* Starts the handler and revalidator threads, must be enclosed in
* ovsrcu quiescent state. */
static void
udpif_start_threads(struct udpif *udpif, size_t n_handlers,
size_t n_revalidators)
{
if (udpif && n_handlers && n_revalidators) {
size_t i;
udpif->n_handlers = n_handlers;
udpif->n_revalidators = n_revalidators;
udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
for (i = 0; i < udpif->n_handlers; i++) {
struct handler *handler = &udpif->handlers[i];
handler->udpif = udpif;
handler->handler_id = i;
handler->thread = ovs_thread_create(
"handler", udpif_upcall_handler, handler);
}
ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
udpif->reval_exit = false;
udpif->revalidators = xzalloc(udpif->n_revalidators
* sizeof *udpif->revalidators);
udpif->ukeys = xmalloc(sizeof *udpif->ukeys * n_revalidators);
for (i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
revalidator->udpif = udpif;
hmap_init(&udpif->ukeys[i].hmap);
ovs_mutex_init(&udpif->ukeys[i].mutex);
revalidator->ukeys = &udpif->ukeys[i].hmap;
revalidator->thread = ovs_thread_create(
"revalidator", udpif_revalidator, revalidator);
}
}
}
/* Tells 'udpif' how many threads it should use to handle upcalls.
* 'n_handlers' and 'n_revalidators' can never be zero. 'udpif''s
* datapath handle must have packet reception enabled before starting
* threads. */
void
udpif_set_threads(struct udpif *udpif, size_t n_handlers,
size_t n_revalidators)
{
ovs_assert(udpif);
ovs_assert(n_handlers && n_revalidators);
ovsrcu_quiesce_start();
if (udpif->n_handlers != n_handlers
|| udpif->n_revalidators != n_revalidators) {
udpif_stop_threads(udpif);
}
if (!udpif->handlers && !udpif->revalidators) {
int error;
error = dpif_handlers_set(udpif->dpif, n_handlers);
if (error) {
VLOG_ERR("failed to configure handlers in dpif %s: %s",
dpif_name(udpif->dpif), ovs_strerror(error));
return;
}
udpif_start_threads(udpif, n_handlers, n_revalidators);
}
ovsrcu_quiesce_end();
}
/* Waits for all ongoing upcall translations to complete. This ensures that
* there are no transient references to any removed ofprotos (or other
* objects). In particular, this should be called after an ofproto is removed
* (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
void
udpif_synchronize(struct udpif *udpif)
{
/* This is stronger than necessary. It would be sufficient to ensure
* (somehow) that each handler and revalidator thread had passed through
* its main loop once. */
size_t n_handlers = udpif->n_handlers;
size_t n_revalidators = udpif->n_revalidators;
ovsrcu_quiesce_start();
udpif_stop_threads(udpif);
udpif_start_threads(udpif, n_handlers, n_revalidators);
ovsrcu_quiesce_end();
}
/* Notifies 'udpif' that something changed which may render previous
* xlate_actions() results invalid. */
void
udpif_revalidate(struct udpif *udpif)
{
seq_change(udpif->reval_seq);
}
/* Returns a seq which increments every time 'udpif' pulls stats from the
* datapath. Callers can use this to get a sense of when might be a good time
* to do periodic work which relies on relatively up to date statistics. */
struct seq *
udpif_dump_seq(struct udpif *udpif)
{
return udpif->dump_seq;
}
void
udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
{
size_t i;
simap_increase(usage, "handlers", udpif->n_handlers);
simap_increase(usage, "revalidators", udpif->n_revalidators);
for (i = 0; i < udpif->n_revalidators; i++) {
ovs_mutex_lock(&udpif->ukeys[i].mutex);
simap_increase(usage, "udpif keys", hmap_count(&udpif->ukeys[i].hmap));
ovs_mutex_unlock(&udpif->ukeys[i].mutex);
}
}
/* Remove flows from a single datapath. */
void
udpif_flush(struct udpif *udpif)
{
size_t n_handlers, n_revalidators;
n_handlers = udpif->n_handlers;
n_revalidators = udpif->n_revalidators;
ovsrcu_quiesce_start();
udpif_stop_threads(udpif);
dpif_flow_flush(udpif->dpif);
udpif_start_threads(udpif, n_handlers, n_revalidators);
ovsrcu_quiesce_end();
}
/* Removes all flows from all datapaths. */
static void
udpif_flush_all_datapaths(void)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_flush(udpif);
}
}
static unsigned long
udpif_get_n_flows(struct udpif *udpif)
{
long long int time, now;
unsigned long flow_count;
now = time_msec();
atomic_read(&udpif->n_flows_timestamp, &time);
if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
struct dpif_dp_stats stats;
atomic_store(&udpif->n_flows_timestamp, now);
dpif_get_dp_stats(udpif->dpif, &stats);
flow_count = stats.n_flows;
atomic_store(&udpif->n_flows, flow_count);
ovs_mutex_unlock(&udpif->n_flows_mutex);
} else {
atomic_read(&udpif->n_flows, &flow_count);
}
return flow_count;
}
/* The upcall handler thread tries to read a batch of FLOW_MISS_MAX_BATCH
* upcalls from dpif, processes the batch and installs corresponding flows
* in dpif. */
static void *
udpif_upcall_handler(void *arg)
{
struct handler *handler = arg;
struct udpif *udpif = handler->udpif;
struct hmap misses = HMAP_INITIALIZER(&misses);
while (!latch_is_set(&handler->udpif->exit_latch)) {
struct upcall upcalls[FLOW_MISS_MAX_BATCH];
struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH];
struct flow_miss *miss;
size_t n_upcalls, i;
n_upcalls = read_upcalls(handler, upcalls, miss_buf, &misses);
if (!n_upcalls) {
dpif_recv_wait(udpif->dpif, handler->handler_id);
latch_wait(&udpif->exit_latch);
poll_block();
} else {
handle_upcalls(handler, &misses, upcalls, n_upcalls);
HMAP_FOR_EACH (miss, hmap_node, &misses) {
xlate_out_uninit(&miss->xout);
}
hmap_clear(&misses);
for (i = 0; i < n_upcalls; i++) {
ofpbuf_uninit(&upcalls[i].dpif_upcall.packet);
ofpbuf_uninit(&upcalls[i].upcall_buf);
}
}
coverage_clear();
}
hmap_destroy(&misses);
return NULL;
}
static void *
udpif_revalidator(void *arg)
{
/* Used by all revalidators. */
struct revalidator *revalidator = arg;
struct udpif *udpif = revalidator->udpif;
bool leader = revalidator == &udpif->revalidators[0];
/* Used only by the leader. */
long long int start_time = 0;
uint64_t last_reval_seq = 0;
unsigned int flow_limit = 0;
size_t n_flows = 0;
revalidator->id = ovsthread_id_self();
for (;;) {
if (leader) {
uint64_t reval_seq;
reval_seq = seq_read(udpif->reval_seq);
udpif->need_revalidate = last_reval_seq != reval_seq;
last_reval_seq = reval_seq;
n_flows = udpif_get_n_flows(udpif);
udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
/* Only the leader checks the exit latch to prevent a race where
* some threads think it's true and exit and others think it's
* false and block indefinitely on the reval_barrier */
udpif->reval_exit = latch_is_set(&udpif->exit_latch);
start_time = time_msec();
if (!udpif->reval_exit) {
dpif_flow_dump_start(&udpif->dump, udpif->dpif);
}
}
/* Wait for the leader to start the flow dump. */
ovs_barrier_block(&udpif->reval_barrier);
if (udpif->reval_exit) {
break;
}
revalidate(revalidator);
/* Wait for all flows to have been dumped before we garbage collect. */
ovs_barrier_block(&udpif->reval_barrier);
revalidator_sweep(revalidator);
/* Wait for all revalidators to finish garbage collection. */
ovs_barrier_block(&udpif->reval_barrier);
if (leader) {
long long int duration;
dpif_flow_dump_done(&udpif->dump);
seq_change(udpif->dump_seq);
duration = MAX(time_msec() - start_time, 1);
atomic_read(&udpif->flow_limit, &flow_limit);
udpif->dump_duration = duration;
if (duration > 2000) {
flow_limit /= duration / 1000;
} else if (duration > 1300) {
flow_limit = flow_limit * 3 / 4;
} else if (duration < 1000 && n_flows > 2000
&& flow_limit < n_flows * 1000 / duration) {
flow_limit += 1000;
}
flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
atomic_store(&udpif->flow_limit, flow_limit);
if (duration > 2000) {
VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
duration);
}
poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
seq_wait(udpif->reval_seq, last_reval_seq);
latch_wait(&udpif->exit_latch);
poll_block();
}
}
return NULL;
}
static enum upcall_type
classify_upcall(const struct upcall *upcall)
{
const struct dpif_upcall *dpif_upcall = &upcall->dpif_upcall;
union user_action_cookie cookie;
size_t userdata_len;
/* First look at the upcall type. */
switch (dpif_upcall->type) {
case DPIF_UC_ACTION:
break;
case DPIF_UC_MISS:
return MISS_UPCALL;
case DPIF_N_UC_TYPES:
default:
VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32,
dpif_upcall->type);
return BAD_UPCALL;
}
/* "action" upcalls need a closer look. */
if (!dpif_upcall->userdata) {
VLOG_WARN_RL(&rl, "action upcall missing cookie");
return BAD_UPCALL;
}
userdata_len = nl_attr_get_size(dpif_upcall->userdata);
if (userdata_len < sizeof cookie.type
|| userdata_len > sizeof cookie) {
VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
userdata_len);
return BAD_UPCALL;
}
memset(&cookie, 0, sizeof cookie);
memcpy(&cookie, nl_attr_get(dpif_upcall->userdata), userdata_len);
if (userdata_len == MAX(8, sizeof cookie.sflow)
&& cookie.type == USER_ACTION_COOKIE_SFLOW) {
return SFLOW_UPCALL;
} else if (userdata_len == MAX(8, sizeof cookie.slow_path)
&& cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
return MISS_UPCALL;
} else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
&& cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
return FLOW_SAMPLE_UPCALL;
} else if (userdata_len == MAX(8, sizeof cookie.ipfix)
&& cookie.type == USER_ACTION_COOKIE_IPFIX) {
return IPFIX_UPCALL;
} else {
VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
" and size %"PRIuSIZE, cookie.type, userdata_len);
return BAD_UPCALL;
}
}
/* Calculates slow path actions for 'xout'. 'buf' must statically be
* initialized with at least 128 bytes of space. */
static void
compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
struct flow *flow, odp_port_t odp_in_port,
struct ofpbuf *buf)
{
union user_action_cookie cookie;
odp_port_t port;
uint32_t pid;
cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
cookie.slow_path.unused = 0;
cookie.slow_path.reason = xout->slow;
port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
? ODPP_NONE
: odp_in_port;
pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, buf);
}
static struct flow_miss *
flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
const struct flow *flow, uint32_t hash)
{
struct flow_miss *miss;
HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
return miss;
}
}
return NULL;
}
/* Reads and classifies upcalls. Returns the number of upcalls successfully
* read. */
static size_t
read_upcalls(struct handler *handler,
struct upcall upcalls[FLOW_MISS_MAX_BATCH],
struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH],
struct hmap *misses)
{
struct udpif *udpif = handler->udpif;
size_t i;
size_t n_misses = 0;
size_t n_upcalls = 0;
/*
* Try reading FLOW_MISS_MAX_BATCH upcalls from dpif.
*
* Extract the flow from each upcall. Construct in 'misses' a hash table
* that maps each unique flow to a 'struct flow_miss'.
*
* Most commonly there is a single packet per flow_miss, but there are
* several reasons why there might be more than one, e.g.:
*
* - The dpif packet interface does not support TSO (or UFO, etc.), so a
* large packet sent to userspace is split into a sequence of smaller
* ones.
*
* - A stream of quickly arriving packets in an established "slow-pathed"
* flow.
*
* - Rarely, a stream of quickly arriving packets in a flow not yet
* established. (This is rare because most protocols do not send
* multiple back-to-back packets before receiving a reply from the
* other end of the connection, which gives OVS a chance to set up a
* datapath flow.)
*/
for (i = 0; i < FLOW_MISS_MAX_BATCH; i++) {
struct upcall *upcall = &upcalls[n_upcalls];
struct flow_miss *miss = &miss_buf[n_misses];
struct dpif_upcall *dupcall;
struct ofpbuf *packet;
struct flow_miss *existing_miss;
struct ofproto_dpif *ofproto;
struct dpif_sflow *sflow;
struct dpif_ipfix *ipfix;
struct flow flow;
enum upcall_type type;
odp_port_t odp_in_port;
int error;
ofpbuf_use_stub(&upcall->upcall_buf, upcall->upcall_stub,
sizeof upcall->upcall_stub);
error = dpif_recv(udpif->dpif, handler->handler_id,
&upcall->dpif_upcall, &upcall->upcall_buf);
if (error) {
ofpbuf_uninit(&upcall->upcall_buf);
break;
}
dupcall = &upcall->dpif_upcall;
packet = &dupcall->packet;
error = xlate_receive(udpif->backer, packet, dupcall->key,
dupcall->key_len, &flow,
&ofproto, &ipfix, &sflow, NULL, &odp_in_port);
if (error) {
if (error == ENODEV) {
/* Received packet on datapath port for which we couldn't
* associate an ofproto. This can happen if a port is removed
* while traffic is being received. Print a rate-limited
* message in case it happens frequently. Install a drop flow
* so that future packets of the flow are inexpensively dropped
* in the kernel. */
VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
"port %"PRIu32, odp_in_port);
dpif_flow_put(udpif->dpif, DPIF_FP_CREATE,
dupcall->key, dupcall->key_len, NULL, 0, NULL, 0,
NULL);
}
goto destroy_upcall;
}
type = classify_upcall(upcall);
if (type == MISS_UPCALL) {
uint32_t hash;
struct pkt_metadata md = pkt_metadata_from_flow(&flow);
flow_extract(packet, &md, &miss->flow);
hash = flow_hash(&miss->flow, 0);
existing_miss = flow_miss_find(misses, ofproto, &miss->flow,
hash);
if (!existing_miss) {
hmap_insert(misses, &miss->hmap_node, hash);
miss->ofproto = ofproto;
miss->key = dupcall->key;
miss->key_len = dupcall->key_len;
miss->upcall_type = dupcall->type;
miss->stats.n_packets = 0;
miss->stats.n_bytes = 0;
miss->stats.used = time_msec();
miss->stats.tcp_flags = 0;
miss->odp_in_port = odp_in_port;
miss->put = false;
n_misses++;
} else {
miss = existing_miss;
}
miss->stats.tcp_flags |= ntohs(miss->flow.tcp_flags);
miss->stats.n_bytes += ofpbuf_size(packet);
miss->stats.n_packets++;
upcall->flow_miss = miss;
n_upcalls++;
continue;
}
switch (type) {
case SFLOW_UPCALL:
if (sflow) {
union user_action_cookie cookie;
memset(&cookie, 0, sizeof cookie);
memcpy(&cookie, nl_attr_get(dupcall->userdata),
sizeof cookie.sflow);
dpif_sflow_received(sflow, packet, &flow, odp_in_port,
&cookie);
}
break;
case IPFIX_UPCALL:
if (ipfix) {
dpif_ipfix_bridge_sample(ipfix, packet, &flow);
}
break;
case FLOW_SAMPLE_UPCALL:
if (ipfix) {
union user_action_cookie cookie;
memset(&cookie, 0, sizeof cookie);
memcpy(&cookie, nl_attr_get(dupcall->userdata),
sizeof cookie.flow_sample);
/* The flow reflects exactly the contents of the packet.
* Sample the packet using it. */
dpif_ipfix_flow_sample(ipfix, packet, &flow,
cookie.flow_sample.collector_set_id,
cookie.flow_sample.probability,
cookie.flow_sample.obs_domain_id,
cookie.flow_sample.obs_point_id);
}
break;
case BAD_UPCALL:
break;
case MISS_UPCALL:
OVS_NOT_REACHED();
}
dpif_ipfix_unref(ipfix);
dpif_sflow_unref(sflow);
destroy_upcall:
ofpbuf_uninit(&upcall->dpif_upcall.packet);
ofpbuf_uninit(&upcall->upcall_buf);
}
return n_upcalls;
}
static void
handle_upcalls(struct handler *handler, struct hmap *misses,
struct upcall *upcalls, size_t n_upcalls)
{
struct udpif *udpif = handler->udpif;
struct dpif_op *opsp[FLOW_MISS_MAX_BATCH * 2];
struct dpif_op ops[FLOW_MISS_MAX_BATCH * 2];
struct flow_miss *miss;
size_t n_ops, i;
unsigned int flow_limit;
bool fail_open, may_put;
atomic_read(&udpif->flow_limit, &flow_limit);
may_put = udpif_get_n_flows(udpif) < flow_limit;
/* Initialize each 'struct flow_miss's ->xout.
*
* We do this per-flow_miss rather than per-packet because, most commonly,
* all the packets in a flow can use the same translation.
*
* We can't do this in the previous loop because we need the TCP flags for
* all the packets in each miss. */
fail_open = false;
HMAP_FOR_EACH (miss, hmap_node, misses) {
struct xlate_in xin;
xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL,
miss->stats.tcp_flags, NULL);
xin.may_learn = true;
if (miss->upcall_type == DPIF_UC_MISS) {
xin.resubmit_stats = &miss->stats;
} else {
/* For non-miss upcalls, there's a flow in the datapath which this
* packet was accounted to. Presumably the revalidators will deal
* with pushing its stats eventually. */
}
xlate_actions(&xin, &miss->xout);
fail_open = fail_open || miss->xout.fail_open;
}
/* Now handle the packets individually in order of arrival. In the common
* case each packet of a miss can share the same actions, but slow-pathed
* packets need to be translated individually:
*
* - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
* processes received packets for these protocols.
*
* - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
* controller.
*
* The loop fills 'ops' with an array of operations to execute in the
* datapath. */
n_ops = 0;
for (i = 0; i < n_upcalls; i++) {
struct upcall *upcall = &upcalls[i];
struct flow_miss *miss = upcall->flow_miss;
struct ofpbuf *packet = &upcall->dpif_upcall.packet;
struct dpif_op *op;
ovs_be16 flow_vlan_tci;
/* Save a copy of flow.vlan_tci in case it is changed to
* generate proper mega flow masks for VLAN splinter flows. */
flow_vlan_tci = miss->flow.vlan_tci;
if (miss->xout.slow) {
struct xlate_in xin;
xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, 0, packet);
xlate_actions_for_side_effects(&xin);
}
if (miss->flow.in_port.ofp_port
!= vsp_realdev_to_vlandev(miss->ofproto,
miss->flow.in_port.ofp_port,
miss->flow.vlan_tci)) {
/* This packet was received on a VLAN splinter port. We
* added a VLAN to the packet to make the packet resemble
* the flow, but the actions were composed assuming that
* the packet contained no VLAN. So, we must remove the
* VLAN header from the packet before trying to execute the
* actions. */
if (ofpbuf_size(&miss->xout.odp_actions)) {
eth_pop_vlan(packet);
}
/* Remove the flow vlan tags inserted by vlan splinter logic
* to ensure megaflow masks generated match the data path flow. */
miss->flow.vlan_tci = 0;
}
/* Do not install a flow into the datapath if:
*
* - The datapath already has too many flows.
*
* - An earlier iteration of this loop already put the same flow.
*
* - We received this packet via some flow installed in the kernel
* already. */
if (may_put
&& !miss->put
&& upcall->dpif_upcall.type == DPIF_UC_MISS) {
struct ofpbuf mask;
bool megaflow;
miss->put = true;
atomic_read(&enable_megaflows, &megaflow);
ofpbuf_use_stack(&mask, &miss->mask_buf, sizeof miss->mask_buf);
if (megaflow) {
size_t max_mpls;
max_mpls = ofproto_dpif_get_max_mpls_depth(miss->ofproto);
odp_flow_key_from_mask(&mask, &miss->xout.wc.masks,
&miss->flow, UINT32_MAX, max_mpls);
}
op = &ops[n_ops++];
op->type = DPIF_OP_FLOW_PUT;
op->u.flow_put.flags = DPIF_FP_CREATE;
op->u.flow_put.key = miss->key;
op->u.flow_put.key_len = miss->key_len;
op->u.flow_put.mask = ofpbuf_data(&mask);
op->u.flow_put.mask_len = ofpbuf_size(&mask);
op->u.flow_put.stats = NULL;
if (!miss->xout.slow) {
op->u.flow_put.actions = ofpbuf_data(&miss->xout.odp_actions);
op->u.flow_put.actions_len = ofpbuf_size(&miss->xout.odp_actions);
} else {
struct ofpbuf buf;
ofpbuf_use_stack(&buf, miss->slow_path_buf,
sizeof miss->slow_path_buf);
compose_slow_path(udpif, &miss->xout, &miss->flow,
miss->odp_in_port, &buf);
op->u.flow_put.actions = ofpbuf_data(&buf);
op->u.flow_put.actions_len = ofpbuf_size(&buf);
}
}
/*
* The 'miss' may be shared by multiple upcalls. Restore
* the saved flow vlan_tci field before processing the next
* upcall. */
miss->flow.vlan_tci = flow_vlan_tci;
if (ofpbuf_size(&miss->xout.odp_actions)) {
op = &ops[n_ops++];
op->type = DPIF_OP_EXECUTE;
op->u.execute.packet = packet;
odp_key_to_pkt_metadata(miss->key, miss->key_len,
&op->u.execute.md);
op->u.execute.actions = ofpbuf_data(&miss->xout.odp_actions);
op->u.execute.actions_len = ofpbuf_size(&miss->xout.odp_actions);
op->u.execute.needs_help = (miss->xout.slow & SLOW_ACTION) != 0;
}
}
/* Special case for fail-open mode.
*
* If we are in fail-open mode, but we are connected to a controller too,
* then we should send the packet up to the controller in the hope that it
* will try to set up a flow and thereby allow us to exit fail-open.
*
* See the top-level comment in fail-open.c for more information.
*
* Copy packets before they are modified by execution. */
if (fail_open) {
for (i = 0; i < n_upcalls; i++) {
struct upcall *upcall = &upcalls[i];
struct flow_miss *miss = upcall->flow_miss;
struct ofpbuf *packet = &upcall->dpif_upcall.packet;
struct ofproto_packet_in *pin;
pin = xmalloc(sizeof *pin);
pin->up.packet = xmemdup(ofpbuf_data(packet), ofpbuf_size(packet));
pin->up.packet_len = ofpbuf_size(packet);
pin->up.reason = OFPR_NO_MATCH;
pin->up.table_id = 0;
pin->up.cookie = OVS_BE64_MAX;
flow_get_metadata(&miss->flow, &pin->up.fmd);
pin->send_len = 0; /* Not used for flow table misses. */
pin->miss_type = OFPROTO_PACKET_IN_NO_MISS;
ofproto_dpif_send_packet_in(miss->ofproto, pin);
}
}
/* Execute batch. */
for (i = 0; i < n_ops; i++) {
opsp[i] = &ops[i];
}
dpif_operate(udpif->dpif, opsp, n_ops);
}
/* Must be called with udpif->ukeys[hash % udpif->n_revalidators].mutex. */
static struct udpif_key *
ukey_lookup__(struct udpif *udpif, const struct nlattr *key, size_t key_len,
uint32_t hash)
{
struct udpif_key *ukey;
struct hmap *hmap = &udpif->ukeys[hash % udpif->n_revalidators].hmap;
HMAP_FOR_EACH_WITH_HASH (ukey, hmap_node, hash, hmap) {
if (ukey->key_len == key_len && !memcmp(ukey->key, key, key_len)) {
return ukey;
}
}
return NULL;
}
static struct udpif_key *
ukey_lookup(struct udpif *udpif, const struct nlattr *key, size_t key_len,
uint32_t hash)
{
struct udpif_key *ukey;
uint32_t idx = hash % udpif->n_revalidators;
ovs_mutex_lock(&udpif->ukeys[idx].mutex);
ukey = ukey_lookup__(udpif, key, key_len, hash);
ovs_mutex_unlock(&udpif->ukeys[idx].mutex);
return ukey;
}
static struct udpif_key *
ukey_create(const struct nlattr *key, size_t key_len, long long int used)
{
struct udpif_key *ukey = xmalloc(sizeof *ukey);
ovs_mutex_init(&ukey->mutex);
ukey->key = (struct nlattr *) &ukey->key_buf;
memcpy(&ukey->key_buf, key, key_len);
ukey->key_len = key_len;
ovs_mutex_lock(&ukey->mutex);
ukey->mark = false;
ukey->flow_exists = true;
ukey->created = used ? used : time_msec();
memset(&ukey->stats, 0, sizeof ukey->stats);
ukey->xcache = NULL;
ovs_mutex_unlock(&ukey->mutex);
return ukey;
}
/* Checks for a ukey in 'udpif->ukeys' with the same 'ukey->key' and 'hash',
* and inserts 'ukey' if it does not exist.
*
* Returns true if 'ukey' was inserted into 'udpif->ukeys', false otherwise. */
static bool
udpif_insert_ukey(struct udpif *udpif, struct udpif_key *ukey, uint32_t hash)
{
struct udpif_key *duplicate;
uint32_t idx = hash % udpif->n_revalidators;
bool ok;
ovs_mutex_lock(&udpif->ukeys[idx].mutex);
duplicate = ukey_lookup__(udpif, ukey->key, ukey->key_len, hash);
if (duplicate) {
ok = false;
} else {
hmap_insert(&udpif->ukeys[idx].hmap, &ukey->hmap_node, hash);
ok = true;
}
ovs_mutex_unlock(&udpif->ukeys[idx].mutex);
return ok;
}
static void
ukey_delete(struct revalidator *revalidator, struct udpif_key *ukey)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
if (revalidator) {
hmap_remove(revalidator->ukeys, &ukey->hmap_node);
}
xlate_cache_delete(ukey->xcache);
ovs_mutex_destroy(&ukey->mutex);
free(ukey);
}
static bool
should_revalidate(const struct udpif *udpif, uint64_t packets,
long long int used)
{
long long int metric, now, duration;
if (udpif->dump_duration < 200) {
/* We are likely to handle full revalidation for the flows. */
return true;
}
/* Calculate the mean time between seeing these packets. If this
* exceeds the threshold, then delete the flow rather than performing
* costly revalidation for flows that aren't being hit frequently.
*
* This is targeted at situations where the dump_duration is high (~1s),
* and revalidation is triggered by a call to udpif_revalidate(). In
* these situations, revalidation of all flows causes fluctuations in the
* flow_limit due to the interaction with the dump_duration and max_idle.
* This tends to result in deletion of low-throughput flows anyway, so
* skip the revalidation and just delete those flows. */
packets = MAX(packets, 1);
now = MAX(used, time_msec());
duration = now - used;
metric = duration / packets;
if (metric < 200) {
/* The flow is receiving more than ~5pps, so keep it. */
return true;
}
return false;
}
static bool
revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
const struct nlattr *mask, size_t mask_len,
const struct nlattr *actions, size_t actions_len,
const struct dpif_flow_stats *stats)
OVS_REQUIRES(ukey->mutex)
{
uint64_t slow_path_buf[128 / 8];
struct xlate_out xout, *xoutp;
struct netflow *netflow;
struct ofproto_dpif *ofproto;
struct dpif_flow_stats push;
struct ofpbuf xout_actions;
struct flow flow, dp_mask;
uint32_t *dp32, *xout32;
odp_port_t odp_in_port;
struct xlate_in xin;
long long int last_used;
int error;
size_t i;
bool may_learn, ok;
ok = false;
xoutp = NULL;
netflow = NULL;
last_used = ukey->stats.used;
push.used = stats->used;
push.tcp_flags = stats->tcp_flags;
push.n_packets = stats->n_packets > ukey->stats.n_packets
? stats->n_packets - ukey->stats.n_packets
: 0;
push.n_bytes = stats->n_bytes > ukey->stats.n_bytes
? stats->n_bytes - ukey->stats.n_bytes
: 0;
if (udpif->need_revalidate && last_used
&& !should_revalidate(udpif, push.n_packets, last_used)) {
ok = false;
goto exit;
}
/* We will push the stats, so update the ukey stats cache. */
ukey->stats = *stats;
if (!push.n_packets && !udpif->need_revalidate) {
ok = true;
goto exit;
}
may_learn = push.n_packets > 0;
if (ukey->xcache && !udpif->need_revalidate) {
xlate_push_stats(ukey->xcache, may_learn, &push);
ok = true;
goto exit;
}
error = xlate_receive(udpif->backer, NULL, ukey->key, ukey->key_len, &flow,
&ofproto, NULL, NULL, &netflow, &odp_in_port);
if (error) {
goto exit;
}
if (udpif->need_revalidate) {
xlate_cache_clear(ukey->xcache);
}
if (!ukey->xcache) {
ukey->xcache = xlate_cache_new();
}
xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags, NULL);
xin.resubmit_stats = push.n_packets ? &push : NULL;
xin.xcache = ukey->xcache;
xin.may_learn = may_learn;
xin.skip_wildcards = !udpif->need_revalidate;
xlate_actions(&xin, &xout);
xoutp = &xout;
if (!udpif->need_revalidate) {
ok = true;
goto exit;
}
if (!xout.slow) {
ofpbuf_use_const(&xout_actions, ofpbuf_data(&xout.odp_actions),
ofpbuf_size(&xout.odp_actions));
} else {
ofpbuf_use_stack(&xout_actions, slow_path_buf, sizeof slow_path_buf);
compose_slow_path(udpif, &xout, &flow, odp_in_port, &xout_actions);
}
if (actions_len != ofpbuf_size(&xout_actions)
|| memcmp(ofpbuf_data(&xout_actions), actions, actions_len)) {
goto exit;
}
if (odp_flow_key_to_mask(mask, mask_len, &dp_mask, &flow)
== ODP_FIT_ERROR) {
goto exit;
}
/* Since the kernel is free to ignore wildcarded bits in the mask, we can't
* directly check that the masks are the same. Instead we check that the
* mask in the kernel is more specific i.e. less wildcarded, than what
* we've calculated here. This guarantees we don't catch any packets we
* shouldn't with the megaflow. */
dp32 = (uint32_t *) &dp_mask;
xout32 = (uint32_t *) &xout.wc.masks;
for (i = 0; i < FLOW_U32S; i++) {
if ((dp32[i] | xout32[i]) != dp32[i]) {
goto exit;
}
}
ok = true;
exit:
if (netflow) {
if (!ok) {
netflow_flow_clear(netflow, &flow);
}
netflow_unref(netflow);
}
xlate_out_uninit(xoutp);
return ok;
}
struct dump_op {
struct udpif_key *ukey;
struct dpif_flow_stats stats; /* Stats for 'op'. */
struct dpif_op op; /* Flow del operation. */
};
static void
dump_op_init(struct dump_op *op, const struct nlattr *key, size_t key_len,
struct udpif_key *ukey)
{
op->ukey = ukey;
op->op.type = DPIF_OP_FLOW_DEL;
op->op.u.flow_del.key = key;
op->op.u.flow_del.key_len = key_len;
op->op.u.flow_del.stats = &op->stats;
}
static void
push_dump_ops__(struct udpif *udpif, struct dump_op *ops, size_t n_ops)
{
struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
size_t i;
ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
for (i = 0; i < n_ops; i++) {
opsp[i] = &ops[i].op;
}
dpif_operate(udpif->dpif, opsp, n_ops);
for (i = 0; i < n_ops; i++) {
struct dump_op *op = &ops[i];
struct dpif_flow_stats *push, *stats, push_buf;
stats = op->op.u.flow_del.stats;
if (op->ukey) {
push = &push_buf;
ovs_mutex_lock(&op->ukey->mutex);
push->used = MAX(stats->used, op->ukey->stats.used);
push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
ovs_mutex_unlock(&op->ukey->mutex);
} else {
push = stats;
}
if (push->n_packets || netflow_exists()) {
struct ofproto_dpif *ofproto;
struct netflow *netflow;
struct flow flow;
bool may_learn;
may_learn = push->n_packets > 0;
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
if (op->ukey->xcache) {
xlate_push_stats(op->ukey->xcache, may_learn, push);
ovs_mutex_unlock(&op->ukey->mutex);
continue;
}
ovs_mutex_unlock(&op->ukey->mutex);
}
if (!xlate_receive(udpif->backer, NULL, op->op.u.flow_del.key,
op->op.u.flow_del.key_len, &flow, &ofproto,
NULL, NULL, &netflow, NULL)) {
struct xlate_in xin;
xlate_in_init(&xin, ofproto, &flow, NULL, push->tcp_flags,
NULL);
xin.resubmit_stats = push->n_packets ? push : NULL;
xin.may_learn = may_learn;
xin.skip_wildcards = true;
xlate_actions_for_side_effects(&xin);
if (netflow) {
netflow_flow_clear(netflow, &flow);
netflow_unref(netflow);
}
}
}
}
}
static void
push_dump_ops(struct revalidator *revalidator,
struct dump_op *ops, size_t n_ops)
{
int i;
push_dump_ops__(revalidator->udpif, ops, n_ops);
for (i = 0; i < n_ops; i++) {
ukey_delete(revalidator, ops[i].ukey);
}
}
static void
revalidate(struct revalidator *revalidator)
{
struct udpif *udpif = revalidator->udpif;
struct dump_op ops[REVALIDATE_MAX_BATCH];
const struct nlattr *key, *mask, *actions;
size_t key_len, mask_len, actions_len;
const struct dpif_flow_stats *stats;
long long int now;
unsigned int flow_limit;
size_t n_ops;
void *state;
n_ops = 0;
now = time_msec();
atomic_read(&udpif->flow_limit, &flow_limit);
dpif_flow_dump_state_init(udpif->dpif, &state);
while (dpif_flow_dump_next(&udpif->dump, state, &key, &key_len, &mask,
&mask_len, &actions, &actions_len, &stats)) {
struct udpif_key *ukey;
bool mark, may_destroy;
long long int used, max_idle;
uint32_t hash;
size_t n_flows;
hash = hash_bytes(key, key_len, udpif->secret);
ukey = ukey_lookup(udpif, key, key_len, hash);
used = stats->used;
if (!ukey) {
ukey = ukey_create(key, key_len, used);
if (!udpif_insert_ukey(udpif, ukey, hash)) {
/* The same ukey has already been created. This means that
* another revalidator is processing this flow
* concurrently, so don't bother processing it. */
COVERAGE_INC(upcall_duplicate_flow);
ukey_delete(NULL, ukey);
goto next;
}
}
if (ovs_mutex_trylock(&ukey->mutex)) {
/* The flow has been dumped, and is being handled by another
* revalidator concurrently. This can occasionally occur if the
* datapath is changed in the middle of a flow dump. Rather than
* perform the same work twice, skip the flow this time. */
COVERAGE_INC(upcall_duplicate_flow);
goto next;
}
if (ukey->mark || !ukey->flow_exists) {
/* The flow has already been dumped and handled by another
* revalidator during this flow dump operation. Skip it. */
COVERAGE_INC(upcall_duplicate_flow);
ovs_mutex_unlock(&ukey->mutex);
goto next;
}
if (!used) {
used = ukey->created;
}
n_flows = udpif_get_n_flows(udpif);
max_idle = ofproto_max_idle;
if (n_flows > flow_limit) {
max_idle = 100;
}
if ((used && used < now - max_idle) || n_flows > flow_limit * 2) {
mark = false;
} else {
mark = revalidate_ukey(udpif, ukey, mask, mask_len, actions,
actions_len, stats);
}
ukey->mark = ukey->flow_exists = mark;
if (!mark) {
dump_op_init(&ops[n_ops++], key, key_len, ukey);
}
ovs_mutex_unlock(&ukey->mutex);
next:
may_destroy = dpif_flow_dump_next_may_destroy_keys(&udpif->dump,
state);
/* Only update 'now' immediately before 'buffer' will be updated.
* This gives us the current time relative to the time the datapath
* will write into 'stats'. */
if (may_destroy) {
now = time_msec();
}
/* Only do a dpif_operate when we've hit our maximum batch, or when our
* memory is about to be clobbered by the next call to
* dpif_flow_dump_next(). */
if (n_ops == REVALIDATE_MAX_BATCH || (n_ops && may_destroy)) {
push_dump_ops__(udpif, ops, n_ops);
n_ops = 0;
}
}
if (n_ops) {
push_dump_ops__(udpif, ops, n_ops);
}
dpif_flow_dump_state_uninit(udpif->dpif, state);
}
/* Called with exclusive access to 'revalidator' and 'ukey'. */
static bool
handle_missed_revalidation(struct revalidator *revalidator,
struct udpif_key *ukey)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct udpif *udpif = revalidator->udpif;
struct nlattr *mask, *actions;
size_t mask_len, actions_len;
struct dpif_flow_stats stats;
struct ofpbuf *buf;
bool keep = false;
COVERAGE_INC(revalidate_missed_dp_flow);
if (!dpif_flow_get(udpif->dpif, ukey->key, ukey->key_len, &buf,
&mask, &mask_len, &actions, &actions_len, &stats)) {
keep = revalidate_ukey(udpif, ukey, mask, mask_len, actions,
actions_len, &stats);
ofpbuf_delete(buf);
}
return keep;
}
static void
revalidator_sweep__(struct revalidator *revalidator, bool purge)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct dump_op ops[REVALIDATE_MAX_BATCH];
struct udpif_key *ukey, *next;
size_t n_ops;
n_ops = 0;
/* During garbage collection, this revalidator completely owns its ukeys
* map, and therefore doesn't need to do any locking. */
HMAP_FOR_EACH_SAFE (ukey, next, hmap_node, revalidator->ukeys) {
if (ukey->flow_exists) {
bool missed_flow = !ukey->mark;
ukey->mark = false;
if (purge
|| (missed_flow
&& revalidator->udpif->need_revalidate
&& !handle_missed_revalidation(revalidator, ukey))) {
struct dump_op *op = &ops[n_ops++];
dump_op_init(op, ukey->key, ukey->key_len, ukey);
if (n_ops == REVALIDATE_MAX_BATCH) {
push_dump_ops(revalidator, ops, n_ops);
n_ops = 0;
}
}
} else {
ukey_delete(revalidator, ukey);
}
}
if (n_ops) {
push_dump_ops(revalidator, ops, n_ops);
}
}
static void
revalidator_sweep(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, false);
}
static void
revalidator_purge(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, true);
}
static void
upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
unsigned int flow_limit;
size_t i;
atomic_read(&udpif->flow_limit, &flow_limit);
ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
ds_put_format(&ds, "\tflows : (current %lu)"
" (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);
ds_put_char(&ds, '\n');
for (i = 0; i < n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
ovs_mutex_lock(&udpif->ukeys[i].mutex);
ds_put_format(&ds, "\t%u: (keys %"PRIuSIZE")\n",
revalidator->id, hmap_count(&udpif->ukeys[i].hmap));
ovs_mutex_unlock(&udpif->ukeys[i].mutex);
}
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Disable using the megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store(&enable_megaflows, false);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows disabled");
}
/* Re-enable using megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store(&enable_megaflows, true);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows enabled");
}
/* Set the flow limit.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
unsigned int flow_limit = atoi(argv[1]);
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
atomic_store(&udpif->flow_limit, flow_limit);
}
ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
|