File: ofproto-dpif-upcall.c

package info (click to toggle)
openvswitch 2.3.0%2Bgit20140819-3
  • links: PTS
  • area: main
  • in suites: jessie-kfreebsd
  • size: 24,156 kB
  • sloc: sh: 223,720; ansic: 153,459; python: 13,272; xml: 12,432; perl: 408; makefile: 382
file content (1700 lines) | stat: -rw-r--r-- 58,733 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014 Nicira, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at:
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.  */

#include <config.h>
#include "ofproto-dpif-upcall.h"

#include <errno.h>
#include <stdbool.h>
#include <inttypes.h>

#include "connmgr.h"
#include "coverage.h"
#include "dpif.h"
#include "dynamic-string.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "latch.h"
#include "list.h"
#include "netlink.h"
#include "ofpbuf.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-xlate.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "poll-loop.h"
#include "seq.h"
#include "unixctl.h"
#include "vlog.h"

#define MAX_QUEUE_LENGTH 512
#define FLOW_MISS_MAX_BATCH 50
#define REVALIDATE_MAX_BATCH 50

VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);

COVERAGE_DEFINE(upcall_duplicate_flow);
COVERAGE_DEFINE(revalidate_missed_dp_flow);

/* A thread that reads upcalls from dpif, forwards each upcall's packet,
 * and possibly sets up a kernel flow as a cache. */
struct handler {
    struct udpif *udpif;               /* Parent udpif. */
    pthread_t thread;                  /* Thread ID. */
    uint32_t handler_id;               /* Handler id. */
};

/* A thread that processes datapath flows, updates OpenFlow statistics, and
 * updates or removes them if necessary. */
struct revalidator {
    struct udpif *udpif;               /* Parent udpif. */
    pthread_t thread;                  /* Thread ID. */
    unsigned int id;                   /* ovsthread_id_self(). */
    struct hmap *ukeys;                /* Points into udpif->ukeys for this
                                          revalidator. Used for GC phase. */
};

/* An upcall handler for ofproto_dpif.
 *
 * udpif keeps records of two kind of logically separate units:
 *
 * upcall handling
 * ---------------
 *
 *    - An array of 'struct handler's for upcall handling and flow
 *      installation.
 *
 * flow revalidation
 * -----------------
 *
 *    - Revalidation threads which read the datapath flow table and maintains
 *      them.
 */
struct udpif {
    struct list list_node;             /* In all_udpifs list. */

    struct dpif *dpif;                 /* Datapath handle. */
    struct dpif_backer *backer;        /* Opaque dpif_backer pointer. */

    uint32_t secret;                   /* Random seed for upcall hash. */

    struct handler *handlers;          /* Upcall handlers. */
    size_t n_handlers;

    struct revalidator *revalidators;  /* Flow revalidators. */
    size_t n_revalidators;

    struct latch exit_latch;           /* Tells child threads to exit. */

    /* Revalidation. */
    struct seq *reval_seq;             /* Incremented to force revalidation. */
    bool need_revalidate;              /* As indicated by 'reval_seq'. */
    bool reval_exit;                   /* Set by leader on 'exit_latch. */
    struct ovs_barrier reval_barrier;  /* Barrier used by revalidators. */
    struct dpif_flow_dump dump;        /* DPIF flow dump state. */
    long long int dump_duration;       /* Duration of the last flow dump. */
    struct seq *dump_seq;              /* Increments each dump iteration. */

    /* There are 'n_revalidators' ukey hmaps. Each revalidator retains a
     * reference to one of these for garbage collection.
     *
     * During the flow dump phase, revalidators insert into these with a random
     * distribution. During the garbage collection phase, each revalidator
     * takes care of garbage collecting one of these hmaps. */
    struct {
        struct ovs_mutex mutex;        /* Guards the following. */
        struct hmap hmap OVS_GUARDED;  /* Datapath flow keys. */
    } *ukeys;

    /* Datapath flow statistics. */
    unsigned int max_n_flows;
    unsigned int avg_n_flows;

    /* Following fields are accessed and modified by different threads. */
    atomic_uint flow_limit;            /* Datapath flow hard limit. */

    /* n_flows_mutex prevents multiple threads updating these concurrently. */
    atomic_ulong n_flows;           /* Number of flows in the datapath. */
    atomic_llong n_flows_timestamp;    /* Last time n_flows was updated. */
    struct ovs_mutex n_flows_mutex;
};

enum upcall_type {
    BAD_UPCALL,                 /* Some kind of bug somewhere. */
    MISS_UPCALL,                /* A flow miss.  */
    SFLOW_UPCALL,               /* sFlow sample. */
    FLOW_SAMPLE_UPCALL,         /* Per-flow sampling. */
    IPFIX_UPCALL                /* Per-bridge sampling. */
};

struct upcall {
    struct flow_miss *flow_miss;    /* This upcall's flow_miss. */

    /* Raw upcall plus data for keeping track of the memory backing it. */
    struct dpif_upcall dpif_upcall; /* As returned by dpif_recv() */
    struct ofpbuf upcall_buf;       /* Owns some data in 'dpif_upcall'. */
    uint64_t upcall_stub[512 / 8];  /* Buffer to reduce need for malloc(). */
};

/* 'udpif_key's are responsible for tracking the little bit of state udpif
 * needs to do flow expiration which can't be pulled directly from the
 * datapath.  They may be created or maintained by any revalidator during
 * the dump phase, but are owned by a single revalidator, and are destroyed
 * by that revalidator during the garbage-collection phase.
 *
 * While some elements of a udpif_key are protected by a mutex, the ukey itself
 * is not.  Therefore it is not safe to destroy a udpif_key except when all
 * revalidators are in garbage collection phase, or they aren't running. */
struct udpif_key {
    struct hmap_node hmap_node;     /* In parent revalidator 'ukeys' map. */

    /* These elements are read only once created, and therefore aren't
     * protected by a mutex. */
    const struct nlattr *key;      /* Datapath flow key. */
    size_t key_len;                /* Length of 'key'. */

    struct ovs_mutex mutex;                   /* Guards the following. */
    struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
    long long int created OVS_GUARDED;        /* Estimate of creation time. */
    bool mark OVS_GUARDED;                    /* For mark and sweep garbage
                                                 collection. */
    bool flow_exists OVS_GUARDED;             /* Ensures flows are only deleted
                                                 once. */

    struct xlate_cache *xcache OVS_GUARDED;   /* Cache for xlate entries that
                                               * are affected by this ukey.
                                               * Used for stats and learning.*/
    struct odputil_keybuf key_buf;            /* Memory for 'key'. */
};

/* Flow miss batching.
 *
 * Some dpifs implement operations faster when you hand them off in a batch.
 * To allow batching, "struct flow_miss" queues the dpif-related work needed
 * for a given flow.  Each "struct flow_miss" corresponds to sending one or
 * more packets, plus possibly installing the flow in the dpif. */
struct flow_miss {
    struct hmap_node hmap_node;
    struct ofproto_dpif *ofproto;

    struct flow flow;
    const struct nlattr *key;
    size_t key_len;
    enum dpif_upcall_type upcall_type;
    struct dpif_flow_stats stats;
    odp_port_t odp_in_port;

    uint64_t slow_path_buf[128 / 8];
    struct odputil_keybuf mask_buf;

    struct xlate_out xout;

    bool put;
};

static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static struct list all_udpifs = LIST_INITIALIZER(&all_udpifs);

static size_t read_upcalls(struct handler *,
                           struct upcall upcalls[FLOW_MISS_MAX_BATCH],
                           struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH],
                           struct hmap *);
static void handle_upcalls(struct handler *, struct hmap *, struct upcall *,
                           size_t n_upcalls);
static void udpif_stop_threads(struct udpif *);
static void udpif_start_threads(struct udpif *, size_t n_handlers,
                                size_t n_revalidators);
static void *udpif_upcall_handler(void *);
static void *udpif_revalidator(void *);
static unsigned long udpif_get_n_flows(struct udpif *);
static void revalidate(struct revalidator *);
static void revalidator_sweep(struct revalidator *);
static void revalidator_purge(struct revalidator *);
static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
                                const char *argv[], void *aux);
static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
                                             const char *argv[], void *aux);
static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
                                            const char *argv[], void *aux);
static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
                                            const char *argv[], void *aux);

static struct udpif_key *ukey_create(const struct nlattr *key, size_t key_len,
                                     long long int used);
static void ukey_delete(struct revalidator *, struct udpif_key *);

static atomic_bool enable_megaflows = ATOMIC_VAR_INIT(true);

struct udpif *
udpif_create(struct dpif_backer *backer, struct dpif *dpif)
{
    static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
    struct udpif *udpif = xzalloc(sizeof *udpif);

    if (ovsthread_once_start(&once)) {
        unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
                                 NULL);
        unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
                                 upcall_unixctl_disable_megaflows, NULL);
        unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
                                 upcall_unixctl_enable_megaflows, NULL);
        unixctl_command_register("upcall/set-flow-limit", "", 1, 1,
                                 upcall_unixctl_set_flow_limit, NULL);
        ovsthread_once_done(&once);
    }

    udpif->dpif = dpif;
    udpif->backer = backer;
    atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
    udpif->secret = random_uint32();
    udpif->reval_seq = seq_create();
    udpif->dump_seq = seq_create();
    latch_init(&udpif->exit_latch);
    list_push_back(&all_udpifs, &udpif->list_node);
    atomic_init(&udpif->n_flows, 0);
    atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
    ovs_mutex_init(&udpif->n_flows_mutex);

    return udpif;
}

void
udpif_destroy(struct udpif *udpif)
{
    udpif_stop_threads(udpif);

    list_remove(&udpif->list_node);
    latch_destroy(&udpif->exit_latch);
    seq_destroy(udpif->reval_seq);
    seq_destroy(udpif->dump_seq);
    ovs_mutex_destroy(&udpif->n_flows_mutex);
    free(udpif);
}

/* Stops the handler and revalidator threads, must be enclosed in
 * ovsrcu quiescent state unless when destroying udpif. */
static void
udpif_stop_threads(struct udpif *udpif)
{
    if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
        size_t i;

        latch_set(&udpif->exit_latch);

        for (i = 0; i < udpif->n_handlers; i++) {
            struct handler *handler = &udpif->handlers[i];

            xpthread_join(handler->thread, NULL);
        }

        for (i = 0; i < udpif->n_revalidators; i++) {
            xpthread_join(udpif->revalidators[i].thread, NULL);
        }

        for (i = 0; i < udpif->n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];

            /* Delete ukeys, and delete all flows from the datapath to prevent
             * double-counting stats. */
            revalidator_purge(revalidator);

            hmap_destroy(&udpif->ukeys[i].hmap);
            ovs_mutex_destroy(&udpif->ukeys[i].mutex);
        }

        latch_poll(&udpif->exit_latch);

        ovs_barrier_destroy(&udpif->reval_barrier);

        free(udpif->revalidators);
        udpif->revalidators = NULL;
        udpif->n_revalidators = 0;

        free(udpif->handlers);
        udpif->handlers = NULL;
        udpif->n_handlers = 0;

        free(udpif->ukeys);
        udpif->ukeys = NULL;
    }
}

/* Starts the handler and revalidator threads, must be enclosed in
 * ovsrcu quiescent state. */
static void
udpif_start_threads(struct udpif *udpif, size_t n_handlers,
                    size_t n_revalidators)
{
    if (udpif && n_handlers && n_revalidators) {
        size_t i;

        udpif->n_handlers = n_handlers;
        udpif->n_revalidators = n_revalidators;

        udpif->handlers = xzalloc(udpif->n_handlers * sizeof *udpif->handlers);
        for (i = 0; i < udpif->n_handlers; i++) {
            struct handler *handler = &udpif->handlers[i];

            handler->udpif = udpif;
            handler->handler_id = i;
            handler->thread = ovs_thread_create(
                "handler", udpif_upcall_handler, handler);
        }

        ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
        udpif->reval_exit = false;
        udpif->revalidators = xzalloc(udpif->n_revalidators
                                      * sizeof *udpif->revalidators);
        udpif->ukeys = xmalloc(sizeof *udpif->ukeys * n_revalidators);
        for (i = 0; i < udpif->n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];

            revalidator->udpif = udpif;
            hmap_init(&udpif->ukeys[i].hmap);
            ovs_mutex_init(&udpif->ukeys[i].mutex);
            revalidator->ukeys = &udpif->ukeys[i].hmap;
            revalidator->thread = ovs_thread_create(
                "revalidator", udpif_revalidator, revalidator);
        }
    }
}

/* Tells 'udpif' how many threads it should use to handle upcalls.
 * 'n_handlers' and 'n_revalidators' can never be zero.  'udpif''s
 * datapath handle must have packet reception enabled before starting
 * threads. */
void
udpif_set_threads(struct udpif *udpif, size_t n_handlers,
                  size_t n_revalidators)
{
    ovs_assert(udpif);
    ovs_assert(n_handlers && n_revalidators);

    ovsrcu_quiesce_start();
    if (udpif->n_handlers != n_handlers
        || udpif->n_revalidators != n_revalidators) {
        udpif_stop_threads(udpif);
    }

    if (!udpif->handlers && !udpif->revalidators) {
        int error;

        error = dpif_handlers_set(udpif->dpif, n_handlers);
        if (error) {
            VLOG_ERR("failed to configure handlers in dpif %s: %s",
                     dpif_name(udpif->dpif), ovs_strerror(error));
            return;
        }

        udpif_start_threads(udpif, n_handlers, n_revalidators);
    }
    ovsrcu_quiesce_end();
}

/* Waits for all ongoing upcall translations to complete.  This ensures that
 * there are no transient references to any removed ofprotos (or other
 * objects).  In particular, this should be called after an ofproto is removed
 * (e.g. via xlate_remove_ofproto()) but before it is destroyed. */
void
udpif_synchronize(struct udpif *udpif)
{
    /* This is stronger than necessary.  It would be sufficient to ensure
     * (somehow) that each handler and revalidator thread had passed through
     * its main loop once. */
    size_t n_handlers = udpif->n_handlers;
    size_t n_revalidators = udpif->n_revalidators;

    ovsrcu_quiesce_start();
    udpif_stop_threads(udpif);
    udpif_start_threads(udpif, n_handlers, n_revalidators);
    ovsrcu_quiesce_end();
}

/* Notifies 'udpif' that something changed which may render previous
 * xlate_actions() results invalid. */
void
udpif_revalidate(struct udpif *udpif)
{
    seq_change(udpif->reval_seq);
}

/* Returns a seq which increments every time 'udpif' pulls stats from the
 * datapath.  Callers can use this to get a sense of when might be a good time
 * to do periodic work which relies on relatively up to date statistics. */
struct seq *
udpif_dump_seq(struct udpif *udpif)
{
    return udpif->dump_seq;
}

void
udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
{
    size_t i;

    simap_increase(usage, "handlers", udpif->n_handlers);

    simap_increase(usage, "revalidators", udpif->n_revalidators);
    for (i = 0; i < udpif->n_revalidators; i++) {
        ovs_mutex_lock(&udpif->ukeys[i].mutex);
        simap_increase(usage, "udpif keys", hmap_count(&udpif->ukeys[i].hmap));
        ovs_mutex_unlock(&udpif->ukeys[i].mutex);
    }
}

/* Remove flows from a single datapath. */
void
udpif_flush(struct udpif *udpif)
{
    size_t n_handlers, n_revalidators;

    n_handlers = udpif->n_handlers;
    n_revalidators = udpif->n_revalidators;

    ovsrcu_quiesce_start();

    udpif_stop_threads(udpif);
    dpif_flow_flush(udpif->dpif);
    udpif_start_threads(udpif, n_handlers, n_revalidators);

    ovsrcu_quiesce_end();
}

/* Removes all flows from all datapaths. */
static void
udpif_flush_all_datapaths(void)
{
    struct udpif *udpif;

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        udpif_flush(udpif);
    }
}


static unsigned long
udpif_get_n_flows(struct udpif *udpif)
{
    long long int time, now;
    unsigned long flow_count;

    now = time_msec();
    atomic_read(&udpif->n_flows_timestamp, &time);
    if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
        struct dpif_dp_stats stats;

        atomic_store(&udpif->n_flows_timestamp, now);
        dpif_get_dp_stats(udpif->dpif, &stats);
        flow_count = stats.n_flows;
        atomic_store(&udpif->n_flows, flow_count);
        ovs_mutex_unlock(&udpif->n_flows_mutex);
    } else {
        atomic_read(&udpif->n_flows, &flow_count);
    }
    return flow_count;
}

/* The upcall handler thread tries to read a batch of FLOW_MISS_MAX_BATCH
 * upcalls from dpif, processes the batch and installs corresponding flows
 * in dpif. */
static void *
udpif_upcall_handler(void *arg)
{
    struct handler *handler = arg;
    struct udpif *udpif = handler->udpif;
    struct hmap misses = HMAP_INITIALIZER(&misses);

    while (!latch_is_set(&handler->udpif->exit_latch)) {
        struct upcall upcalls[FLOW_MISS_MAX_BATCH];
        struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH];
        struct flow_miss *miss;
        size_t n_upcalls, i;

        n_upcalls = read_upcalls(handler, upcalls, miss_buf, &misses);
        if (!n_upcalls) {
            dpif_recv_wait(udpif->dpif, handler->handler_id);
            latch_wait(&udpif->exit_latch);
            poll_block();
        } else {
            handle_upcalls(handler, &misses, upcalls, n_upcalls);

            HMAP_FOR_EACH (miss, hmap_node, &misses) {
                xlate_out_uninit(&miss->xout);
            }
            hmap_clear(&misses);
            for (i = 0; i < n_upcalls; i++) {
                ofpbuf_uninit(&upcalls[i].dpif_upcall.packet);
                ofpbuf_uninit(&upcalls[i].upcall_buf);
            }
        }
        coverage_clear();
    }
    hmap_destroy(&misses);

    return NULL;
}

static void *
udpif_revalidator(void *arg)
{
    /* Used by all revalidators. */
    struct revalidator *revalidator = arg;
    struct udpif *udpif = revalidator->udpif;
    bool leader = revalidator == &udpif->revalidators[0];

    /* Used only by the leader. */
    long long int start_time = 0;
    uint64_t last_reval_seq = 0;
    unsigned int flow_limit = 0;
    size_t n_flows = 0;

    revalidator->id = ovsthread_id_self();
    for (;;) {
        if (leader) {
            uint64_t reval_seq;

            reval_seq = seq_read(udpif->reval_seq);
            udpif->need_revalidate = last_reval_seq != reval_seq;
            last_reval_seq = reval_seq;

            n_flows = udpif_get_n_flows(udpif);
            udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
            udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;

            /* Only the leader checks the exit latch to prevent a race where
             * some threads think it's true and exit and others think it's
             * false and block indefinitely on the reval_barrier */
            udpif->reval_exit = latch_is_set(&udpif->exit_latch);

            start_time = time_msec();
            if (!udpif->reval_exit) {
                dpif_flow_dump_start(&udpif->dump, udpif->dpif);
            }
        }

        /* Wait for the leader to start the flow dump. */
        ovs_barrier_block(&udpif->reval_barrier);
        if (udpif->reval_exit) {
            break;
        }
        revalidate(revalidator);

        /* Wait for all flows to have been dumped before we garbage collect. */
        ovs_barrier_block(&udpif->reval_barrier);
        revalidator_sweep(revalidator);

        /* Wait for all revalidators to finish garbage collection. */
        ovs_barrier_block(&udpif->reval_barrier);

        if (leader) {
            long long int duration;

            dpif_flow_dump_done(&udpif->dump);
            seq_change(udpif->dump_seq);

            duration = MAX(time_msec() - start_time, 1);
            atomic_read(&udpif->flow_limit, &flow_limit);
            udpif->dump_duration = duration;
            if (duration > 2000) {
                flow_limit /= duration / 1000;
            } else if (duration > 1300) {
                flow_limit = flow_limit * 3 / 4;
            } else if (duration < 1000 && n_flows > 2000
                       && flow_limit < n_flows * 1000 / duration) {
                flow_limit += 1000;
            }
            flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
            atomic_store(&udpif->flow_limit, flow_limit);

            if (duration > 2000) {
                VLOG_INFO("Spent an unreasonably long %lldms dumping flows",
                          duration);
            }

            poll_timer_wait_until(start_time + MIN(ofproto_max_idle, 500));
            seq_wait(udpif->reval_seq, last_reval_seq);
            latch_wait(&udpif->exit_latch);
            poll_block();
        }
    }

    return NULL;
}

static enum upcall_type
classify_upcall(const struct upcall *upcall)
{
    const struct dpif_upcall *dpif_upcall = &upcall->dpif_upcall;
    union user_action_cookie cookie;
    size_t userdata_len;

    /* First look at the upcall type. */
    switch (dpif_upcall->type) {
    case DPIF_UC_ACTION:
        break;

    case DPIF_UC_MISS:
        return MISS_UPCALL;

    case DPIF_N_UC_TYPES:
    default:
        VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32,
                     dpif_upcall->type);
        return BAD_UPCALL;
    }

    /* "action" upcalls need a closer look. */
    if (!dpif_upcall->userdata) {
        VLOG_WARN_RL(&rl, "action upcall missing cookie");
        return BAD_UPCALL;
    }
    userdata_len = nl_attr_get_size(dpif_upcall->userdata);
    if (userdata_len < sizeof cookie.type
        || userdata_len > sizeof cookie) {
        VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
                     userdata_len);
        return BAD_UPCALL;
    }
    memset(&cookie, 0, sizeof cookie);
    memcpy(&cookie, nl_attr_get(dpif_upcall->userdata), userdata_len);
    if (userdata_len == MAX(8, sizeof cookie.sflow)
        && cookie.type == USER_ACTION_COOKIE_SFLOW) {
        return SFLOW_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.slow_path)
               && cookie.type == USER_ACTION_COOKIE_SLOW_PATH) {
        return MISS_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.flow_sample)
               && cookie.type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
        return FLOW_SAMPLE_UPCALL;
    } else if (userdata_len == MAX(8, sizeof cookie.ipfix)
               && cookie.type == USER_ACTION_COOKIE_IPFIX) {
        return IPFIX_UPCALL;
    } else {
        VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
                     " and size %"PRIuSIZE, cookie.type, userdata_len);
        return BAD_UPCALL;
    }
}

/* Calculates slow path actions for 'xout'.  'buf' must statically be
 * initialized with at least 128 bytes of space. */
static void
compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
                  struct flow *flow, odp_port_t odp_in_port,
                  struct ofpbuf *buf)
{
    union user_action_cookie cookie;
    odp_port_t port;
    uint32_t pid;

    cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
    cookie.slow_path.unused = 0;
    cookie.slow_path.reason = xout->slow;

    port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
        ? ODPP_NONE
        : odp_in_port;
    pid = dpif_port_get_pid(udpif->dpif, port, flow_hash_5tuple(flow, 0));
    odp_put_userspace_action(pid, &cookie, sizeof cookie.slow_path, buf);
}

static struct flow_miss *
flow_miss_find(struct hmap *todo, const struct ofproto_dpif *ofproto,
               const struct flow *flow, uint32_t hash)
{
    struct flow_miss *miss;

    HMAP_FOR_EACH_WITH_HASH (miss, hmap_node, hash, todo) {
        if (miss->ofproto == ofproto && flow_equal(&miss->flow, flow)) {
            return miss;
        }
    }

    return NULL;
}

/* Reads and classifies upcalls.  Returns the number of upcalls successfully
 * read. */
static size_t
read_upcalls(struct handler *handler,
             struct upcall upcalls[FLOW_MISS_MAX_BATCH],
             struct flow_miss miss_buf[FLOW_MISS_MAX_BATCH],
             struct hmap *misses)
{
    struct udpif *udpif = handler->udpif;
    size_t i;
    size_t n_misses = 0;
    size_t n_upcalls = 0;

    /*
     * Try reading FLOW_MISS_MAX_BATCH upcalls from dpif.
     *
     * Extract the flow from each upcall.  Construct in 'misses' a hash table
     * that maps each unique flow to a 'struct flow_miss'.
     *
     * Most commonly there is a single packet per flow_miss, but there are
     * several reasons why there might be more than one, e.g.:
     *
     *   - The dpif packet interface does not support TSO (or UFO, etc.), so a
     *     large packet sent to userspace is split into a sequence of smaller
     *     ones.
     *
     *   - A stream of quickly arriving packets in an established "slow-pathed"
     *     flow.
     *
     *   - Rarely, a stream of quickly arriving packets in a flow not yet
     *     established.  (This is rare because most protocols do not send
     *     multiple back-to-back packets before receiving a reply from the
     *     other end of the connection, which gives OVS a chance to set up a
     *     datapath flow.)
     */
    for (i = 0; i < FLOW_MISS_MAX_BATCH; i++) {
        struct upcall *upcall = &upcalls[n_upcalls];
        struct flow_miss *miss = &miss_buf[n_misses];
        struct dpif_upcall *dupcall;
        struct ofpbuf *packet;
        struct flow_miss *existing_miss;
        struct ofproto_dpif *ofproto;
        struct dpif_sflow *sflow;
        struct dpif_ipfix *ipfix;
        struct flow flow;
        enum upcall_type type;
        odp_port_t odp_in_port;
        int error;

        ofpbuf_use_stub(&upcall->upcall_buf, upcall->upcall_stub,
                        sizeof upcall->upcall_stub);
        error = dpif_recv(udpif->dpif, handler->handler_id,
                          &upcall->dpif_upcall, &upcall->upcall_buf);
        if (error) {
            ofpbuf_uninit(&upcall->upcall_buf);
            break;
        }

        dupcall = &upcall->dpif_upcall;
        packet = &dupcall->packet;
        error = xlate_receive(udpif->backer, packet, dupcall->key,
                              dupcall->key_len, &flow,
                              &ofproto, &ipfix, &sflow, NULL, &odp_in_port);
        if (error) {
            if (error == ENODEV) {
                /* Received packet on datapath port for which we couldn't
                 * associate an ofproto.  This can happen if a port is removed
                 * while traffic is being received.  Print a rate-limited
                 * message in case it happens frequently.  Install a drop flow
                 * so that future packets of the flow are inexpensively dropped
                 * in the kernel. */
                VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
                             "port %"PRIu32, odp_in_port);
                dpif_flow_put(udpif->dpif, DPIF_FP_CREATE,
                              dupcall->key, dupcall->key_len, NULL, 0, NULL, 0,
                              NULL);
            }
            goto destroy_upcall;
        }

        type = classify_upcall(upcall);
        if (type == MISS_UPCALL) {
            uint32_t hash;
            struct pkt_metadata md = pkt_metadata_from_flow(&flow);

            flow_extract(packet, &md, &miss->flow);
            hash = flow_hash(&miss->flow, 0);
            existing_miss = flow_miss_find(misses, ofproto, &miss->flow,
                                           hash);
            if (!existing_miss) {
                hmap_insert(misses, &miss->hmap_node, hash);
                miss->ofproto = ofproto;
                miss->key = dupcall->key;
                miss->key_len = dupcall->key_len;
                miss->upcall_type = dupcall->type;
                miss->stats.n_packets = 0;
                miss->stats.n_bytes = 0;
                miss->stats.used = time_msec();
                miss->stats.tcp_flags = 0;
                miss->odp_in_port = odp_in_port;
                miss->put = false;
                n_misses++;
            } else {
                miss = existing_miss;
            }
            miss->stats.tcp_flags |= ntohs(miss->flow.tcp_flags);
            miss->stats.n_bytes += ofpbuf_size(packet);
            miss->stats.n_packets++;

            upcall->flow_miss = miss;
            n_upcalls++;
            continue;
        }

        switch (type) {
        case SFLOW_UPCALL:
            if (sflow) {
                union user_action_cookie cookie;

                memset(&cookie, 0, sizeof cookie);
                memcpy(&cookie, nl_attr_get(dupcall->userdata),
                       sizeof cookie.sflow);
                dpif_sflow_received(sflow, packet, &flow, odp_in_port,
                                    &cookie);
            }
            break;
        case IPFIX_UPCALL:
            if (ipfix) {
                dpif_ipfix_bridge_sample(ipfix, packet, &flow);
            }
            break;
        case FLOW_SAMPLE_UPCALL:
            if (ipfix) {
                union user_action_cookie cookie;

                memset(&cookie, 0, sizeof cookie);
                memcpy(&cookie, nl_attr_get(dupcall->userdata),
                       sizeof cookie.flow_sample);

                /* The flow reflects exactly the contents of the packet.
                 * Sample the packet using it. */
                dpif_ipfix_flow_sample(ipfix, packet, &flow,
                                       cookie.flow_sample.collector_set_id,
                                       cookie.flow_sample.probability,
                                       cookie.flow_sample.obs_domain_id,
                                       cookie.flow_sample.obs_point_id);
            }
            break;
        case BAD_UPCALL:
            break;
        case MISS_UPCALL:
            OVS_NOT_REACHED();
        }

        dpif_ipfix_unref(ipfix);
        dpif_sflow_unref(sflow);

destroy_upcall:
        ofpbuf_uninit(&upcall->dpif_upcall.packet);
        ofpbuf_uninit(&upcall->upcall_buf);
    }

    return n_upcalls;
}

static void
handle_upcalls(struct handler *handler, struct hmap *misses,
               struct upcall *upcalls, size_t n_upcalls)
{
    struct udpif *udpif = handler->udpif;
    struct dpif_op *opsp[FLOW_MISS_MAX_BATCH * 2];
    struct dpif_op ops[FLOW_MISS_MAX_BATCH * 2];
    struct flow_miss *miss;
    size_t n_ops, i;
    unsigned int flow_limit;
    bool fail_open, may_put;

    atomic_read(&udpif->flow_limit, &flow_limit);
    may_put = udpif_get_n_flows(udpif) < flow_limit;

    /* Initialize each 'struct flow_miss's ->xout.
     *
     * We do this per-flow_miss rather than per-packet because, most commonly,
     * all the packets in a flow can use the same translation.
     *
     * We can't do this in the previous loop because we need the TCP flags for
     * all the packets in each miss. */
    fail_open = false;
    HMAP_FOR_EACH (miss, hmap_node, misses) {
        struct xlate_in xin;

        xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL,
                      miss->stats.tcp_flags, NULL);
        xin.may_learn = true;

        if (miss->upcall_type == DPIF_UC_MISS) {
            xin.resubmit_stats = &miss->stats;
        } else {
            /* For non-miss upcalls, there's a flow in the datapath which this
             * packet was accounted to.  Presumably the revalidators will deal
             * with pushing its stats eventually. */
        }

        xlate_actions(&xin, &miss->xout);
        fail_open = fail_open || miss->xout.fail_open;
    }

    /* Now handle the packets individually in order of arrival.  In the common
     * case each packet of a miss can share the same actions, but slow-pathed
     * packets need to be translated individually:
     *
     *   - For SLOW_CFM, SLOW_LACP, SLOW_STP, and SLOW_BFD, translation is what
     *     processes received packets for these protocols.
     *
     *   - For SLOW_CONTROLLER, translation sends the packet to the OpenFlow
     *     controller.
     *
     * The loop fills 'ops' with an array of operations to execute in the
     * datapath. */
    n_ops = 0;
    for (i = 0; i < n_upcalls; i++) {
        struct upcall *upcall = &upcalls[i];
        struct flow_miss *miss = upcall->flow_miss;
        struct ofpbuf *packet = &upcall->dpif_upcall.packet;
        struct dpif_op *op;
        ovs_be16 flow_vlan_tci;

        /* Save a copy of flow.vlan_tci in case it is changed to
         * generate proper mega flow masks for VLAN splinter flows. */
        flow_vlan_tci = miss->flow.vlan_tci;

        if (miss->xout.slow) {
            struct xlate_in xin;

            xlate_in_init(&xin, miss->ofproto, &miss->flow, NULL, 0, packet);
            xlate_actions_for_side_effects(&xin);
        }

        if (miss->flow.in_port.ofp_port
            != vsp_realdev_to_vlandev(miss->ofproto,
                                      miss->flow.in_port.ofp_port,
                                      miss->flow.vlan_tci)) {
            /* This packet was received on a VLAN splinter port.  We
             * added a VLAN to the packet to make the packet resemble
             * the flow, but the actions were composed assuming that
             * the packet contained no VLAN.  So, we must remove the
             * VLAN header from the packet before trying to execute the
             * actions. */
            if (ofpbuf_size(&miss->xout.odp_actions)) {
                eth_pop_vlan(packet);
            }

            /* Remove the flow vlan tags inserted by vlan splinter logic
             * to ensure megaflow masks generated match the data path flow. */
            miss->flow.vlan_tci = 0;
        }

        /* Do not install a flow into the datapath if:
         *
         *    - The datapath already has too many flows.
         *
         *    - An earlier iteration of this loop already put the same flow.
         *
         *    - We received this packet via some flow installed in the kernel
         *      already. */
        if (may_put
            && !miss->put
            && upcall->dpif_upcall.type == DPIF_UC_MISS) {
            struct ofpbuf mask;
            bool megaflow;

            miss->put = true;

            atomic_read(&enable_megaflows, &megaflow);
            ofpbuf_use_stack(&mask, &miss->mask_buf, sizeof miss->mask_buf);
            if (megaflow) {
                size_t max_mpls;

                max_mpls = ofproto_dpif_get_max_mpls_depth(miss->ofproto);
                odp_flow_key_from_mask(&mask, &miss->xout.wc.masks,
                                       &miss->flow, UINT32_MAX, max_mpls);
            }

            op = &ops[n_ops++];
            op->type = DPIF_OP_FLOW_PUT;
            op->u.flow_put.flags = DPIF_FP_CREATE;
            op->u.flow_put.key = miss->key;
            op->u.flow_put.key_len = miss->key_len;
            op->u.flow_put.mask = ofpbuf_data(&mask);
            op->u.flow_put.mask_len = ofpbuf_size(&mask);
            op->u.flow_put.stats = NULL;

            if (!miss->xout.slow) {
                op->u.flow_put.actions = ofpbuf_data(&miss->xout.odp_actions);
                op->u.flow_put.actions_len = ofpbuf_size(&miss->xout.odp_actions);
            } else {
                struct ofpbuf buf;

                ofpbuf_use_stack(&buf, miss->slow_path_buf,
                                 sizeof miss->slow_path_buf);
                compose_slow_path(udpif, &miss->xout, &miss->flow,
                                  miss->odp_in_port, &buf);
                op->u.flow_put.actions = ofpbuf_data(&buf);
                op->u.flow_put.actions_len = ofpbuf_size(&buf);
            }
        }

        /*
         * The 'miss' may be shared by multiple upcalls. Restore
         * the saved flow vlan_tci field before processing the next
         * upcall. */
        miss->flow.vlan_tci = flow_vlan_tci;

        if (ofpbuf_size(&miss->xout.odp_actions)) {

            op = &ops[n_ops++];
            op->type = DPIF_OP_EXECUTE;
            op->u.execute.packet = packet;
            odp_key_to_pkt_metadata(miss->key, miss->key_len,
                                    &op->u.execute.md);
            op->u.execute.actions = ofpbuf_data(&miss->xout.odp_actions);
            op->u.execute.actions_len = ofpbuf_size(&miss->xout.odp_actions);
            op->u.execute.needs_help = (miss->xout.slow & SLOW_ACTION) != 0;
        }
    }

    /* Special case for fail-open mode.
     *
     * If we are in fail-open mode, but we are connected to a controller too,
     * then we should send the packet up to the controller in the hope that it
     * will try to set up a flow and thereby allow us to exit fail-open.
     *
     * See the top-level comment in fail-open.c for more information.
     *
     * Copy packets before they are modified by execution. */
    if (fail_open) {
        for (i = 0; i < n_upcalls; i++) {
            struct upcall *upcall = &upcalls[i];
            struct flow_miss *miss = upcall->flow_miss;
            struct ofpbuf *packet = &upcall->dpif_upcall.packet;
            struct ofproto_packet_in *pin;

            pin = xmalloc(sizeof *pin);
            pin->up.packet = xmemdup(ofpbuf_data(packet), ofpbuf_size(packet));
            pin->up.packet_len = ofpbuf_size(packet);
            pin->up.reason = OFPR_NO_MATCH;
            pin->up.table_id = 0;
            pin->up.cookie = OVS_BE64_MAX;
            flow_get_metadata(&miss->flow, &pin->up.fmd);
            pin->send_len = 0; /* Not used for flow table misses. */
            pin->miss_type = OFPROTO_PACKET_IN_NO_MISS;
            ofproto_dpif_send_packet_in(miss->ofproto, pin);
        }
    }

    /* Execute batch. */
    for (i = 0; i < n_ops; i++) {
        opsp[i] = &ops[i];
    }
    dpif_operate(udpif->dpif, opsp, n_ops);
}

/* Must be called with udpif->ukeys[hash % udpif->n_revalidators].mutex. */
static struct udpif_key *
ukey_lookup__(struct udpif *udpif, const struct nlattr *key, size_t key_len,
              uint32_t hash)
{
    struct udpif_key *ukey;
    struct hmap *hmap = &udpif->ukeys[hash % udpif->n_revalidators].hmap;

    HMAP_FOR_EACH_WITH_HASH (ukey, hmap_node, hash, hmap) {
        if (ukey->key_len == key_len && !memcmp(ukey->key, key, key_len)) {
            return ukey;
        }
    }
    return NULL;
}

static struct udpif_key *
ukey_lookup(struct udpif *udpif, const struct nlattr *key, size_t key_len,
            uint32_t hash)
{
    struct udpif_key *ukey;
    uint32_t idx = hash % udpif->n_revalidators;

    ovs_mutex_lock(&udpif->ukeys[idx].mutex);
    ukey = ukey_lookup__(udpif, key, key_len, hash);
    ovs_mutex_unlock(&udpif->ukeys[idx].mutex);

    return ukey;
}

static struct udpif_key *
ukey_create(const struct nlattr *key, size_t key_len, long long int used)
{
    struct udpif_key *ukey = xmalloc(sizeof *ukey);
    ovs_mutex_init(&ukey->mutex);

    ukey->key = (struct nlattr *) &ukey->key_buf;
    memcpy(&ukey->key_buf, key, key_len);
    ukey->key_len = key_len;

    ovs_mutex_lock(&ukey->mutex);
    ukey->mark = false;
    ukey->flow_exists = true;
    ukey->created = used ? used : time_msec();
    memset(&ukey->stats, 0, sizeof ukey->stats);
    ukey->xcache = NULL;
    ovs_mutex_unlock(&ukey->mutex);

    return ukey;
}

/* Checks for a ukey in 'udpif->ukeys' with the same 'ukey->key' and 'hash',
 * and inserts 'ukey' if it does not exist.
 *
 * Returns true if 'ukey' was inserted into 'udpif->ukeys', false otherwise. */
static bool
udpif_insert_ukey(struct udpif *udpif, struct udpif_key *ukey, uint32_t hash)
{
    struct udpif_key *duplicate;
    uint32_t idx = hash % udpif->n_revalidators;
    bool ok;

    ovs_mutex_lock(&udpif->ukeys[idx].mutex);
    duplicate = ukey_lookup__(udpif, ukey->key, ukey->key_len, hash);
    if (duplicate) {
        ok = false;
    } else {
        hmap_insert(&udpif->ukeys[idx].hmap, &ukey->hmap_node, hash);
        ok = true;
    }
    ovs_mutex_unlock(&udpif->ukeys[idx].mutex);

    return ok;
}

static void
ukey_delete(struct revalidator *revalidator, struct udpif_key *ukey)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    if (revalidator) {
        hmap_remove(revalidator->ukeys, &ukey->hmap_node);
    }
    xlate_cache_delete(ukey->xcache);
    ovs_mutex_destroy(&ukey->mutex);
    free(ukey);
}

static bool
should_revalidate(const struct udpif *udpif, uint64_t packets,
                  long long int used)
{
    long long int metric, now, duration;

    if (udpif->dump_duration < 200) {
        /* We are likely to handle full revalidation for the flows. */
        return true;
    }

    /* Calculate the mean time between seeing these packets. If this
     * exceeds the threshold, then delete the flow rather than performing
     * costly revalidation for flows that aren't being hit frequently.
     *
     * This is targeted at situations where the dump_duration is high (~1s),
     * and revalidation is triggered by a call to udpif_revalidate(). In
     * these situations, revalidation of all flows causes fluctuations in the
     * flow_limit due to the interaction with the dump_duration and max_idle.
     * This tends to result in deletion of low-throughput flows anyway, so
     * skip the revalidation and just delete those flows. */
    packets = MAX(packets, 1);
    now = MAX(used, time_msec());
    duration = now - used;
    metric = duration / packets;

    if (metric < 200) {
        /* The flow is receiving more than ~5pps, so keep it. */
        return true;
    }
    return false;
}

static bool
revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
                const struct nlattr *mask, size_t mask_len,
                const struct nlattr *actions, size_t actions_len,
                const struct dpif_flow_stats *stats)
    OVS_REQUIRES(ukey->mutex)
{
    uint64_t slow_path_buf[128 / 8];
    struct xlate_out xout, *xoutp;
    struct netflow *netflow;
    struct ofproto_dpif *ofproto;
    struct dpif_flow_stats push;
    struct ofpbuf xout_actions;
    struct flow flow, dp_mask;
    uint32_t *dp32, *xout32;
    odp_port_t odp_in_port;
    struct xlate_in xin;
    long long int last_used;
    int error;
    size_t i;
    bool may_learn, ok;

    ok = false;
    xoutp = NULL;
    netflow = NULL;

    last_used = ukey->stats.used;
    push.used = stats->used;
    push.tcp_flags = stats->tcp_flags;
    push.n_packets = stats->n_packets > ukey->stats.n_packets
        ? stats->n_packets - ukey->stats.n_packets
        : 0;
    push.n_bytes = stats->n_bytes > ukey->stats.n_bytes
        ? stats->n_bytes - ukey->stats.n_bytes
        : 0;

    if (udpif->need_revalidate && last_used
        && !should_revalidate(udpif, push.n_packets, last_used)) {
        ok = false;
        goto exit;
    }

    /* We will push the stats, so update the ukey stats cache. */
    ukey->stats = *stats;
    if (!push.n_packets && !udpif->need_revalidate) {
        ok = true;
        goto exit;
    }

    may_learn = push.n_packets > 0;
    if (ukey->xcache && !udpif->need_revalidate) {
        xlate_push_stats(ukey->xcache, may_learn, &push);
        ok = true;
        goto exit;
    }

    error = xlate_receive(udpif->backer, NULL, ukey->key, ukey->key_len, &flow,
                          &ofproto, NULL, NULL, &netflow, &odp_in_port);
    if (error) {
        goto exit;
    }

    if (udpif->need_revalidate) {
        xlate_cache_clear(ukey->xcache);
    }
    if (!ukey->xcache) {
        ukey->xcache = xlate_cache_new();
    }

    xlate_in_init(&xin, ofproto, &flow, NULL, push.tcp_flags, NULL);
    xin.resubmit_stats = push.n_packets ? &push : NULL;
    xin.xcache = ukey->xcache;
    xin.may_learn = may_learn;
    xin.skip_wildcards = !udpif->need_revalidate;
    xlate_actions(&xin, &xout);
    xoutp = &xout;

    if (!udpif->need_revalidate) {
        ok = true;
        goto exit;
    }

    if (!xout.slow) {
        ofpbuf_use_const(&xout_actions, ofpbuf_data(&xout.odp_actions),
                         ofpbuf_size(&xout.odp_actions));
    } else {
        ofpbuf_use_stack(&xout_actions, slow_path_buf, sizeof slow_path_buf);
        compose_slow_path(udpif, &xout, &flow, odp_in_port, &xout_actions);
    }

    if (actions_len != ofpbuf_size(&xout_actions)
        || memcmp(ofpbuf_data(&xout_actions), actions, actions_len)) {
        goto exit;
    }

    if (odp_flow_key_to_mask(mask, mask_len, &dp_mask, &flow)
        == ODP_FIT_ERROR) {
        goto exit;
    }

    /* Since the kernel is free to ignore wildcarded bits in the mask, we can't
     * directly check that the masks are the same.  Instead we check that the
     * mask in the kernel is more specific i.e. less wildcarded, than what
     * we've calculated here.  This guarantees we don't catch any packets we
     * shouldn't with the megaflow. */
    dp32 = (uint32_t *) &dp_mask;
    xout32 = (uint32_t *) &xout.wc.masks;
    for (i = 0; i < FLOW_U32S; i++) {
        if ((dp32[i] | xout32[i]) != dp32[i]) {
            goto exit;
        }
    }
    ok = true;

exit:
    if (netflow) {
        if (!ok) {
            netflow_flow_clear(netflow, &flow);
        }
        netflow_unref(netflow);
    }
    xlate_out_uninit(xoutp);
    return ok;
}

struct dump_op {
    struct udpif_key *ukey;
    struct dpif_flow_stats stats; /* Stats for 'op'. */
    struct dpif_op op;            /* Flow del operation. */
};

static void
dump_op_init(struct dump_op *op, const struct nlattr *key, size_t key_len,
             struct udpif_key *ukey)
{
    op->ukey = ukey;
    op->op.type = DPIF_OP_FLOW_DEL;
    op->op.u.flow_del.key = key;
    op->op.u.flow_del.key_len = key_len;
    op->op.u.flow_del.stats = &op->stats;
}

static void
push_dump_ops__(struct udpif *udpif, struct dump_op *ops, size_t n_ops)
{
    struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
    size_t i;

    ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
    for (i = 0; i < n_ops; i++) {
        opsp[i] = &ops[i].op;
    }
    dpif_operate(udpif->dpif, opsp, n_ops);

    for (i = 0; i < n_ops; i++) {
        struct dump_op *op = &ops[i];
        struct dpif_flow_stats *push, *stats, push_buf;

        stats = op->op.u.flow_del.stats;
        if (op->ukey) {
            push = &push_buf;
            ovs_mutex_lock(&op->ukey->mutex);
            push->used = MAX(stats->used, op->ukey->stats.used);
            push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
            push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
            push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
            ovs_mutex_unlock(&op->ukey->mutex);
        } else {
            push = stats;
        }

        if (push->n_packets || netflow_exists()) {
            struct ofproto_dpif *ofproto;
            struct netflow *netflow;
            struct flow flow;
            bool may_learn;

            may_learn = push->n_packets > 0;
            if (op->ukey) {
                ovs_mutex_lock(&op->ukey->mutex);
                if (op->ukey->xcache) {
                    xlate_push_stats(op->ukey->xcache, may_learn, push);
                    ovs_mutex_unlock(&op->ukey->mutex);
                    continue;
                }
                ovs_mutex_unlock(&op->ukey->mutex);
            }

            if (!xlate_receive(udpif->backer, NULL, op->op.u.flow_del.key,
                               op->op.u.flow_del.key_len, &flow, &ofproto,
                               NULL, NULL, &netflow, NULL)) {
                struct xlate_in xin;

                xlate_in_init(&xin, ofproto, &flow, NULL, push->tcp_flags,
                              NULL);
                xin.resubmit_stats = push->n_packets ? push : NULL;
                xin.may_learn = may_learn;
                xin.skip_wildcards = true;
                xlate_actions_for_side_effects(&xin);

                if (netflow) {
                    netflow_flow_clear(netflow, &flow);
                    netflow_unref(netflow);
                }
            }
        }
    }
}

static void
push_dump_ops(struct revalidator *revalidator,
              struct dump_op *ops, size_t n_ops)
{
    int i;

    push_dump_ops__(revalidator->udpif, ops, n_ops);
    for (i = 0; i < n_ops; i++) {
        ukey_delete(revalidator, ops[i].ukey);
    }
}

static void
revalidate(struct revalidator *revalidator)
{
    struct udpif *udpif = revalidator->udpif;

    struct dump_op ops[REVALIDATE_MAX_BATCH];
    const struct nlattr *key, *mask, *actions;
    size_t key_len, mask_len, actions_len;
    const struct dpif_flow_stats *stats;
    long long int now;
    unsigned int flow_limit;
    size_t n_ops;
    void *state;

    n_ops = 0;
    now = time_msec();
    atomic_read(&udpif->flow_limit, &flow_limit);

    dpif_flow_dump_state_init(udpif->dpif, &state);
    while (dpif_flow_dump_next(&udpif->dump, state, &key, &key_len, &mask,
                               &mask_len, &actions, &actions_len, &stats)) {
        struct udpif_key *ukey;
        bool mark, may_destroy;
        long long int used, max_idle;
        uint32_t hash;
        size_t n_flows;

        hash = hash_bytes(key, key_len, udpif->secret);
        ukey = ukey_lookup(udpif, key, key_len, hash);

        used = stats->used;
        if (!ukey) {
            ukey = ukey_create(key, key_len, used);
            if (!udpif_insert_ukey(udpif, ukey, hash)) {
                /* The same ukey has already been created. This means that
                 * another revalidator is processing this flow
                 * concurrently, so don't bother processing it. */
                COVERAGE_INC(upcall_duplicate_flow);
                ukey_delete(NULL, ukey);
                goto next;
            }
        }

        if (ovs_mutex_trylock(&ukey->mutex)) {
            /* The flow has been dumped, and is being handled by another
             * revalidator concurrently. This can occasionally occur if the
             * datapath is changed in the middle of a flow dump. Rather than
             * perform the same work twice, skip the flow this time. */
            COVERAGE_INC(upcall_duplicate_flow);
            goto next;
        }

        if (ukey->mark || !ukey->flow_exists) {
            /* The flow has already been dumped and handled by another
             * revalidator during this flow dump operation. Skip it. */
            COVERAGE_INC(upcall_duplicate_flow);
            ovs_mutex_unlock(&ukey->mutex);
            goto next;
        }

        if (!used) {
            used = ukey->created;
        }
        n_flows = udpif_get_n_flows(udpif);
        max_idle = ofproto_max_idle;
        if (n_flows > flow_limit) {
            max_idle = 100;
        }

        if ((used && used < now - max_idle) || n_flows > flow_limit * 2) {
            mark = false;
        } else {
            mark = revalidate_ukey(udpif, ukey, mask, mask_len, actions,
                                   actions_len, stats);
        }
        ukey->mark = ukey->flow_exists = mark;

        if (!mark) {
            dump_op_init(&ops[n_ops++], key, key_len, ukey);
        }
        ovs_mutex_unlock(&ukey->mutex);

    next:
        may_destroy = dpif_flow_dump_next_may_destroy_keys(&udpif->dump,
                                                           state);

        /* Only update 'now' immediately before 'buffer' will be updated.
         * This gives us the current time relative to the time the datapath
         * will write into 'stats'. */
        if (may_destroy) {
            now = time_msec();
        }

        /* Only do a dpif_operate when we've hit our maximum batch, or when our
         * memory is about to be clobbered by the next call to
         * dpif_flow_dump_next(). */
        if (n_ops == REVALIDATE_MAX_BATCH || (n_ops && may_destroy)) {
            push_dump_ops__(udpif, ops, n_ops);
            n_ops = 0;
        }
    }

    if (n_ops) {
        push_dump_ops__(udpif, ops, n_ops);
    }

    dpif_flow_dump_state_uninit(udpif->dpif, state);
}

/* Called with exclusive access to 'revalidator' and 'ukey'. */
static bool
handle_missed_revalidation(struct revalidator *revalidator,
                           struct udpif_key *ukey)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    struct udpif *udpif = revalidator->udpif;
    struct nlattr *mask, *actions;
    size_t mask_len, actions_len;
    struct dpif_flow_stats stats;
    struct ofpbuf *buf;
    bool keep = false;

    COVERAGE_INC(revalidate_missed_dp_flow);

    if (!dpif_flow_get(udpif->dpif, ukey->key, ukey->key_len, &buf,
                       &mask, &mask_len, &actions, &actions_len, &stats)) {
        keep = revalidate_ukey(udpif, ukey, mask, mask_len, actions,
                               actions_len, &stats);
        ofpbuf_delete(buf);
    }

    return keep;
}

static void
revalidator_sweep__(struct revalidator *revalidator, bool purge)
    OVS_NO_THREAD_SAFETY_ANALYSIS
{
    struct dump_op ops[REVALIDATE_MAX_BATCH];
    struct udpif_key *ukey, *next;
    size_t n_ops;

    n_ops = 0;

    /* During garbage collection, this revalidator completely owns its ukeys
     * map, and therefore doesn't need to do any locking. */
    HMAP_FOR_EACH_SAFE (ukey, next, hmap_node, revalidator->ukeys) {
        if (ukey->flow_exists) {
            bool missed_flow = !ukey->mark;

            ukey->mark = false;
            if (purge
                || (missed_flow
                    && revalidator->udpif->need_revalidate
                    && !handle_missed_revalidation(revalidator, ukey))) {
                struct dump_op *op = &ops[n_ops++];

                dump_op_init(op, ukey->key, ukey->key_len, ukey);
                if (n_ops == REVALIDATE_MAX_BATCH) {
                    push_dump_ops(revalidator, ops, n_ops);
                    n_ops = 0;
                }
            }
        } else {
            ukey_delete(revalidator, ukey);
        }
    }

    if (n_ops) {
        push_dump_ops(revalidator, ops, n_ops);
    }
}

static void
revalidator_sweep(struct revalidator *revalidator)
{
    revalidator_sweep__(revalidator, false);
}

static void
revalidator_purge(struct revalidator *revalidator)
{
    revalidator_sweep__(revalidator, true);
}

static void
upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
                    const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    struct udpif *udpif;

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        unsigned int flow_limit;
        size_t i;

        atomic_read(&udpif->flow_limit, &flow_limit);

        ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
        ds_put_format(&ds, "\tflows         : (current %lu)"
            " (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
            udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
        ds_put_format(&ds, "\tdump duration : %lldms\n", udpif->dump_duration);

        ds_put_char(&ds, '\n');
        for (i = 0; i < n_revalidators; i++) {
            struct revalidator *revalidator = &udpif->revalidators[i];

            ovs_mutex_lock(&udpif->ukeys[i].mutex);
            ds_put_format(&ds, "\t%u: (keys %"PRIuSIZE")\n",
                          revalidator->id, hmap_count(&udpif->ukeys[i].hmap));
            ovs_mutex_unlock(&udpif->ukeys[i].mutex);
        }
    }

    unixctl_command_reply(conn, ds_cstr(&ds));
    ds_destroy(&ds);
}

/* Disable using the megaflows.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
                                 int argc OVS_UNUSED,
                                 const char *argv[] OVS_UNUSED,
                                 void *aux OVS_UNUSED)
{
    atomic_store(&enable_megaflows, false);
    udpif_flush_all_datapaths();
    unixctl_command_reply(conn, "megaflows disabled");
}

/* Re-enable using megaflows.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
                                int argc OVS_UNUSED,
                                const char *argv[] OVS_UNUSED,
                                void *aux OVS_UNUSED)
{
    atomic_store(&enable_megaflows, true);
    udpif_flush_all_datapaths();
    unixctl_command_reply(conn, "megaflows enabled");
}

/* Set the flow limit.
 *
 * This command is only needed for advanced debugging, so it's not
 * documented in the man page. */
static void
upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
                              int argc OVS_UNUSED,
                              const char *argv[] OVS_UNUSED,
                              void *aux OVS_UNUSED)
{
    struct ds ds = DS_EMPTY_INITIALIZER;
    struct udpif *udpif;
    unsigned int flow_limit = atoi(argv[1]);

    LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
        atomic_store(&udpif->flow_limit, flow_limit);
    }
    ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
    unixctl_command_reply(conn, ds_cstr(&ds));
    ds_destroy(&ds);
}