1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
|
/*
* Copyright (c) 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "conntrack.h"
#include <errno.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include "bitmap.h"
#include "conntrack-private.h"
#include "coverage.h"
#include "csum.h"
#include "ct-dpif.h"
#include "dp-packet.h"
#include "flow.h"
#include "netdev.h"
#include "odp-netlink.h"
#include "openvswitch/hmap.h"
#include "openvswitch/vlog.h"
#include "ovs-rcu.h"
#include "ovs-thread.h"
#include "poll-loop.h"
#include "random.h"
#include "timeval.h"
VLOG_DEFINE_THIS_MODULE(conntrack);
COVERAGE_DEFINE(conntrack_full);
COVERAGE_DEFINE(conntrack_long_cleanup);
struct conn_lookup_ctx {
struct conn_key key;
struct conn *conn;
uint32_t hash;
bool reply;
bool related;
};
static bool conn_key_extract(struct conntrack *, struct dp_packet *,
ovs_be16 dl_type, struct conn_lookup_ctx *,
uint16_t zone);
static uint32_t conn_key_hash(const struct conn_key *, uint32_t basis);
static void conn_key_reverse(struct conn_key *);
static void conn_key_lookup(struct conntrack_bucket *ctb,
struct conn_lookup_ctx *ctx,
long long now);
static bool valid_new(struct dp_packet *pkt, struct conn_key *);
static struct conn *new_conn(struct conntrack_bucket *, struct dp_packet *pkt,
struct conn_key *, long long now);
static void delete_conn(struct conn *);
static enum ct_update_res conn_update(struct conn *,
struct conntrack_bucket *ctb,
struct dp_packet *, bool reply,
long long now);
static bool conn_expired(struct conn *, long long now);
static void set_mark(struct dp_packet *, struct conn *,
uint32_t val, uint32_t mask);
static void set_label(struct dp_packet *, struct conn *,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask);
static void *clean_thread_main(void *f_);
static struct ct_l4_proto *l4_protos[] = {
[IPPROTO_TCP] = &ct_proto_tcp,
[IPPROTO_UDP] = &ct_proto_other,
[IPPROTO_ICMP] = &ct_proto_icmp4,
[IPPROTO_ICMPV6] = &ct_proto_icmp6,
};
long long ct_timeout_val[] = {
#define CT_TIMEOUT(NAME, VAL) [CT_TM_##NAME] = VAL,
CT_TIMEOUTS
#undef CT_TIMEOUT
};
/* If the total number of connections goes above this value, no new connections
* are accepted */
#define DEFAULT_N_CONN_LIMIT 3000000
/* Initializes the connection tracker 'ct'. The caller is responsible for
* calling 'conntrack_destroy()', when the instance is not needed anymore */
void
conntrack_init(struct conntrack *ct)
{
unsigned i, j;
long long now = time_msec();
for (i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
ct_lock_init(&ctb->lock);
ct_lock_lock(&ctb->lock);
hmap_init(&ctb->connections);
for (j = 0; j < ARRAY_SIZE(ctb->exp_lists); j++) {
ovs_list_init(&ctb->exp_lists[j]);
}
ct_lock_unlock(&ctb->lock);
ovs_mutex_init(&ctb->cleanup_mutex);
ovs_mutex_lock(&ctb->cleanup_mutex);
ctb->next_cleanup = now + CT_TM_MIN;
ovs_mutex_unlock(&ctb->cleanup_mutex);
}
ct->hash_basis = random_uint32();
atomic_count_init(&ct->n_conn, 0);
atomic_init(&ct->n_conn_limit, DEFAULT_N_CONN_LIMIT);
latch_init(&ct->clean_thread_exit);
ct->clean_thread = ovs_thread_create("ct_clean", clean_thread_main, ct);
}
/* Destroys the connection tracker 'ct' and frees all the allocated memory. */
void
conntrack_destroy(struct conntrack *ct)
{
unsigned i;
latch_set(&ct->clean_thread_exit);
pthread_join(ct->clean_thread, NULL);
latch_destroy(&ct->clean_thread_exit);
for (i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
struct conn *conn;
ovs_mutex_destroy(&ctb->cleanup_mutex);
ct_lock_lock(&ctb->lock);
HMAP_FOR_EACH_POP(conn, node, &ctb->connections) {
atomic_count_dec(&ct->n_conn);
delete_conn(conn);
}
hmap_destroy(&ctb->connections);
ct_lock_unlock(&ctb->lock);
ct_lock_destroy(&ctb->lock);
}
}
static unsigned hash_to_bucket(uint32_t hash)
{
/* Extracts the most significant bits in hash. The least significant bits
* are already used internally by the hmap implementation. */
BUILD_ASSERT(CONNTRACK_BUCKETS_SHIFT < 32 && CONNTRACK_BUCKETS_SHIFT >= 1);
return (hash >> (32 - CONNTRACK_BUCKETS_SHIFT)) % CONNTRACK_BUCKETS;
}
static void
write_ct_md(struct dp_packet *pkt, uint16_t state, uint16_t zone,
uint32_t mark, ovs_u128 label)
{
pkt->md.ct_state = state | CS_TRACKED;
pkt->md.ct_zone = zone;
pkt->md.ct_mark = mark;
pkt->md.ct_label = label;
}
static struct conn *
conn_not_found(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, uint16_t *state, bool commit,
long long now)
{
unsigned bucket = hash_to_bucket(ctx->hash);
struct conn *nc = NULL;
if (!valid_new(pkt, &ctx->key)) {
*state |= CS_INVALID;
return nc;
}
*state |= CS_NEW;
if (commit) {
unsigned int n_conn_limit;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
if (atomic_count_get(&ct->n_conn) >= n_conn_limit) {
COVERAGE_INC(conntrack_full);
return nc;
}
nc = new_conn(&ct->buckets[bucket], pkt, &ctx->key, now);
memcpy(&nc->rev_key, &ctx->key, sizeof nc->rev_key);
conn_key_reverse(&nc->rev_key);
hmap_insert(&ct->buckets[bucket].connections, &nc->node, ctx->hash);
atomic_count_inc(&ct->n_conn);
}
return nc;
}
static struct conn *
process_one(struct conntrack *ct, struct dp_packet *pkt,
struct conn_lookup_ctx *ctx, uint16_t zone,
bool commit, long long now)
{
unsigned bucket = hash_to_bucket(ctx->hash);
struct conn *conn = ctx->conn;
uint16_t state = 0;
if (conn) {
if (ctx->related) {
state |= CS_RELATED;
if (ctx->reply) {
state |= CS_REPLY_DIR;
}
} else {
enum ct_update_res res;
res = conn_update(conn, &ct->buckets[bucket], pkt,
ctx->reply, now);
switch (res) {
case CT_UPDATE_VALID:
state |= CS_ESTABLISHED;
if (ctx->reply) {
state |= CS_REPLY_DIR;
}
break;
case CT_UPDATE_INVALID:
state |= CS_INVALID;
break;
case CT_UPDATE_NEW:
ovs_list_remove(&conn->exp_node);
hmap_remove(&ct->buckets[bucket].connections, &conn->node);
atomic_count_dec(&ct->n_conn);
delete_conn(conn);
conn = conn_not_found(ct, pkt, ctx, &state, commit, now);
break;
default:
OVS_NOT_REACHED();
}
}
} else {
conn = conn_not_found(ct, pkt, ctx, &state, commit, now);
}
write_ct_md(pkt, state, zone, conn ? conn->mark : 0,
conn ? conn->label : OVS_U128_ZERO);
return conn;
}
/* Sends the packets in '*pkt_batch' through the connection tracker 'ct'. All
* the packets should have the same 'dl_type' (IPv4 or IPv6) and should have
* the l3 and and l4 offset properly set.
*
* If 'commit' is true, the packets are allowed to create new entries in the
* connection tables. 'setmark', if not NULL, should point to a two
* elements array containing a value and a mask to set the connection mark.
* 'setlabel' behaves similarly for the connection label.*/
int
conntrack_execute(struct conntrack *ct, struct dp_packet_batch *pkt_batch,
ovs_be16 dl_type, bool commit, uint16_t zone,
const uint32_t *setmark,
const struct ovs_key_ct_labels *setlabel,
const char *helper)
{
struct dp_packet **pkts = pkt_batch->packets;
size_t cnt = pkt_batch->count;
#if !defined(__CHECKER__) && !defined(_WIN32)
const size_t KEY_ARRAY_SIZE = cnt;
#else
enum { KEY_ARRAY_SIZE = NETDEV_MAX_BURST };
#endif
struct conn_lookup_ctx ctxs[KEY_ARRAY_SIZE];
int8_t bucket_list[CONNTRACK_BUCKETS];
struct {
unsigned bucket;
unsigned long maps;
} arr[KEY_ARRAY_SIZE];
long long now = time_msec();
size_t i = 0;
uint8_t arrcnt = 0;
BUILD_ASSERT_DECL(sizeof arr[0].maps * CHAR_BIT >= NETDEV_MAX_BURST);
if (helper) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(5, 5);
VLOG_WARN_RL(&rl, "ALG helper \"%s\" not supported", helper);
/* Continue without the helper */
}
memset(bucket_list, INT8_C(-1), sizeof bucket_list);
for (i = 0; i < cnt; i++) {
unsigned bucket;
if (!conn_key_extract(ct, pkts[i], dl_type, &ctxs[i], zone)) {
write_ct_md(pkts[i], CS_INVALID, zone, 0, OVS_U128_ZERO);
continue;
}
bucket = hash_to_bucket(ctxs[i].hash);
if (bucket_list[bucket] == INT8_C(-1)) {
bucket_list[bucket] = arrcnt;
arr[arrcnt].maps = 0;
ULLONG_SET1(arr[arrcnt].maps, i);
arr[arrcnt++].bucket = bucket;
} else {
ULLONG_SET1(arr[bucket_list[bucket]].maps, i);
}
}
for (i = 0; i < arrcnt; i++) {
struct conntrack_bucket *ctb = &ct->buckets[arr[i].bucket];
size_t j;
ct_lock_lock(&ctb->lock);
ULLONG_FOR_EACH_1(j, arr[i].maps) {
struct conn *conn;
conn_key_lookup(ctb, &ctxs[j], now);
conn = process_one(ct, pkts[j], &ctxs[j], zone, commit, now);
if (conn && setmark) {
set_mark(pkts[j], conn, setmark[0], setmark[1]);
}
if (conn && setlabel) {
set_label(pkts[j], conn, &setlabel[0], &setlabel[1]);
}
}
ct_lock_unlock(&ctb->lock);
}
return 0;
}
static void
set_mark(struct dp_packet *pkt, struct conn *conn, uint32_t val, uint32_t mask)
{
pkt->md.ct_mark = val | (pkt->md.ct_mark & ~(mask));
conn->mark = pkt->md.ct_mark;
}
static void
set_label(struct dp_packet *pkt, struct conn *conn,
const struct ovs_key_ct_labels *val,
const struct ovs_key_ct_labels *mask)
{
ovs_u128 v, m;
memcpy(&v, val, sizeof v);
memcpy(&m, mask, sizeof m);
pkt->md.ct_label.u64.lo = v.u64.lo
| (pkt->md.ct_label.u64.lo & ~(m.u64.lo));
pkt->md.ct_label.u64.hi = v.u64.hi
| (pkt->md.ct_label.u64.hi & ~(m.u64.hi));
conn->label = pkt->md.ct_label;
}
/* Delete the expired connections from 'ctb', up to 'limit'. Returns the
* earliest expiration time among the remaining connections in 'ctb'. Returns
* LLONG_MAX if 'ctb' is empty. The return value might be smaller than 'now',
* if 'limit' is reached */
static long long
sweep_bucket(struct conntrack *ct, struct conntrack_bucket *ctb, long long now,
size_t limit)
OVS_REQUIRES(ctb->lock)
{
struct conn *conn, *next;
long long min_expiration = LLONG_MAX;
unsigned i;
size_t count = 0;
for (i = 0; i < N_CT_TM; i++) {
LIST_FOR_EACH_SAFE (conn, next, exp_node, &ctb->exp_lists[i]) {
if (!conn_expired(conn, now) || count >= limit) {
min_expiration = MIN(min_expiration, conn->expiration);
if (count >= limit) {
/* Do not check other lists. */
COVERAGE_INC(conntrack_long_cleanup);
return min_expiration;
}
break;
}
ovs_list_remove(&conn->exp_node);
hmap_remove(&ctb->connections, &conn->node);
atomic_count_dec(&ct->n_conn);
delete_conn(conn);
count++;
}
}
return min_expiration;
}
/* Cleans up old connection entries from 'ct'. Returns the time when the
* next expiration might happen. The return value might be smaller than
* 'now', meaning that an internal limit has been reached, and some expired
* connections have not been deleted. */
static long long
conntrack_clean(struct conntrack *ct, long long now)
{
long long next_wakeup = now + CT_TM_MIN;
unsigned int n_conn_limit;
size_t clean_count = 0;
unsigned i;
atomic_read_relaxed(&ct->n_conn_limit, &n_conn_limit);
for (i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conntrack_bucket *ctb = &ct->buckets[i];
size_t prev_count;
long long min_exp;
ovs_mutex_lock(&ctb->cleanup_mutex);
if (ctb->next_cleanup > now) {
goto next_bucket;
}
ct_lock_lock(&ctb->lock);
prev_count = hmap_count(&ctb->connections);
/* If the connections are well distributed among buckets, we want to
* limit to 10% of the global limit equally split among buckets. If
* the bucket is busier than the others, we limit to 10% of its
* current size. */
min_exp = sweep_bucket(ct, ctb, now,
MAX(prev_count/10, n_conn_limit/(CONNTRACK_BUCKETS*10)));
clean_count += prev_count - hmap_count(&ctb->connections);
if (min_exp > now) {
/* We call hmap_shrink() only if sweep_bucket() managed to delete
* every expired connection. */
hmap_shrink(&ctb->connections);
}
ct_lock_unlock(&ctb->lock);
ctb->next_cleanup = MIN(min_exp, now + CT_TM_MIN);
next_bucket:
next_wakeup = MIN(next_wakeup, ctb->next_cleanup);
ovs_mutex_unlock(&ctb->cleanup_mutex);
}
VLOG_DBG("conntrack cleanup %"PRIuSIZE" entries in %lld msec",
clean_count, time_msec() - now);
return next_wakeup;
}
/* Cleanup:
*
* We must call conntrack_clean() periodically. conntrack_clean() return
* value gives an hint on when the next cleanup must be done (either because
* there is an actual connection that expires, or because a new connection
* might be created with the minimum timeout).
*
* The logic below has two goals:
*
* - We want to reduce the number of wakeups and batch connection cleanup
* when the load is not very high. CT_CLEAN_INTERVAL ensures that if we
* are coping with the current cleanup tasks, then we wait at least
* 5 seconds to do further cleanup.
*
* - We don't want to keep the buckets locked too long, as we might prevent
* traffic from flowing. CT_CLEAN_MIN_INTERVAL ensures that if cleanup is
* behind, there is at least some 200ms blocks of time when buckets will be
* left alone, so the datapath can operate unhindered.
*/
#define CT_CLEAN_INTERVAL 5000 /* 5 seconds */
#define CT_CLEAN_MIN_INTERVAL 200 /* 0.2 seconds */
static void *
clean_thread_main(void *f_)
{
struct conntrack *ct = f_;
while (!latch_is_set(&ct->clean_thread_exit)) {
long long next_wake;
long long now = time_msec();
next_wake = conntrack_clean(ct, now);
if (next_wake < now) {
poll_timer_wait_until(now + CT_CLEAN_MIN_INTERVAL);
} else {
poll_timer_wait_until(MAX(next_wake, now + CT_CLEAN_INTERVAL));
}
latch_wait(&ct->clean_thread_exit);
poll_block();
}
return NULL;
}
/* Key extraction */
/* The function stores a pointer to the first byte after the header in
* '*new_data', if 'new_data' is not NULL. If it is NULL, the caller is
* not interested in the header's tail, meaning that the header has
* already been parsed (e.g. by flow_extract): we take this as a hint to
* save a few checks. If 'validate_checksum' is true, the function returns
* false if the IPv4 checksum is invalid. */
static inline bool
extract_l3_ipv4(struct conn_key *key, const void *data, size_t size,
const char **new_data, bool validate_checksum)
{
const struct ip_header *ip = data;
size_t ip_len;
if (new_data) {
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
return false;
}
}
ip_len = IP_IHL(ip->ip_ihl_ver) * 4;
if (new_data) {
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
return false;
}
if (OVS_UNLIKELY(size < ip_len)) {
return false;
}
*new_data = (char *) data + ip_len;
}
if (IP_IS_FRAGMENT(ip->ip_frag_off)) {
return false;
}
if (validate_checksum && csum(data, ip_len) != 0) {
return false;
}
key->src.addr.ipv4 = ip->ip_src;
key->dst.addr.ipv4 = ip->ip_dst;
key->nw_proto = ip->ip_proto;
return true;
}
/* The function stores a pointer to the first byte after the header in
* '*new_data', if 'new_data' is not NULL. If it is NULL, the caller is
* not interested in the header's tail, meaning that the header has
* already been parsed (e.g. by flow_extract): we take this as a hint to
* save a few checks. */
static inline bool
extract_l3_ipv6(struct conn_key *key, const void *data, size_t size,
const char **new_data)
{
const struct ovs_16aligned_ip6_hdr *ip6 = data;
uint8_t nw_proto = ip6->ip6_nxt;
uint8_t nw_frag = 0;
if (new_data) {
if (OVS_UNLIKELY(size < sizeof *ip6)) {
return false;
}
}
data = ip6 + 1;
size -= sizeof *ip6;
if (!parse_ipv6_ext_hdrs(&data, &size, &nw_proto, &nw_frag)) {
return false;
}
if (new_data) {
*new_data = data;
}
if (nw_frag) {
return false;
}
key->src.addr.ipv6 = ip6->ip6_src;
key->dst.addr.ipv6 = ip6->ip6_dst;
key->nw_proto = nw_proto;
return true;
}
static inline bool
checksum_valid(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
uint32_t csum = 0;
if (key->dl_type == htons(ETH_TYPE_IP)) {
csum = packet_csum_pseudoheader(l3);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
csum = packet_csum_pseudoheader6(l3);
} else {
return false;
}
csum = csum_continue(csum, data, size);
return csum_finish(csum) == 0;
}
static inline bool
check_l4_tcp(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
const struct tcp_header *tcp = data;
size_t tcp_len = TCP_OFFSET(tcp->tcp_ctl) * 4;
if (OVS_UNLIKELY(tcp_len < TCP_HEADER_LEN || tcp_len > size)) {
return false;
}
return checksum_valid(key, data, size, l3);
}
static inline bool
check_l4_udp(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
const struct udp_header *udp = data;
size_t udp_len = ntohs(udp->udp_len);
if (OVS_UNLIKELY(udp_len < UDP_HEADER_LEN || udp_len > size)) {
return false;
}
/* Validation must be skipped if checksum is 0 on IPv4 packets */
return (udp->udp_csum == 0 && key->dl_type == htons(ETH_TYPE_IP))
|| checksum_valid(key, data, size, l3);
}
static inline bool
check_l4_icmp(const void *data, size_t size)
{
return csum(data, size) == 0;
}
static inline bool
check_l4_icmp6(const struct conn_key *key, const void *data, size_t size,
const void *l3)
{
return checksum_valid(key, data, size, l3);
}
static inline bool
extract_l4_tcp(struct conn_key *key, const void *data, size_t size)
{
const struct tcp_header *tcp = data;
if (OVS_UNLIKELY(size < TCP_HEADER_LEN)) {
return false;
}
key->src.port = tcp->tcp_src;
key->dst.port = tcp->tcp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool
extract_l4_udp(struct conn_key *key, const void *data, size_t size)
{
const struct udp_header *udp = data;
if (OVS_UNLIKELY(size < UDP_HEADER_LEN)) {
return false;
}
key->src.port = udp->udp_src;
key->dst.port = udp->udp_dst;
/* Port 0 is invalid */
return key->src.port && key->dst.port;
}
static inline bool extract_l4(struct conn_key *key, const void *data,
size_t size, bool *related, const void *l3);
static uint8_t
reverse_icmp_type(uint8_t type)
{
switch (type) {
case ICMP4_ECHO_REQUEST:
return ICMP4_ECHO_REPLY;
case ICMP4_ECHO_REPLY:
return ICMP4_ECHO_REQUEST;
case ICMP4_TIMESTAMP:
return ICMP4_TIMESTAMPREPLY;
case ICMP4_TIMESTAMPREPLY:
return ICMP4_TIMESTAMP;
case ICMP4_INFOREQUEST:
return ICMP4_INFOREPLY;
case ICMP4_INFOREPLY:
return ICMP4_INFOREQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline int
extract_l4_icmp(struct conn_key *key, const void *data, size_t size,
bool *related)
{
const struct icmp_header *icmp = data;
if (OVS_UNLIKELY(size < ICMP_HEADER_LEN)) {
return false;
}
switch (icmp->icmp_type) {
case ICMP4_ECHO_REQUEST:
case ICMP4_ECHO_REPLY:
case ICMP4_TIMESTAMP:
case ICMP4_TIMESTAMPREPLY:
case ICMP4_INFOREQUEST:
case ICMP4_INFOREPLY:
if (icmp->icmp_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = icmp->icmp_fields.echo.id;
key->src.icmp_type = icmp->icmp_type;
key->dst.icmp_type = reverse_icmp_type(icmp->icmp_type);
break;
case ICMP4_DST_UNREACH:
case ICMP4_TIME_EXCEEDED:
case ICMP4_PARAM_PROB:
case ICMP4_SOURCEQUENCH:
case ICMP4_REDIRECT: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) (icmp + 1);
const char *tail = (const char *) data + size;
const char *l4;
bool ok;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IP);
ok = extract_l3_ipv4(&inner_key, l3, tail - l3, &l4, false);
if (!ok) {
return false;
}
/* pf doesn't do this, but it seems a good idea */
if (inner_key.src.addr.ipv4_aligned != key->dst.addr.ipv4_aligned
|| inner_key.dst.addr.ipv4_aligned != key->src.addr.ipv4_aligned) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
static uint8_t
reverse_icmp6_type(uint8_t type)
{
switch (type) {
case ICMP6_ECHO_REQUEST:
return ICMP6_ECHO_REPLY;
case ICMP6_ECHO_REPLY:
return ICMP6_ECHO_REQUEST;
default:
OVS_NOT_REACHED();
}
}
/* If 'related' is not NULL and the function is processing an ICMP
* error packet, extract the l3 and l4 fields from the nested header
* instead and set *related to true. If 'related' is NULL we're
* already processing a nested header and no such recursion is
* possible */
static inline bool
extract_l4_icmp6(struct conn_key *key, const void *data, size_t size,
bool *related)
{
const struct icmp6_header *icmp6 = data;
/* All the messages that we support need at least 4 bytes after
* the header */
if (size < sizeof *icmp6 + 4) {
return false;
}
switch (icmp6->icmp6_type) {
case ICMP6_ECHO_REQUEST:
case ICMP6_ECHO_REPLY:
if (icmp6->icmp6_code != 0) {
return false;
}
/* Separate ICMP connection: identified using id */
key->src.icmp_id = key->dst.icmp_id = *(ovs_be16 *) (icmp6 + 1);
key->src.icmp_type = icmp6->icmp6_type;
key->dst.icmp_type = reverse_icmp6_type(icmp6->icmp6_type);
break;
case ICMP6_DST_UNREACH:
case ICMP6_PACKET_TOO_BIG:
case ICMP6_TIME_EXCEEDED:
case ICMP6_PARAM_PROB: {
/* ICMP packet part of another connection. We should
* extract the key from embedded packet header */
struct conn_key inner_key;
const char *l3 = (const char *) icmp6 + 8;
const char *tail = (const char *) data + size;
const char *l4 = NULL;
bool ok;
if (!related) {
return false;
}
memset(&inner_key, 0, sizeof inner_key);
inner_key.dl_type = htons(ETH_TYPE_IPV6);
ok = extract_l3_ipv6(&inner_key, l3, tail - l3, &l4);
if (!ok) {
return false;
}
/* pf doesn't do this, but it seems a good idea */
if (!ipv6_addr_equals(&inner_key.src.addr.ipv6_aligned,
&key->dst.addr.ipv6_aligned)
|| !ipv6_addr_equals(&inner_key.dst.addr.ipv6_aligned,
&key->src.addr.ipv6_aligned)) {
return false;
}
key->src = inner_key.src;
key->dst = inner_key.dst;
key->nw_proto = inner_key.nw_proto;
ok = extract_l4(key, l4, tail - l4, NULL, l3);
if (ok) {
conn_key_reverse(key);
*related = true;
}
return ok;
}
default:
return false;
}
return true;
}
/* Extract l4 fields into 'key', which must already contain valid l3
* members.
*
* If 'related' is not NULL and an ICMP error packet is being
* processed, the function will extract the key from the packet nested
* in the ICMP paylod and set '*related' to true.
*
* If 'related' is NULL, it means that we're already parsing a header nested
* in an ICMP error. In this case, we skip checksum and length validation. */
static inline bool
extract_l4(struct conn_key *key, const void *data, size_t size, bool *related,
const void *l3)
{
if (key->nw_proto == IPPROTO_TCP) {
return (!related || check_l4_tcp(key, data, size, l3))
&& extract_l4_tcp(key, data, size);
} else if (key->nw_proto == IPPROTO_UDP) {
return (!related || check_l4_udp(key, data, size, l3))
&& extract_l4_udp(key, data, size);
} else if (key->dl_type == htons(ETH_TYPE_IP)
&& key->nw_proto == IPPROTO_ICMP) {
return (!related || check_l4_icmp(data, size))
&& extract_l4_icmp(key, data, size, related);
} else if (key->dl_type == htons(ETH_TYPE_IPV6)
&& key->nw_proto == IPPROTO_ICMPV6) {
return (!related || check_l4_icmp6(key, data, size, l3))
&& extract_l4_icmp6(key, data, size, related);
} else {
return false;
}
}
static bool
conn_key_extract(struct conntrack *ct, struct dp_packet *pkt, ovs_be16 dl_type,
struct conn_lookup_ctx *ctx, uint16_t zone)
{
const struct eth_header *l2 = dp_packet_l2(pkt);
const struct ip_header *l3 = dp_packet_l3(pkt);
const char *l4 = dp_packet_l4(pkt);
const char *tail = dp_packet_tail(pkt);
bool ok;
memset(ctx, 0, sizeof *ctx);
if (!l2 || !l3 || !l4) {
return false;
}
ctx->key.zone = zone;
/* XXX In this function we parse the packet (again, it has already
* gone through miniflow_extract()) for two reasons:
*
* 1) To extract the l3 addresses and l4 ports.
* We already have the l3 and l4 headers' pointers. Extracting
* the l3 addresses and the l4 ports is really cheap, since they
* can be found at fixed locations.
* 2) To extract the l4 type.
* Extracting the l4 types, for IPv6 can be quite expensive, because
* it's not at a fixed location.
*
* Here's a way to avoid (2) with the help of the datapath.
* The datapath doesn't keep the packet's extracted flow[1], so
* using that is not an option. We could use the packet's matching
* megaflow, but we have to make sure that the l4 type (nw_proto)
* is unwildcarded. This means either:
*
* a) dpif-netdev unwildcards the l4 type when a new flow is installed
* if the actions contains ct().
*
* b) ofproto-dpif-xlate unwildcards the l4 type when translating a ct()
* action. This is already done in different actions, but it's
* unnecessary for the kernel.
*
* ---
* [1] The reasons for this are that keeping the flow increases
* (slightly) the cache footprint and increases computation
* time as we move the packet around. Most importantly, the flow
* should be updated by the actions and this can be slow, as
* we use a sparse representation (miniflow).
*
*/
ctx->key.dl_type = dl_type;
if (ctx->key.dl_type == htons(ETH_TYPE_IP)) {
ok = extract_l3_ipv4(&ctx->key, l3, tail - (char *) l3, NULL, true);
} else if (ctx->key.dl_type == htons(ETH_TYPE_IPV6)) {
ok = extract_l3_ipv6(&ctx->key, l3, tail - (char *) l3, NULL);
} else {
ok = false;
}
if (ok) {
if (extract_l4(&ctx->key, l4, tail - l4, &ctx->related, l3)) {
ctx->hash = conn_key_hash(&ctx->key, ct->hash_basis);
return true;
}
}
return false;
}
/* Symmetric */
static uint32_t
conn_key_hash(const struct conn_key *key, uint32_t basis)
{
uint32_t hsrc, hdst, hash;
int i;
hsrc = hdst = basis;
/* Hash the source and destination tuple */
for (i = 0; i < sizeof(key->src) / sizeof(uint32_t); i++) {
hsrc = hash_add(hsrc, ((uint32_t *) &key->src)[i]);
hdst = hash_add(hdst, ((uint32_t *) &key->dst)[i]);
}
/* Even if source and destination are swapped the hash will be the same. */
hash = hsrc ^ hdst;
/* Hash the rest of the key(L3 and L4 types and zone). */
hash = hash_words((uint32_t *) (&key->dst + 1),
(uint32_t *) (key + 1) - (uint32_t *) (&key->dst + 1),
hash);
return hash;
}
static void
conn_key_reverse(struct conn_key *key)
{
struct ct_endpoint tmp;
tmp = key->src;
key->src = key->dst;
key->dst = tmp;
}
static void
conn_key_lookup(struct conntrack_bucket *ctb,
struct conn_lookup_ctx *ctx,
long long now)
{
uint32_t hash = ctx->hash;
struct conn *conn;
ctx->conn = NULL;
HMAP_FOR_EACH_WITH_HASH (conn, node, hash, &ctb->connections) {
if (!memcmp(&conn->key, &ctx->key, sizeof(conn->key))
&& !conn_expired(conn, now)) {
ctx->conn = conn;
ctx->reply = false;
break;
}
if (!memcmp(&conn->rev_key, &ctx->key, sizeof(conn->rev_key))
&& !conn_expired(conn, now)) {
ctx->conn = conn;
ctx->reply = true;
break;
}
}
}
static enum ct_update_res
conn_update(struct conn *conn, struct conntrack_bucket *ctb,
struct dp_packet *pkt, bool reply, long long now)
{
return l4_protos[conn->key.nw_proto]->conn_update(conn, ctb, pkt,
reply, now);
}
static bool
conn_expired(struct conn *conn, long long now)
{
return now >= conn->expiration;
}
static bool
valid_new(struct dp_packet *pkt, struct conn_key *key)
{
return l4_protos[key->nw_proto]->valid_new(pkt);
}
static struct conn *
new_conn(struct conntrack_bucket *ctb, struct dp_packet *pkt,
struct conn_key *key, long long now)
{
struct conn *newconn;
newconn = l4_protos[key->nw_proto]->new_conn(ctb, pkt, now);
if (newconn) {
newconn->key = *key;
}
return newconn;
}
static void
delete_conn(struct conn *conn)
{
free(conn);
}
static void
ct_endpoint_to_ct_dpif_inet_addr(const struct ct_addr *a,
union ct_dpif_inet_addr *b,
ovs_be16 dl_type)
{
if (dl_type == htons(ETH_TYPE_IP)) {
b->ip = a->ipv4_aligned;
} else if (dl_type == htons(ETH_TYPE_IPV6)){
b->in6 = a->ipv6_aligned;
}
}
static void
conn_key_to_tuple(const struct conn_key *key, struct ct_dpif_tuple *tuple)
{
if (key->dl_type == htons(ETH_TYPE_IP)) {
tuple->l3_type = AF_INET;
} else if (key->dl_type == htons(ETH_TYPE_IPV6)) {
tuple->l3_type = AF_INET6;
}
tuple->ip_proto = key->nw_proto;
ct_endpoint_to_ct_dpif_inet_addr(&key->src.addr, &tuple->src,
key->dl_type);
ct_endpoint_to_ct_dpif_inet_addr(&key->dst.addr, &tuple->dst,
key->dl_type);
if (key->nw_proto == IPPROTO_ICMP || key->nw_proto == IPPROTO_ICMPV6) {
tuple->icmp_id = key->src.icmp_id;
tuple->icmp_type = key->src.icmp_type;
tuple->icmp_code = key->src.icmp_code;
} else {
tuple->src_port = key->src.port;
tuple->dst_port = key->dst.port;
}
}
static void
conn_to_ct_dpif_entry(const struct conn *conn, struct ct_dpif_entry *entry,
long long now)
{
struct ct_l4_proto *class;
long long expiration;
memset(entry, 0, sizeof *entry);
conn_key_to_tuple(&conn->key, &entry->tuple_orig);
conn_key_to_tuple(&conn->rev_key, &entry->tuple_reply);
entry->zone = conn->key.zone;
entry->mark = conn->mark;
memcpy(&entry->labels, &conn->label, sizeof(entry->labels));
/* Not implemented yet */
entry->timestamp.start = 0;
entry->timestamp.stop = 0;
expiration = conn->expiration - now;
entry->timeout = (expiration > 0) ? expiration / 1000 : 0;
class = l4_protos[conn->key.nw_proto];
if (class->conn_get_protoinfo) {
class->conn_get_protoinfo(conn, &entry->protoinfo);
}
}
int
conntrack_dump_start(struct conntrack *ct, struct conntrack_dump *dump,
const uint16_t *pzone)
{
memset(dump, 0, sizeof(*dump));
if (pzone) {
dump->zone = *pzone;
dump->filter_zone = true;
}
dump->ct = ct;
return 0;
}
int
conntrack_dump_next(struct conntrack_dump *dump, struct ct_dpif_entry *entry)
{
struct conntrack *ct = dump->ct;
long long now = time_msec();
while (dump->bucket < CONNTRACK_BUCKETS) {
struct hmap_node *node;
ct_lock_lock(&ct->buckets[dump->bucket].lock);
for (;;) {
struct conn *conn;
node = hmap_at_position(&ct->buckets[dump->bucket].connections,
&dump->bucket_pos);
if (!node) {
break;
}
INIT_CONTAINER(conn, node, node);
if (!dump->filter_zone || conn->key.zone == dump->zone) {
conn_to_ct_dpif_entry(conn, entry, now);
break;
}
/* Else continue, until we find an entry in the appropriate zone
* or the bucket has been scanned completely. */
}
ct_lock_unlock(&ct->buckets[dump->bucket].lock);
if (!node) {
memset(&dump->bucket_pos, 0, sizeof dump->bucket_pos);
dump->bucket++;
} else {
return 0;
}
}
return EOF;
}
int
conntrack_dump_done(struct conntrack_dump *dump OVS_UNUSED)
{
return 0;
}
int
conntrack_flush(struct conntrack *ct, const uint16_t *zone)
{
unsigned i;
for (i = 0; i < CONNTRACK_BUCKETS; i++) {
struct conn *conn, *next;
ct_lock_lock(&ct->buckets[i].lock);
HMAP_FOR_EACH_SAFE(conn, next, node, &ct->buckets[i].connections) {
if (!zone || *zone == conn->key.zone) {
ovs_list_remove(&conn->exp_node);
hmap_remove(&ct->buckets[i].connections, &conn->node);
atomic_count_dec(&ct->n_conn);
delete_conn(conn);
}
}
ct_lock_unlock(&ct->buckets[i].lock);
}
return 0;
}
|