1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
|
/*
* Copyright (c) 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include <sys/types.h>
#include "flow.h"
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <netinet/in.h>
#include <netinet/icmp6.h>
#include <netinet/ip6.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "byte-order.h"
#include "colors.h"
#include "coverage.h"
#include "csum.h"
#include "openvswitch/dynamic-string.h"
#include "hash.h"
#include "jhash.h"
#include "openvswitch/match.h"
#include "dp-packet.h"
#include "openflow/openflow.h"
#include "packets.h"
#include "odp-util.h"
#include "random.h"
#include "unaligned.h"
#include "util.h"
COVERAGE_DEFINE(flow_extract);
COVERAGE_DEFINE(miniflow_malloc);
/* U64 indices for segmented flow classification. */
const uint8_t flow_segment_u64s[4] = {
FLOW_SEGMENT_1_ENDS_AT / sizeof(uint64_t),
FLOW_SEGMENT_2_ENDS_AT / sizeof(uint64_t),
FLOW_SEGMENT_3_ENDS_AT / sizeof(uint64_t),
FLOW_U64S
};
/* Asserts that field 'f1' follows immediately after 'f0' in struct flow,
* without any intervening padding. */
#define ASSERT_SEQUENTIAL(f0, f1) \
BUILD_ASSERT_DECL(offsetof(struct flow, f0) \
+ MEMBER_SIZEOF(struct flow, f0) \
== offsetof(struct flow, f1))
/* Asserts that fields 'f0' and 'f1' are in the same 32-bit aligned word within
* struct flow. */
#define ASSERT_SAME_WORD(f0, f1) \
BUILD_ASSERT_DECL(offsetof(struct flow, f0) / 4 \
== offsetof(struct flow, f1) / 4)
/* Asserts that 'f0' and 'f1' are both sequential and within the same 32-bit
* aligned word in struct flow. */
#define ASSERT_SEQUENTIAL_SAME_WORD(f0, f1) \
ASSERT_SEQUENTIAL(f0, f1); \
ASSERT_SAME_WORD(f0, f1)
/* miniflow_extract() assumes the following to be true to optimize the
* extraction process. */
ASSERT_SEQUENTIAL_SAME_WORD(dl_type, vlan_tci);
ASSERT_SEQUENTIAL_SAME_WORD(nw_frag, nw_tos);
ASSERT_SEQUENTIAL_SAME_WORD(nw_tos, nw_ttl);
ASSERT_SEQUENTIAL_SAME_WORD(nw_ttl, nw_proto);
/* TCP flags in the middle of a BE64, zeroes in the other half. */
BUILD_ASSERT_DECL(offsetof(struct flow, tcp_flags) % 8 == 4);
#if WORDS_BIGENDIAN
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl) \
<< 16)
#else
#define TCP_FLAGS_BE32(tcp_ctl) ((OVS_FORCE ovs_be32)TCP_FLAGS_BE16(tcp_ctl))
#endif
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
/* Removes 'size' bytes from the head end of '*datap', of size '*sizep', which
* must contain at least 'size' bytes of data. Returns the first byte of data
* removed. */
static inline const void *
data_pull(const void **datap, size_t *sizep, size_t size)
{
const char *data = *datap;
*datap = data + size;
*sizep -= size;
return data;
}
/* If '*datap' has at least 'size' bytes of data, removes that many bytes from
* the head end of '*datap' and returns the first byte removed. Otherwise,
* returns a null pointer without modifying '*datap'. */
static inline const void *
data_try_pull(const void **datap, size_t *sizep, size_t size)
{
return OVS_LIKELY(*sizep >= size) ? data_pull(datap, sizep, size) : NULL;
}
/* Context for pushing data to a miniflow. */
struct mf_ctx {
struct flowmap map;
uint64_t *data;
uint64_t * const end;
};
/* miniflow_push_* macros allow filling in a miniflow data values in order.
* Assertions are needed only when the layout of the struct flow is modified.
* 'ofs' is a compile-time constant, which allows most of the code be optimized
* away. Some GCC versions gave warnings on ALWAYS_INLINE, so these are
* defined as macros. */
#if (FLOW_WC_SEQ != 36)
#define MINIFLOW_ASSERT(X) ovs_assert(X)
BUILD_MESSAGE("FLOW_WC_SEQ changed: miniflow_extract() will have runtime "
"assertions enabled. Consider updating FLOW_WC_SEQ after "
"testing")
#else
#define MINIFLOW_ASSERT(X)
#endif
/* True if 'IDX' and higher bits are not set. */
#define ASSERT_FLOWMAP_NOT_SET(FM, IDX) \
{ \
MINIFLOW_ASSERT(!((FM)->bits[(IDX) / MAP_T_BITS] & \
(MAP_MAX << ((IDX) % MAP_T_BITS)))); \
for (size_t i = (IDX) / MAP_T_BITS + 1; i < FLOWMAP_UNITS; i++) { \
MINIFLOW_ASSERT(!(FM)->bits[i]); \
} \
}
#define miniflow_set_map(MF, OFS) \
{ \
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS)); \
flowmap_set(&MF.map, (OFS), 1); \
}
#define miniflow_assert_in_map(MF, OFS) \
MINIFLOW_ASSERT(flowmap_is_set(&MF.map, (OFS))); \
ASSERT_FLOWMAP_NOT_SET(&MF.map, (OFS) + 1)
#define miniflow_push_uint64_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end && (OFS) % 8 == 0); \
*MF.data++ = VALUE; \
miniflow_set_map(MF, OFS / 8); \
}
#define miniflow_push_be64_(MF, OFS, VALUE) \
miniflow_push_uint64_(MF, OFS, (OVS_FORCE uint64_t)(VALUE))
#define miniflow_push_uint32_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint32_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 4) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint32_t *)MF.data + 1) = VALUE; \
MF.data++; \
} \
}
#define miniflow_push_be32_(MF, OFS, VALUE) \
miniflow_push_uint32_(MF, OFS, (OVS_FORCE uint32_t)(VALUE))
#define miniflow_push_uint16_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint16_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 2) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 1) = VALUE; \
} else if ((OFS) % 8 == 4) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 2) = VALUE; \
} else if ((OFS) % 8 == 6) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint16_t *)MF.data + 3) = VALUE; \
MF.data++; \
} \
}
#define miniflow_push_uint8_(MF, OFS, VALUE) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
if ((OFS) % 8 == 0) { \
miniflow_set_map(MF, OFS / 8); \
*(uint8_t *)MF.data = VALUE; \
} else if ((OFS) % 8 == 7) { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint8_t *)MF.data + 7) = VALUE; \
MF.data++; \
} else { \
miniflow_assert_in_map(MF, OFS / 8); \
*((uint8_t *)MF.data + ((OFS) % 8)) = VALUE; \
} \
}
#define miniflow_pad_to_64_(MF, OFS) \
{ \
MINIFLOW_ASSERT((OFS) % 8 != 0); \
miniflow_assert_in_map(MF, OFS / 8); \
\
memset((uint8_t *)MF.data + (OFS) % 8, 0, 8 - (OFS) % 8); \
MF.data++; \
}
#define miniflow_pad_from_64_(MF, OFS) \
{ \
MINIFLOW_ASSERT(MF.data < MF.end); \
\
MINIFLOW_ASSERT((OFS) % 8 != 0); \
miniflow_set_map(MF, OFS / 8); \
\
memset((uint8_t *)MF.data, 0, (OFS) % 8); \
}
#define miniflow_push_be16_(MF, OFS, VALUE) \
miniflow_push_uint16_(MF, OFS, (OVS_FORCE uint16_t)VALUE);
#define miniflow_push_be8_(MF, OFS, VALUE) \
miniflow_push_uint8_(MF, OFS, (OVS_FORCE uint8_t)VALUE);
#define miniflow_set_maps(MF, OFS, N_WORDS) \
{ \
size_t ofs = (OFS); \
size_t n_words = (N_WORDS); \
\
MINIFLOW_ASSERT(n_words && MF.data + n_words <= MF.end); \
ASSERT_FLOWMAP_NOT_SET(&MF.map, ofs); \
flowmap_set(&MF.map, ofs, n_words); \
}
/* Data at 'valuep' may be unaligned. */
#define miniflow_push_words_(MF, OFS, VALUEP, N_WORDS) \
{ \
MINIFLOW_ASSERT((OFS) % 8 == 0); \
miniflow_set_maps(MF, (OFS) / 8, (N_WORDS)); \
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof *MF.data); \
MF.data += (N_WORDS); \
}
/* Push 32-bit words padded to 64-bits. */
#define miniflow_push_words_32_(MF, OFS, VALUEP, N_WORDS) \
{ \
miniflow_set_maps(MF, (OFS) / 8, DIV_ROUND_UP(N_WORDS, 2)); \
memcpy(MF.data, (VALUEP), (N_WORDS) * sizeof(uint32_t)); \
MF.data += DIV_ROUND_UP(N_WORDS, 2); \
if ((N_WORDS) & 1) { \
*((uint32_t *)MF.data - 1) = 0; \
} \
}
/* Data at 'valuep' may be unaligned. */
/* MACs start 64-aligned, and must be followed by other data or padding. */
#define miniflow_push_macs_(MF, OFS, VALUEP) \
{ \
miniflow_set_maps(MF, (OFS) / 8, 2); \
memcpy(MF.data, (VALUEP), 2 * ETH_ADDR_LEN); \
MF.data += 1; /* First word only. */ \
}
#define miniflow_push_uint32(MF, FIELD, VALUE) \
miniflow_push_uint32_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_be32(MF, FIELD, VALUE) \
miniflow_push_be32_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_uint16(MF, FIELD, VALUE) \
miniflow_push_uint16_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_be16(MF, FIELD, VALUE) \
miniflow_push_be16_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_push_uint8(MF, FIELD, VALUE) \
miniflow_push_uint8_(MF, offsetof(struct flow, FIELD), VALUE)
#define miniflow_pad_to_64(MF, FIELD) \
miniflow_pad_to_64_(MF, OFFSETOFEND(struct flow, FIELD))
#define miniflow_pad_from_64(MF, FIELD) \
miniflow_pad_from_64_(MF, offsetof(struct flow, FIELD))
#define miniflow_push_words(MF, FIELD, VALUEP, N_WORDS) \
miniflow_push_words_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
#define miniflow_push_words_32(MF, FIELD, VALUEP, N_WORDS) \
miniflow_push_words_32_(MF, offsetof(struct flow, FIELD), VALUEP, N_WORDS)
#define miniflow_push_macs(MF, FIELD, VALUEP) \
miniflow_push_macs_(MF, offsetof(struct flow, FIELD), VALUEP)
/* Pulls the MPLS headers at '*datap' and returns the count of them. */
static inline int
parse_mpls(const void **datap, size_t *sizep)
{
const struct mpls_hdr *mh;
int count = 0;
while ((mh = data_try_pull(datap, sizep, sizeof *mh))) {
count++;
if (mh->mpls_lse.lo & htons(1 << MPLS_BOS_SHIFT)) {
break;
}
}
return MIN(count, FLOW_MAX_MPLS_LABELS);
}
static inline ALWAYS_INLINE ovs_be16
parse_vlan(const void **datap, size_t *sizep)
{
const struct eth_header *eth = *datap;
struct qtag_prefix {
ovs_be16 eth_type; /* ETH_TYPE_VLAN */
ovs_be16 tci;
};
data_pull(datap, sizep, ETH_ADDR_LEN * 2);
if (eth->eth_type == htons(ETH_TYPE_VLAN)) {
if (OVS_LIKELY(*sizep
>= sizeof(struct qtag_prefix) + sizeof(ovs_be16))) {
const struct qtag_prefix *qp = data_pull(datap, sizep, sizeof *qp);
return qp->tci | htons(VLAN_CFI);
}
}
return 0;
}
static inline ALWAYS_INLINE ovs_be16
parse_ethertype(const void **datap, size_t *sizep)
{
const struct llc_snap_header *llc;
ovs_be16 proto;
proto = *(ovs_be16 *) data_pull(datap, sizep, sizeof proto);
if (OVS_LIKELY(ntohs(proto) >= ETH_TYPE_MIN)) {
return proto;
}
if (OVS_UNLIKELY(*sizep < sizeof *llc)) {
return htons(FLOW_DL_TYPE_NONE);
}
llc = *datap;
if (OVS_UNLIKELY(llc->llc.llc_dsap != LLC_DSAP_SNAP
|| llc->llc.llc_ssap != LLC_SSAP_SNAP
|| llc->llc.llc_cntl != LLC_CNTL_SNAP
|| memcmp(llc->snap.snap_org, SNAP_ORG_ETHERNET,
sizeof llc->snap.snap_org))) {
return htons(FLOW_DL_TYPE_NONE);
}
data_pull(datap, sizep, sizeof *llc);
if (OVS_LIKELY(ntohs(llc->snap.snap_type) >= ETH_TYPE_MIN)) {
return llc->snap.snap_type;
}
return htons(FLOW_DL_TYPE_NONE);
}
static inline void
parse_icmpv6(const void **datap, size_t *sizep, const struct icmp6_hdr *icmp,
const struct in6_addr **nd_target,
struct eth_addr arp_buf[2])
{
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
*nd_target = data_try_pull(datap, sizep, sizeof **nd_target);
if (OVS_UNLIKELY(!*nd_target)) {
return;
}
while (*sizep >= 8) {
/* The minimum size of an option is 8 bytes, which also is
* the size of Ethernet link-layer options. */
const struct ovs_nd_opt *nd_opt = *datap;
int opt_len = nd_opt->nd_opt_len * ND_OPT_LEN;
if (!opt_len || opt_len > *sizep) {
return;
}
/* Store the link layer address if the appropriate option is
* provided. It is considered an error if the same link
* layer option is specified twice. */
if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LINKADDR
&& opt_len == 8) {
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[0]))) {
arp_buf[0] = nd_opt->nd_opt_mac;
} else {
goto invalid;
}
} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LINKADDR
&& opt_len == 8) {
if (OVS_LIKELY(eth_addr_is_zero(arp_buf[1]))) {
arp_buf[1] = nd_opt->nd_opt_mac;
} else {
goto invalid;
}
}
if (OVS_UNLIKELY(!data_try_pull(datap, sizep, opt_len))) {
return;
}
}
}
return;
invalid:
*nd_target = NULL;
arp_buf[0] = eth_addr_zero;
arp_buf[1] = eth_addr_zero;
}
static inline bool
parse_ipv6_ext_hdrs__(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag)
{
while (1) {
if (OVS_LIKELY((*nw_proto != IPPROTO_HOPOPTS)
&& (*nw_proto != IPPROTO_ROUTING)
&& (*nw_proto != IPPROTO_DSTOPTS)
&& (*nw_proto != IPPROTO_AH)
&& (*nw_proto != IPPROTO_FRAGMENT))) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
return true;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (OVS_UNLIKELY(*sizep < 8)) {
return false;
}
if ((*nw_proto == IPPROTO_HOPOPTS)
|| (*nw_proto == IPPROTO_ROUTING)
|| (*nw_proto == IPPROTO_DSTOPTS)) {
/* These headers, while different, have the fields we care
* about in the same location and with the same
* interpretation. */
const struct ip6_ext *ext_hdr = *datap;
*nw_proto = ext_hdr->ip6e_nxt;
if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
(ext_hdr->ip6e_len + 1) * 8))) {
return false;
}
} else if (*nw_proto == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = *datap;
*nw_proto = ext_hdr->ip6e_nxt;
if (OVS_UNLIKELY(!data_try_pull(datap, sizep,
(ext_hdr->ip6e_len + 2) * 4))) {
return false;
}
} else if (*nw_proto == IPPROTO_FRAGMENT) {
const struct ovs_16aligned_ip6_frag *frag_hdr = *datap;
*nw_proto = frag_hdr->ip6f_nxt;
if (!data_try_pull(datap, sizep, sizeof *frag_hdr)) {
return false;
}
/* We only process the first fragment. */
if (frag_hdr->ip6f_offlg != htons(0)) {
*nw_frag = FLOW_NW_FRAG_ANY;
if ((frag_hdr->ip6f_offlg & IP6F_OFF_MASK) != htons(0)) {
*nw_frag |= FLOW_NW_FRAG_LATER;
*nw_proto = IPPROTO_FRAGMENT;
return true;
}
}
}
}
}
bool
parse_ipv6_ext_hdrs(const void **datap, size_t *sizep, uint8_t *nw_proto,
uint8_t *nw_frag)
{
return parse_ipv6_ext_hdrs__(datap, sizep, nw_proto, nw_frag);
}
/* Initializes 'flow' members from 'packet' and 'md'
*
* Initializes 'packet' header l2 pointer to the start of the Ethernet
* header, and the layer offsets as follows:
*
* - packet->l2_5_ofs to the start of the MPLS shim header, or UINT16_MAX
* when there is no MPLS shim header.
*
* - packet->l3_ofs to just past the Ethernet header, or just past the
* vlan_header if one is present, to the first byte of the payload of the
* Ethernet frame. UINT16_MAX if the frame is too short to contain an
* Ethernet header.
*
* - packet->l4_ofs to just past the IPv4 header, if one is present and
* has at least the content used for the fields of interest for the flow,
* otherwise UINT16_MAX.
*/
void
flow_extract(struct dp_packet *packet, struct flow *flow)
{
struct {
struct miniflow mf;
uint64_t buf[FLOW_U64S];
} m;
COVERAGE_INC(flow_extract);
miniflow_extract(packet, &m.mf);
miniflow_expand(&m.mf, flow);
}
/* Caller is responsible for initializing 'dst' with enough storage for
* FLOW_U64S * 8 bytes. */
void
miniflow_extract(struct dp_packet *packet, struct miniflow *dst)
{
const struct pkt_metadata *md = &packet->md;
const void *data = dp_packet_data(packet);
size_t size = dp_packet_size(packet);
uint64_t *values = miniflow_values(dst);
struct mf_ctx mf = { FLOWMAP_EMPTY_INITIALIZER, values,
values + FLOW_U64S };
const char *l2;
ovs_be16 dl_type;
uint8_t nw_frag, nw_tos, nw_ttl, nw_proto;
/* Metadata. */
if (flow_tnl_dst_is_set(&md->tunnel)) {
miniflow_push_words(mf, tunnel, &md->tunnel,
offsetof(struct flow_tnl, metadata) /
sizeof(uint64_t));
if (!(md->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (md->tunnel.metadata.present.map) {
miniflow_push_words(mf, tunnel.metadata, &md->tunnel.metadata,
sizeof md->tunnel.metadata /
sizeof(uint64_t));
}
} else {
if (md->tunnel.metadata.present.len) {
miniflow_push_words(mf, tunnel.metadata.present,
&md->tunnel.metadata.present, 1);
miniflow_push_words(mf, tunnel.metadata.opts.gnv,
md->tunnel.metadata.opts.gnv,
DIV_ROUND_UP(md->tunnel.metadata.present.len,
sizeof(uint64_t)));
}
}
}
if (md->skb_priority || md->pkt_mark) {
miniflow_push_uint32(mf, skb_priority, md->skb_priority);
miniflow_push_uint32(mf, pkt_mark, md->pkt_mark);
}
miniflow_push_uint32(mf, dp_hash, md->dp_hash);
miniflow_push_uint32(mf, in_port, odp_to_u32(md->in_port.odp_port));
if (md->recirc_id || md->ct_state) {
miniflow_push_uint32(mf, recirc_id, md->recirc_id);
miniflow_push_uint16(mf, ct_state, md->ct_state);
miniflow_push_uint16(mf, ct_zone, md->ct_zone);
}
if (md->ct_state) {
miniflow_push_uint32(mf, ct_mark, md->ct_mark);
miniflow_pad_to_64(mf, ct_mark);
if (!ovs_u128_is_zero(md->ct_label)) {
miniflow_push_words(mf, ct_label, &md->ct_label,
sizeof md->ct_label / sizeof(uint64_t));
}
}
/* Initialize packet's layer pointer and offsets. */
l2 = data;
dp_packet_reset_offsets(packet);
/* Must have full Ethernet header to proceed. */
if (OVS_UNLIKELY(size < sizeof(struct eth_header))) {
goto out;
} else {
ovs_be16 vlan_tci;
/* Link layer. */
ASSERT_SEQUENTIAL(dl_dst, dl_src);
miniflow_push_macs(mf, dl_dst, data);
/* dl_type, vlan_tci. */
vlan_tci = parse_vlan(&data, &size);
dl_type = parse_ethertype(&data, &size);
miniflow_push_be16(mf, dl_type, dl_type);
miniflow_push_be16(mf, vlan_tci, vlan_tci);
}
/* Parse mpls. */
if (OVS_UNLIKELY(eth_type_mpls(dl_type))) {
int count;
const void *mpls = data;
packet->l2_5_ofs = (char *)data - l2;
count = parse_mpls(&data, &size);
miniflow_push_words_32(mf, mpls_lse, mpls, count);
}
/* Network layer. */
packet->l3_ofs = (char *)data - l2;
nw_frag = 0;
if (OVS_LIKELY(dl_type == htons(ETH_TYPE_IP))) {
const struct ip_header *nh = data;
int ip_len;
uint16_t tot_len;
if (OVS_UNLIKELY(size < IP_HEADER_LEN)) {
goto out;
}
ip_len = IP_IHL(nh->ip_ihl_ver) * 4;
if (OVS_UNLIKELY(ip_len < IP_HEADER_LEN)) {
goto out;
}
if (OVS_UNLIKELY(size < ip_len)) {
goto out;
}
tot_len = ntohs(nh->ip_tot_len);
if (OVS_UNLIKELY(tot_len > size || ip_len > tot_len)) {
goto out;
}
if (OVS_UNLIKELY(size - tot_len > UINT8_MAX)) {
goto out;
}
dp_packet_set_l2_pad_size(packet, size - tot_len);
size = tot_len; /* Never pull padding. */
/* Push both source and destination address at once. */
miniflow_push_words(mf, nw_src, &nh->ip_src, 1);
miniflow_push_be32(mf, ipv6_label, 0); /* Padding for IPv4. */
nw_tos = nh->ip_tos;
nw_ttl = nh->ip_ttl;
nw_proto = nh->ip_proto;
if (OVS_UNLIKELY(IP_IS_FRAGMENT(nh->ip_frag_off))) {
nw_frag = FLOW_NW_FRAG_ANY;
if (nh->ip_frag_off & htons(IP_FRAG_OFF_MASK)) {
nw_frag |= FLOW_NW_FRAG_LATER;
}
}
data_pull(&data, &size, ip_len);
} else if (dl_type == htons(ETH_TYPE_IPV6)) {
const struct ovs_16aligned_ip6_hdr *nh;
ovs_be32 tc_flow;
uint16_t plen;
if (OVS_UNLIKELY(size < sizeof *nh)) {
goto out;
}
nh = data_pull(&data, &size, sizeof *nh);
plen = ntohs(nh->ip6_plen);
if (OVS_UNLIKELY(plen > size)) {
goto out;
}
/* Jumbo Payload option not supported yet. */
if (OVS_UNLIKELY(size - plen > UINT8_MAX)) {
goto out;
}
dp_packet_set_l2_pad_size(packet, size - plen);
size = plen; /* Never pull padding. */
miniflow_push_words(mf, ipv6_src, &nh->ip6_src,
sizeof nh->ip6_src / 8);
miniflow_push_words(mf, ipv6_dst, &nh->ip6_dst,
sizeof nh->ip6_dst / 8);
tc_flow = get_16aligned_be32(&nh->ip6_flow);
{
ovs_be32 label = tc_flow & htonl(IPV6_LABEL_MASK);
miniflow_push_be32(mf, ipv6_label, label);
}
nw_tos = ntohl(tc_flow) >> 20;
nw_ttl = nh->ip6_hlim;
nw_proto = nh->ip6_nxt;
if (!parse_ipv6_ext_hdrs__(&data, &size, &nw_proto, &nw_frag)) {
goto out;
}
} else {
if (dl_type == htons(ETH_TYPE_ARP) ||
dl_type == htons(ETH_TYPE_RARP)) {
struct eth_addr arp_buf[2];
const struct arp_eth_header *arp = (const struct arp_eth_header *)
data_try_pull(&data, &size, ARP_ETH_HEADER_LEN);
if (OVS_LIKELY(arp) && OVS_LIKELY(arp->ar_hrd == htons(1))
&& OVS_LIKELY(arp->ar_pro == htons(ETH_TYPE_IP))
&& OVS_LIKELY(arp->ar_hln == ETH_ADDR_LEN)
&& OVS_LIKELY(arp->ar_pln == 4)) {
miniflow_push_be32(mf, nw_src,
get_16aligned_be32(&arp->ar_spa));
miniflow_push_be32(mf, nw_dst,
get_16aligned_be32(&arp->ar_tpa));
/* We only match on the lower 8 bits of the opcode. */
if (OVS_LIKELY(ntohs(arp->ar_op) <= 0xff)) {
miniflow_push_be32(mf, ipv6_label, 0); /* Pad with ARP. */
miniflow_push_be32(mf, nw_frag, htonl(ntohs(arp->ar_op)));
}
/* Must be adjacent. */
ASSERT_SEQUENTIAL(arp_sha, arp_tha);
arp_buf[0] = arp->ar_sha;
arp_buf[1] = arp->ar_tha;
miniflow_push_macs(mf, arp_sha, arp_buf);
miniflow_pad_to_64(mf, arp_tha);
}
}
goto out;
}
packet->l4_ofs = (char *)data - l2;
miniflow_push_be32(mf, nw_frag,
BYTES_TO_BE32(nw_frag, nw_tos, nw_ttl, nw_proto));
if (OVS_LIKELY(!(nw_frag & FLOW_NW_FRAG_LATER))) {
if (OVS_LIKELY(nw_proto == IPPROTO_TCP)) {
if (OVS_LIKELY(size >= TCP_HEADER_LEN)) {
const struct tcp_header *tcp = data;
miniflow_push_be32(mf, arp_tha.ea[2], 0);
miniflow_push_be32(mf, tcp_flags,
TCP_FLAGS_BE32(tcp->tcp_ctl));
miniflow_push_be16(mf, tp_src, tcp->tcp_src);
miniflow_push_be16(mf, tp_dst, tcp->tcp_dst);
miniflow_pad_to_64(mf, tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_UDP)) {
if (OVS_LIKELY(size >= UDP_HEADER_LEN)) {
const struct udp_header *udp = data;
miniflow_push_be16(mf, tp_src, udp->udp_src);
miniflow_push_be16(mf, tp_dst, udp->udp_dst);
miniflow_pad_to_64(mf, tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_SCTP)) {
if (OVS_LIKELY(size >= SCTP_HEADER_LEN)) {
const struct sctp_header *sctp = data;
miniflow_push_be16(mf, tp_src, sctp->sctp_src);
miniflow_push_be16(mf, tp_dst, sctp->sctp_dst);
miniflow_pad_to_64(mf, tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMP)) {
if (OVS_LIKELY(size >= ICMP_HEADER_LEN)) {
const struct icmp_header *icmp = data;
miniflow_push_be16(mf, tp_src, htons(icmp->icmp_type));
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp_code));
miniflow_pad_to_64(mf, tp_dst);
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_IGMP)) {
if (OVS_LIKELY(size >= IGMP_HEADER_LEN)) {
const struct igmp_header *igmp = data;
miniflow_push_be16(mf, tp_src, htons(igmp->igmp_type));
miniflow_push_be16(mf, tp_dst, htons(igmp->igmp_code));
miniflow_push_be32(mf, igmp_group_ip4,
get_16aligned_be32(&igmp->group));
}
} else if (OVS_LIKELY(nw_proto == IPPROTO_ICMPV6)) {
if (OVS_LIKELY(size >= sizeof(struct icmp6_hdr))) {
const struct in6_addr *nd_target = NULL;
struct eth_addr arp_buf[2] = { { { { 0 } } } };
const struct icmp6_hdr *icmp = data_pull(&data, &size,
sizeof *icmp);
parse_icmpv6(&data, &size, icmp, &nd_target, arp_buf);
if (nd_target) {
miniflow_push_words(mf, nd_target, nd_target,
sizeof *nd_target / sizeof(uint64_t));
}
miniflow_push_macs(mf, arp_sha, arp_buf);
miniflow_pad_to_64(mf, arp_tha);
miniflow_push_be16(mf, tp_src, htons(icmp->icmp6_type));
miniflow_push_be16(mf, tp_dst, htons(icmp->icmp6_code));
miniflow_pad_to_64(mf, tp_dst);
}
}
}
out:
dst->map = mf.map;
}
ovs_be16
parse_dl_type(const struct eth_header *data_, size_t size)
{
const void *data = data_;
parse_vlan(&data, &size);
return parse_ethertype(&data, &size);
}
/* For every bit of a field that is wildcarded in 'wildcards', sets the
* corresponding bit in 'flow' to zero. */
void
flow_zero_wildcards(struct flow *flow, const struct flow_wildcards *wildcards)
{
uint64_t *flow_u64 = (uint64_t *) flow;
const uint64_t *wc_u64 = (const uint64_t *) &wildcards->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
flow_u64[i] &= wc_u64[i];
}
}
void
flow_unwildcard_tp_ports(const struct flow *flow, struct flow_wildcards *wc)
{
if (flow->nw_proto != IPPROTO_ICMP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
} else {
wc->masks.tp_src = htons(0xff);
wc->masks.tp_dst = htons(0xff);
}
}
/* Initializes 'flow_metadata' with the metadata found in 'flow'. */
void
flow_get_metadata(const struct flow *flow, struct match *flow_metadata)
{
int i;
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
match_init_catchall(flow_metadata);
if (flow->tunnel.tun_id != htonll(0)) {
match_set_tun_id(flow_metadata, flow->tunnel.tun_id);
}
if (flow->tunnel.flags & FLOW_TNL_PUB_F_MASK) {
match_set_tun_flags(flow_metadata,
flow->tunnel.flags & FLOW_TNL_PUB_F_MASK);
}
if (flow->tunnel.ip_src) {
match_set_tun_src(flow_metadata, flow->tunnel.ip_src);
}
if (flow->tunnel.ip_dst) {
match_set_tun_dst(flow_metadata, flow->tunnel.ip_dst);
}
if (ipv6_addr_is_set(&flow->tunnel.ipv6_src)) {
match_set_tun_ipv6_src(flow_metadata, &flow->tunnel.ipv6_src);
}
if (ipv6_addr_is_set(&flow->tunnel.ipv6_dst)) {
match_set_tun_ipv6_dst(flow_metadata, &flow->tunnel.ipv6_dst);
}
if (flow->tunnel.gbp_id != htons(0)) {
match_set_tun_gbp_id(flow_metadata, flow->tunnel.gbp_id);
}
if (flow->tunnel.gbp_flags) {
match_set_tun_gbp_flags(flow_metadata, flow->tunnel.gbp_flags);
}
tun_metadata_get_fmd(&flow->tunnel, flow_metadata);
if (flow->metadata != htonll(0)) {
match_set_metadata(flow_metadata, flow->metadata);
}
for (i = 0; i < FLOW_N_REGS; i++) {
if (flow->regs[i]) {
match_set_reg(flow_metadata, i, flow->regs[i]);
}
}
if (flow->pkt_mark != 0) {
match_set_pkt_mark(flow_metadata, flow->pkt_mark);
}
match_set_in_port(flow_metadata, flow->in_port.ofp_port);
if (flow->ct_state != 0) {
match_set_ct_state(flow_metadata, flow->ct_state);
}
if (flow->ct_zone != 0) {
match_set_ct_zone(flow_metadata, flow->ct_zone);
}
if (flow->ct_mark != 0) {
match_set_ct_mark(flow_metadata, flow->ct_mark);
}
if (!ovs_u128_is_zero(flow->ct_label)) {
match_set_ct_label(flow_metadata, flow->ct_label);
}
}
const char *ct_state_to_string(uint32_t state)
{
switch (state) {
case CS_REPLY_DIR:
return "rpl";
case CS_TRACKED:
return "trk";
case CS_NEW:
return "new";
case CS_ESTABLISHED:
return "est";
case CS_RELATED:
return "rel";
case CS_INVALID:
return "inv";
case CS_SRC_NAT:
return "snat";
case CS_DST_NAT:
return "dnat";
default:
return NULL;
}
}
char *
flow_to_string(const struct flow *flow)
{
struct ds ds = DS_EMPTY_INITIALIZER;
flow_format(&ds, flow);
return ds_cstr(&ds);
}
const char *
flow_tun_flag_to_string(uint32_t flags)
{
switch (flags) {
case FLOW_TNL_F_DONT_FRAGMENT:
return "df";
case FLOW_TNL_F_CSUM:
return "csum";
case FLOW_TNL_F_KEY:
return "key";
case FLOW_TNL_F_OAM:
return "oam";
default:
return NULL;
}
}
void
format_flags(struct ds *ds, const char *(*bit_to_string)(uint32_t),
uint32_t flags, char del)
{
uint32_t bad = 0;
if (!flags) {
ds_put_char(ds, '0');
return;
}
while (flags) {
uint32_t bit = rightmost_1bit(flags);
const char *s;
s = bit_to_string(bit);
if (s) {
ds_put_format(ds, "%s%c", s, del);
} else {
bad |= bit;
}
flags &= ~bit;
}
if (bad) {
ds_put_format(ds, "0x%"PRIx32"%c", bad, del);
}
ds_chomp(ds, del);
}
void
format_flags_masked(struct ds *ds, const char *name,
const char *(*bit_to_string)(uint32_t), uint32_t flags,
uint32_t mask, uint32_t max_mask)
{
if (name) {
ds_put_format(ds, "%s%s=%s", colors.param, name, colors.end);
}
if (mask == max_mask) {
format_flags(ds, bit_to_string, flags, '|');
return;
}
if (!mask) {
ds_put_cstr(ds, "0/0");
return;
}
while (mask) {
uint32_t bit = rightmost_1bit(mask);
const char *s = bit_to_string(bit);
ds_put_format(ds, "%s%s", (flags & bit) ? "+" : "-",
s ? s : "[Unknown]");
mask &= ~bit;
}
}
/* Scans a string 's' of flags to determine their numerical value and
* returns the number of characters parsed using 'bit_to_string' to
* lookup flag names. Scanning continues until the character 'end' is
* reached.
*
* In the event of a failure, a negative error code will be returned. In
* addition, if 'res_string' is non-NULL then a descriptive string will
* be returned incorporating the identifying string 'field_name'. This
* error string must be freed by the caller.
*
* Upon success, the flag values will be stored in 'res_flags' and
* optionally 'res_mask', if it is non-NULL (if it is NULL then any masks
* present in the original string will be considered an error). The
* caller may restrict the acceptable set of values through the mask
* 'allowed'. */
int
parse_flags(const char *s, const char *(*bit_to_string)(uint32_t),
char end, const char *field_name, char **res_string,
uint32_t *res_flags, uint32_t allowed, uint32_t *res_mask)
{
uint32_t result = 0;
int n;
/* Parse masked flags in numeric format? */
if (res_mask && ovs_scan(s, "%"SCNi32"/%"SCNi32"%n",
res_flags, res_mask, &n) && n > 0) {
if (*res_flags & ~allowed || *res_mask & ~allowed) {
goto unknown;
}
return n;
}
n = 0;
if (res_mask && (*s == '+' || *s == '-')) {
uint32_t flags = 0, mask = 0;
/* Parse masked flags. */
while (s[0] != end) {
bool set;
uint32_t bit;
size_t len;
if (s[0] == '+') {
set = true;
} else if (s[0] == '-') {
set = false;
} else {
if (res_string) {
*res_string = xasprintf("%s: %s must be preceded by '+' "
"(for SET) or '-' (NOT SET)", s,
field_name);
}
return -EINVAL;
}
s++;
n++;
for (bit = 1; bit; bit <<= 1) {
const char *fname = bit_to_string(bit);
if (!fname) {
continue;
}
len = strlen(fname);
if (strncmp(s, fname, len) ||
(s[len] != '+' && s[len] != '-' && s[len] != end)) {
continue;
}
if (mask & bit) {
/* bit already set. */
if (res_string) {
*res_string = xasprintf("%s: Each %s flag can be "
"specified only once", s,
field_name);
}
return -EINVAL;
}
if (!(bit & allowed)) {
goto unknown;
}
if (set) {
flags |= bit;
}
mask |= bit;
break;
}
if (!bit) {
goto unknown;
}
s += len;
n += len;
}
*res_flags = flags;
*res_mask = mask;
return n;
}
/* Parse unmasked flags. If a flag is present, it is set, otherwise
* it is not set. */
while (s[n] != end) {
unsigned long long int flags;
uint32_t bit;
int n0;
if (ovs_scan(&s[n], "%lli%n", &flags, &n0)) {
if (flags & ~allowed) {
goto unknown;
}
n += n0 + (s[n + n0] == '|');
result |= flags;
continue;
}
for (bit = 1; bit; bit <<= 1) {
const char *name = bit_to_string(bit);
size_t len;
if (!name) {
continue;
}
len = strlen(name);
if (!strncmp(s + n, name, len) &&
(s[n + len] == '|' || s[n + len] == end)) {
if (!(bit & allowed)) {
goto unknown;
}
result |= bit;
n += len + (s[n + len] == '|');
break;
}
}
if (!bit) {
goto unknown;
}
}
*res_flags = result;
if (res_mask) {
*res_mask = UINT32_MAX;
}
if (res_string) {
*res_string = NULL;
}
return n;
unknown:
if (res_string) {
*res_string = xasprintf("%s: unknown %s flag(s)", s, field_name);
}
return -EINVAL;
}
void
flow_format(struct ds *ds, const struct flow *flow)
{
struct match match;
struct flow_wildcards *wc = &match.wc;
match_wc_init(&match, flow);
/* As this function is most often used for formatting a packet in a
* packet-in message, skip formatting the packet context fields that are
* all-zeroes to make the print-out easier on the eyes. This means that a
* missing context field implies a zero value for that field. This is
* similar to OpenFlow encoding of these fields, as the specification
* states that all-zeroes context fields should not be encoded in the
* packet-in messages. */
if (!flow->in_port.ofp_port) {
WC_UNMASK_FIELD(wc, in_port);
}
if (!flow->skb_priority) {
WC_UNMASK_FIELD(wc, skb_priority);
}
if (!flow->pkt_mark) {
WC_UNMASK_FIELD(wc, pkt_mark);
}
if (!flow->recirc_id) {
WC_UNMASK_FIELD(wc, recirc_id);
}
if (!flow->dp_hash) {
WC_UNMASK_FIELD(wc, dp_hash);
}
if (!flow->ct_state) {
WC_UNMASK_FIELD(wc, ct_state);
}
if (!flow->ct_zone) {
WC_UNMASK_FIELD(wc, ct_zone);
}
if (!flow->ct_mark) {
WC_UNMASK_FIELD(wc, ct_mark);
}
if (ovs_u128_is_zero(flow->ct_label)) {
WC_UNMASK_FIELD(wc, ct_label);
}
for (int i = 0; i < FLOW_N_REGS; i++) {
if (!flow->regs[i]) {
WC_UNMASK_FIELD(wc, regs[i]);
}
}
if (!flow->metadata) {
WC_UNMASK_FIELD(wc, metadata);
}
match_format(&match, ds, OFP_DEFAULT_PRIORITY);
}
void
flow_print(FILE *stream, const struct flow *flow)
{
char *s = flow_to_string(flow);
fputs(s, stream);
free(s);
}
/* flow_wildcards functions. */
/* Initializes 'wc' as a set of wildcards that matches every packet. */
void
flow_wildcards_init_catchall(struct flow_wildcards *wc)
{
memset(&wc->masks, 0, sizeof wc->masks);
}
/* Converts a flow into flow wildcards. It sets the wildcard masks based on
* the packet headers extracted to 'flow'. It will not set the mask for fields
* that do not make sense for the packet type. OpenFlow-only metadata is
* wildcarded, but other metadata is unconditionally exact-matched. */
void flow_wildcards_init_for_packet(struct flow_wildcards *wc,
const struct flow *flow)
{
memset(&wc->masks, 0x0, sizeof wc->masks);
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
if (flow_tnl_dst_is_set(&flow->tunnel)) {
if (flow->tunnel.flags & FLOW_TNL_F_KEY) {
WC_MASK_FIELD(wc, tunnel.tun_id);
}
WC_MASK_FIELD(wc, tunnel.ip_src);
WC_MASK_FIELD(wc, tunnel.ip_dst);
WC_MASK_FIELD(wc, tunnel.ipv6_src);
WC_MASK_FIELD(wc, tunnel.ipv6_dst);
WC_MASK_FIELD(wc, tunnel.flags);
WC_MASK_FIELD(wc, tunnel.ip_tos);
WC_MASK_FIELD(wc, tunnel.ip_ttl);
WC_MASK_FIELD(wc, tunnel.tp_src);
WC_MASK_FIELD(wc, tunnel.tp_dst);
WC_MASK_FIELD(wc, tunnel.gbp_id);
WC_MASK_FIELD(wc, tunnel.gbp_flags);
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (flow->tunnel.metadata.present.map) {
wc->masks.tunnel.metadata.present.map =
flow->tunnel.metadata.present.map;
WC_MASK_FIELD(wc, tunnel.metadata.opts.u8);
}
} else {
WC_MASK_FIELD(wc, tunnel.metadata.present.len);
memset(wc->masks.tunnel.metadata.opts.gnv, 0xff,
flow->tunnel.metadata.present.len);
}
} else if (flow->tunnel.tun_id) {
WC_MASK_FIELD(wc, tunnel.tun_id);
}
/* metadata, regs, and conj_id wildcarded. */
WC_MASK_FIELD(wc, skb_priority);
WC_MASK_FIELD(wc, pkt_mark);
WC_MASK_FIELD(wc, ct_state);
WC_MASK_FIELD(wc, ct_zone);
WC_MASK_FIELD(wc, ct_mark);
WC_MASK_FIELD(wc, ct_label);
WC_MASK_FIELD(wc, recirc_id);
WC_MASK_FIELD(wc, dp_hash);
WC_MASK_FIELD(wc, in_port);
/* actset_output wildcarded. */
WC_MASK_FIELD(wc, dl_dst);
WC_MASK_FIELD(wc, dl_src);
WC_MASK_FIELD(wc, dl_type);
WC_MASK_FIELD(wc, vlan_tci);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
WC_MASK_FIELD(wc, nw_src);
WC_MASK_FIELD(wc, nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
WC_MASK_FIELD(wc, ipv6_src);
WC_MASK_FIELD(wc, ipv6_dst);
WC_MASK_FIELD(wc, ipv6_label);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
WC_MASK_FIELD(wc, nw_src);
WC_MASK_FIELD(wc, nw_dst);
WC_MASK_FIELD(wc, nw_proto);
WC_MASK_FIELD(wc, arp_sha);
WC_MASK_FIELD(wc, arp_tha);
return;
} else if (eth_type_mpls(flow->dl_type)) {
for (int i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
WC_MASK_FIELD(wc, mpls_lse[i]);
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
break;
}
}
return;
} else {
return; /* Unknown ethertype. */
}
/* IPv4 or IPv6. */
WC_MASK_FIELD(wc, nw_frag);
WC_MASK_FIELD(wc, nw_tos);
WC_MASK_FIELD(wc, nw_ttl);
WC_MASK_FIELD(wc, nw_proto);
/* No transport layer header in later fragments. */
if (!(flow->nw_frag & FLOW_NW_FRAG_LATER) &&
(flow->nw_proto == IPPROTO_ICMP ||
flow->nw_proto == IPPROTO_ICMPV6 ||
flow->nw_proto == IPPROTO_TCP ||
flow->nw_proto == IPPROTO_UDP ||
flow->nw_proto == IPPROTO_SCTP ||
flow->nw_proto == IPPROTO_IGMP)) {
WC_MASK_FIELD(wc, tp_src);
WC_MASK_FIELD(wc, tp_dst);
if (flow->nw_proto == IPPROTO_TCP) {
WC_MASK_FIELD(wc, tcp_flags);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
WC_MASK_FIELD(wc, arp_sha);
WC_MASK_FIELD(wc, arp_tha);
WC_MASK_FIELD(wc, nd_target);
} else if (flow->nw_proto == IPPROTO_IGMP) {
WC_MASK_FIELD(wc, igmp_group_ip4);
}
}
}
/* Return a map of possible fields for a packet of the same type as 'flow'.
* Including extra bits in the returned mask is not wrong, it is just less
* optimal.
*
* This is a less precise version of flow_wildcards_init_for_packet() above. */
void
flow_wc_map(const struct flow *flow, struct flowmap *map)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
flowmap_init(map);
if (flow_tnl_dst_is_set(&flow->tunnel)) {
FLOWMAP_SET__(map, tunnel, offsetof(struct flow_tnl, metadata));
if (!(flow->tunnel.flags & FLOW_TNL_F_UDPIF)) {
if (flow->tunnel.metadata.present.map) {
FLOWMAP_SET(map, tunnel.metadata);
}
} else {
FLOWMAP_SET(map, tunnel.metadata.present.len);
FLOWMAP_SET__(map, tunnel.metadata.opts.gnv,
flow->tunnel.metadata.present.len);
}
}
/* Metadata fields that can appear on packet input. */
FLOWMAP_SET(map, skb_priority);
FLOWMAP_SET(map, pkt_mark);
FLOWMAP_SET(map, recirc_id);
FLOWMAP_SET(map, dp_hash);
FLOWMAP_SET(map, in_port);
FLOWMAP_SET(map, dl_dst);
FLOWMAP_SET(map, dl_src);
FLOWMAP_SET(map, dl_type);
FLOWMAP_SET(map, vlan_tci);
FLOWMAP_SET(map, ct_state);
FLOWMAP_SET(map, ct_zone);
FLOWMAP_SET(map, ct_mark);
FLOWMAP_SET(map, ct_label);
/* Ethertype-dependent fields. */
if (OVS_LIKELY(flow->dl_type == htons(ETH_TYPE_IP))) {
FLOWMAP_SET(map, nw_src);
FLOWMAP_SET(map, nw_dst);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, nw_frag);
FLOWMAP_SET(map, nw_tos);
FLOWMAP_SET(map, nw_ttl);
FLOWMAP_SET(map, tp_src);
FLOWMAP_SET(map, tp_dst);
if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_IGMP)) {
FLOWMAP_SET(map, igmp_group_ip4);
} else {
FLOWMAP_SET(map, tcp_flags);
}
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
FLOWMAP_SET(map, ipv6_src);
FLOWMAP_SET(map, ipv6_dst);
FLOWMAP_SET(map, ipv6_label);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, nw_frag);
FLOWMAP_SET(map, nw_tos);
FLOWMAP_SET(map, nw_ttl);
FLOWMAP_SET(map, tp_src);
FLOWMAP_SET(map, tp_dst);
if (OVS_UNLIKELY(flow->nw_proto == IPPROTO_ICMPV6)) {
FLOWMAP_SET(map, nd_target);
FLOWMAP_SET(map, arp_sha);
FLOWMAP_SET(map, arp_tha);
} else {
FLOWMAP_SET(map, tcp_flags);
}
} else if (eth_type_mpls(flow->dl_type)) {
FLOWMAP_SET(map, mpls_lse);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
FLOWMAP_SET(map, nw_src);
FLOWMAP_SET(map, nw_dst);
FLOWMAP_SET(map, nw_proto);
FLOWMAP_SET(map, arp_sha);
FLOWMAP_SET(map, arp_tha);
}
}
/* Clear the metadata and register wildcard masks. They are not packet
* header fields. */
void
flow_wildcards_clear_non_packet_fields(struct flow_wildcards *wc)
{
/* Update this function whenever struct flow changes. */
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
memset(&wc->masks.metadata, 0, sizeof wc->masks.metadata);
memset(&wc->masks.regs, 0, sizeof wc->masks.regs);
wc->masks.actset_output = 0;
wc->masks.conj_id = 0;
}
/* Returns true if 'wc' matches every packet, false if 'wc' fixes any bits or
* fields. */
bool
flow_wildcards_is_catchall(const struct flow_wildcards *wc)
{
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if (wc_u64[i]) {
return false;
}
}
return true;
}
/* Sets 'dst' as the bitwise AND of wildcards in 'src1' and 'src2'.
* That is, a bit or a field is wildcarded in 'dst' if it is wildcarded
* in 'src1' or 'src2' or both. */
void
flow_wildcards_and(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
dst_u64[i] = src1_u64[i] & src2_u64[i];
}
}
/* Sets 'dst' as the bitwise OR of wildcards in 'src1' and 'src2'. That
* is, a bit or a field is wildcarded in 'dst' if it is neither
* wildcarded in 'src1' nor 'src2'. */
void
flow_wildcards_or(struct flow_wildcards *dst,
const struct flow_wildcards *src1,
const struct flow_wildcards *src2)
{
uint64_t *dst_u64 = (uint64_t *) &dst->masks;
const uint64_t *src1_u64 = (const uint64_t *) &src1->masks;
const uint64_t *src2_u64 = (const uint64_t *) &src2->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
dst_u64[i] = src1_u64[i] | src2_u64[i];
}
}
/* Returns a hash of the wildcards in 'wc'. */
uint32_t
flow_wildcards_hash(const struct flow_wildcards *wc, uint32_t basis)
{
return flow_hash(&wc->masks, basis);
}
/* Returns true if 'a' and 'b' represent the same wildcards, false if they are
* different. */
bool
flow_wildcards_equal(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
return flow_equal(&a->masks, &b->masks);
}
/* Returns true if at least one bit or field is wildcarded in 'a' but not in
* 'b', false otherwise. */
bool
flow_wildcards_has_extra(const struct flow_wildcards *a,
const struct flow_wildcards *b)
{
const uint64_t *a_u64 = (const uint64_t *) &a->masks;
const uint64_t *b_u64 = (const uint64_t *) &b->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if ((a_u64[i] & b_u64[i]) != b_u64[i]) {
return true;
}
}
return false;
}
/* Returns true if 'a' and 'b' are equal, except that 0-bits (wildcarded bits)
* in 'wc' do not need to be equal in 'a' and 'b'. */
bool
flow_equal_except(const struct flow *a, const struct flow *b,
const struct flow_wildcards *wc)
{
const uint64_t *a_u64 = (const uint64_t *) a;
const uint64_t *b_u64 = (const uint64_t *) b;
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
size_t i;
for (i = 0; i < FLOW_U64S; i++) {
if ((a_u64[i] ^ b_u64[i]) & wc_u64[i]) {
return false;
}
}
return true;
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_reg_mask(struct flow_wildcards *wc, int idx, uint32_t mask)
{
wc->masks.regs[idx] = mask;
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xreg_mask(struct flow_wildcards *wc, int idx, uint64_t mask)
{
flow_set_xreg(&wc->masks, idx, mask);
}
/* Sets the wildcard mask for register 'idx' in 'wc' to 'mask'.
* (A 0-bit indicates a wildcard bit.) */
void
flow_wildcards_set_xxreg_mask(struct flow_wildcards *wc, int idx,
ovs_u128 mask)
{
flow_set_xxreg(&wc->masks, idx, mask);
}
/* Calculates the 5-tuple hash from the given miniflow.
* This returns the same value as flow_hash_5tuple for the corresponding
* flow. */
uint32_t
miniflow_hash_5tuple(const struct miniflow *flow, uint32_t basis)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
uint32_t hash = basis;
if (flow) {
ovs_be16 dl_type = MINIFLOW_GET_BE16(flow, dl_type);
uint8_t nw_proto;
if (dl_type == htons(ETH_TYPE_IPV6)) {
struct flowmap map = FLOWMAP_EMPTY_INITIALIZER;
uint64_t value;
FLOWMAP_SET(&map, ipv6_src);
FLOWMAP_SET(&map, ipv6_dst);
MINIFLOW_FOR_EACH_IN_FLOWMAP(value, flow, map) {
hash = hash_add64(hash, value);
}
} else if (dl_type == htons(ETH_TYPE_IP)
|| dl_type == htons(ETH_TYPE_ARP)) {
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_src));
hash = hash_add(hash, MINIFLOW_GET_U32(flow, nw_dst));
} else {
goto out;
}
nw_proto = MINIFLOW_GET_U8(flow, nw_proto);
hash = hash_add(hash, nw_proto);
if (nw_proto != IPPROTO_TCP && nw_proto != IPPROTO_UDP
&& nw_proto != IPPROTO_SCTP && nw_proto != IPPROTO_ICMP
&& nw_proto != IPPROTO_ICMPV6) {
goto out;
}
/* Add both ports at once. */
hash = hash_add(hash, MINIFLOW_GET_U32(flow, tp_src));
}
out:
return hash_finish(hash, 42);
}
ASSERT_SEQUENTIAL_SAME_WORD(tp_src, tp_dst);
ASSERT_SEQUENTIAL(ipv6_src, ipv6_dst);
/* Calculates the 5-tuple hash from the given flow. */
uint32_t
flow_hash_5tuple(const struct flow *flow, uint32_t basis)
{
BUILD_ASSERT_DECL(FLOW_WC_SEQ == 36);
uint32_t hash = basis;
if (flow) {
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
const uint64_t *flow_u64 = (const uint64_t *)flow;
int ofs = offsetof(struct flow, ipv6_src) / 8;
int end = ofs + 2 * sizeof flow->ipv6_src / 8;
for (;ofs < end; ofs++) {
hash = hash_add64(hash, flow_u64[ofs]);
}
} else if (flow->dl_type == htons(ETH_TYPE_IP)
|| flow->dl_type == htons(ETH_TYPE_ARP)) {
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_src);
hash = hash_add(hash, (OVS_FORCE uint32_t) flow->nw_dst);
} else {
goto out;
}
hash = hash_add(hash, flow->nw_proto);
if (flow->nw_proto != IPPROTO_TCP && flow->nw_proto != IPPROTO_UDP
&& flow->nw_proto != IPPROTO_SCTP && flow->nw_proto != IPPROTO_ICMP
&& flow->nw_proto != IPPROTO_ICMPV6) {
goto out;
}
/* Add both ports at once. */
hash = hash_add(hash,
((const uint32_t *)flow)[offsetof(struct flow, tp_src)
/ sizeof(uint32_t)]);
}
out:
return hash_finish(hash, 42); /* Arbitrary number. */
}
/* Hashes 'flow' based on its L2 through L4 protocol information. */
uint32_t
flow_hash_symmetric_l4(const struct flow *flow, uint32_t basis)
{
struct {
union {
ovs_be32 ipv4_addr;
struct in6_addr ipv6_addr;
};
ovs_be16 eth_type;
ovs_be16 vlan_tci;
ovs_be16 tp_port;
struct eth_addr eth_addr;
uint8_t ip_proto;
} fields;
int i;
memset(&fields, 0, sizeof fields);
for (i = 0; i < ARRAY_SIZE(fields.eth_addr.be16); i++) {
fields.eth_addr.be16[i] = flow->dl_src.be16[i] ^ flow->dl_dst.be16[i];
}
fields.vlan_tci = flow->vlan_tci & htons(VLAN_VID_MASK);
fields.eth_type = flow->dl_type;
/* UDP source and destination port are not taken into account because they
* will not necessarily be symmetric in a bidirectional flow. */
if (fields.eth_type == htons(ETH_TYPE_IP)) {
fields.ipv4_addr = flow->nw_src ^ flow->nw_dst;
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
} else if (fields.eth_type == htons(ETH_TYPE_IPV6)) {
const uint8_t *a = &flow->ipv6_src.s6_addr[0];
const uint8_t *b = &flow->ipv6_dst.s6_addr[0];
uint8_t *ipv6_addr = &fields.ipv6_addr.s6_addr[0];
for (i=0; i<16; i++) {
ipv6_addr[i] = a[i] ^ b[i];
}
fields.ip_proto = flow->nw_proto;
if (fields.ip_proto == IPPROTO_TCP || fields.ip_proto == IPPROTO_SCTP) {
fields.tp_port = flow->tp_src ^ flow->tp_dst;
}
}
return jhash_bytes(&fields, sizeof fields, basis);
}
/* Hashes 'flow' based on its L3 through L4 protocol information */
uint32_t
flow_hash_symmetric_l3l4(const struct flow *flow, uint32_t basis,
bool inc_udp_ports)
{
uint32_t hash = basis;
/* UDP source and destination port are also taken into account. */
if (flow->dl_type == htons(ETH_TYPE_IP)) {
hash = hash_add(hash,
(OVS_FORCE uint32_t) (flow->nw_src ^ flow->nw_dst));
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
/* IPv6 addresses are 64-bit aligned inside struct flow. */
const uint64_t *a = ALIGNED_CAST(uint64_t *, flow->ipv6_src.s6_addr);
const uint64_t *b = ALIGNED_CAST(uint64_t *, flow->ipv6_dst.s6_addr);
for (int i = 0; i < 4; i++) {
hash = hash_add64(hash, a[i] ^ b[i]);
}
} else {
/* Cannot hash non-IP flows */
return 0;
}
hash = hash_add(hash, flow->nw_proto);
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP ||
(inc_udp_ports && flow->nw_proto == IPPROTO_UDP)) {
hash = hash_add(hash,
(OVS_FORCE uint16_t) (flow->tp_src ^ flow->tp_dst));
}
return hash_finish(hash, basis);
}
/* Initialize a flow with random fields that matter for nx_hash_fields. */
void
flow_random_hash_fields(struct flow *flow)
{
uint16_t rnd = random_uint16();
/* Initialize to all zeros. */
memset(flow, 0, sizeof *flow);
eth_addr_random(&flow->dl_src);
eth_addr_random(&flow->dl_dst);
flow->vlan_tci = (OVS_FORCE ovs_be16) (random_uint16() & VLAN_VID_MASK);
/* Make most of the random flows IPv4, some IPv6, and rest random. */
flow->dl_type = rnd < 0x8000 ? htons(ETH_TYPE_IP) :
rnd < 0xc000 ? htons(ETH_TYPE_IPV6) : (OVS_FORCE ovs_be16)rnd;
if (dl_type_is_ip_any(flow->dl_type)) {
if (flow->dl_type == htons(ETH_TYPE_IP)) {
flow->nw_src = (OVS_FORCE ovs_be32)random_uint32();
flow->nw_dst = (OVS_FORCE ovs_be32)random_uint32();
} else {
random_bytes(&flow->ipv6_src, sizeof flow->ipv6_src);
random_bytes(&flow->ipv6_dst, sizeof flow->ipv6_dst);
}
/* Make most of IP flows TCP, some UDP or SCTP, and rest random. */
rnd = random_uint16();
flow->nw_proto = rnd < 0x8000 ? IPPROTO_TCP :
rnd < 0xc000 ? IPPROTO_UDP :
rnd < 0xd000 ? IPPROTO_SCTP : (uint8_t)rnd;
if (flow->nw_proto == IPPROTO_TCP ||
flow->nw_proto == IPPROTO_UDP ||
flow->nw_proto == IPPROTO_SCTP) {
flow->tp_src = (OVS_FORCE ovs_be16)random_uint16();
flow->tp_dst = (OVS_FORCE ovs_be16)random_uint16();
}
}
}
/* Masks the fields in 'wc' that are used by the flow hash 'fields'. */
void
flow_mask_hash_fields(const struct flow *flow, struct flow_wildcards *wc,
enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
break;
case NX_HASH_FIELDS_SYMMETRIC_L4:
memset(&wc->masks.dl_src, 0xff, sizeof wc->masks.dl_src);
memset(&wc->masks.dl_dst, 0xff, sizeof wc->masks.dl_dst);
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
}
if (is_ip_any(flow)) {
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
flow_unwildcard_tp_ports(flow, wc);
}
wc->masks.vlan_tci |= htons(VLAN_VID_MASK | VLAN_CFI);
break;
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
if (is_ip_any(flow) && flow->nw_proto == IPPROTO_UDP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
}
/* no break */
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
if (flow->dl_type == htons(ETH_TYPE_IP)) {
memset(&wc->masks.nw_src, 0xff, sizeof wc->masks.nw_src);
memset(&wc->masks.nw_dst, 0xff, sizeof wc->masks.nw_dst);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
memset(&wc->masks.ipv6_src, 0xff, sizeof wc->masks.ipv6_src);
memset(&wc->masks.ipv6_dst, 0xff, sizeof wc->masks.ipv6_dst);
} else {
break; /* non-IP flow */
}
memset(&wc->masks.nw_proto, 0xff, sizeof wc->masks.nw_proto);
if (flow->nw_proto == IPPROTO_TCP || flow->nw_proto == IPPROTO_SCTP) {
memset(&wc->masks.tp_src, 0xff, sizeof wc->masks.tp_src);
memset(&wc->masks.tp_dst, 0xff, sizeof wc->masks.tp_dst);
}
break;
default:
OVS_NOT_REACHED();
}
}
/* Hashes the portions of 'flow' designated by 'fields'. */
uint32_t
flow_hash_fields(const struct flow *flow, enum nx_hash_fields fields,
uint16_t basis)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC:
return jhash_bytes(&flow->dl_src, sizeof flow->dl_src, basis);
case NX_HASH_FIELDS_SYMMETRIC_L4:
return flow_hash_symmetric_l4(flow, basis);
case NX_HASH_FIELDS_SYMMETRIC_L3L4:
return flow_hash_symmetric_l3l4(flow, basis, false);
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP:
return flow_hash_symmetric_l3l4(flow, basis, true);
}
OVS_NOT_REACHED();
}
/* Returns a string representation of 'fields'. */
const char *
flow_hash_fields_to_str(enum nx_hash_fields fields)
{
switch (fields) {
case NX_HASH_FIELDS_ETH_SRC: return "eth_src";
case NX_HASH_FIELDS_SYMMETRIC_L4: return "symmetric_l4";
case NX_HASH_FIELDS_SYMMETRIC_L3L4: return "symmetric_l3l4";
case NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP: return "symmetric_l3l4+udp";
default: return "<unknown>";
}
}
/* Returns true if the value of 'fields' is supported. Otherwise false. */
bool
flow_hash_fields_valid(enum nx_hash_fields fields)
{
return fields == NX_HASH_FIELDS_ETH_SRC
|| fields == NX_HASH_FIELDS_SYMMETRIC_L4
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4
|| fields == NX_HASH_FIELDS_SYMMETRIC_L3L4_UDP;
}
/* Returns a hash value for the bits of 'flow' that are active based on
* 'wc', given 'basis'. */
uint32_t
flow_hash_in_wildcards(const struct flow *flow,
const struct flow_wildcards *wc, uint32_t basis)
{
const uint64_t *wc_u64 = (const uint64_t *) &wc->masks;
const uint64_t *flow_u64 = (const uint64_t *) flow;
uint32_t hash;
size_t i;
hash = basis;
for (i = 0; i < FLOW_U64S; i++) {
hash = hash_add64(hash, flow_u64[i] & wc_u64[i]);
}
return hash_finish(hash, 8 * FLOW_U64S);
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.0 "dl_vlan" value:
*
* - If it is in the range 0...4095, 'flow->vlan_tci' is set to match
* that VLAN. Any existing PCP match is unchanged (it becomes 0 if
* 'flow' previously matched packets without a VLAN header).
*
* - If it is OFP_VLAN_NONE, 'flow->vlan_tci' is set to match a packet
* without a VLAN tag.
*
* - Other values of 'vid' should not be used. */
void
flow_set_dl_vlan(struct flow *flow, ovs_be16 vid)
{
if (vid == htons(OFP10_VLAN_NONE)) {
flow->vlan_tci = htons(0);
} else {
vid &= htons(VLAN_VID_MASK);
flow->vlan_tci &= ~htons(VLAN_VID_MASK);
flow->vlan_tci |= htons(VLAN_CFI) | vid;
}
}
/* Sets the VLAN VID that 'flow' matches to 'vid', which is interpreted as an
* OpenFlow 1.2 "vlan_vid" value, that is, the low 13 bits of 'vlan_tci' (VID
* plus CFI). */
void
flow_set_vlan_vid(struct flow *flow, ovs_be16 vid)
{
ovs_be16 mask = htons(VLAN_VID_MASK | VLAN_CFI);
flow->vlan_tci &= ~mask;
flow->vlan_tci |= vid & mask;
}
/* Sets the VLAN PCP that 'flow' matches to 'pcp', which should be in the
* range 0...7.
*
* This function has no effect on the VLAN ID that 'flow' matches.
*
* After calling this function, 'flow' will not match packets without a VLAN
* header. */
void
flow_set_vlan_pcp(struct flow *flow, uint8_t pcp)
{
pcp &= 0x07;
flow->vlan_tci &= ~htons(VLAN_PCP_MASK);
flow->vlan_tci |= htons((pcp << VLAN_PCP_SHIFT) | VLAN_CFI);
}
/* Returns the number of MPLS LSEs present in 'flow'
*
* Returns 0 if the 'dl_type' of 'flow' is not an MPLS ethernet type.
* Otherwise traverses 'flow''s MPLS label stack stopping at the
* first entry that has the BoS bit set. If no such entry exists then
* the maximum number of LSEs that can be stored in 'flow' is returned.
*/
int
flow_count_mpls_labels(const struct flow *flow, struct flow_wildcards *wc)
{
/* dl_type is always masked. */
if (eth_type_mpls(flow->dl_type)) {
int i;
int cnt;
cnt = 0;
for (i = 0; i < FLOW_MAX_MPLS_LABELS; i++) {
if (wc) {
wc->masks.mpls_lse[i] |= htonl(MPLS_BOS_MASK);
}
if (flow->mpls_lse[i] & htonl(MPLS_BOS_MASK)) {
return i + 1;
}
if (flow->mpls_lse[i]) {
cnt++;
}
}
return cnt;
} else {
return 0;
}
}
/* Returns the number consecutive of MPLS LSEs, starting at the
* innermost LSE, that are common in 'a' and 'b'.
*
* 'an' must be flow_count_mpls_labels(a).
* 'bn' must be flow_count_mpls_labels(b).
*/
int
flow_count_common_mpls_labels(const struct flow *a, int an,
const struct flow *b, int bn,
struct flow_wildcards *wc)
{
int min_n = MIN(an, bn);
if (min_n == 0) {
return 0;
} else {
int common_n = 0;
int a_last = an - 1;
int b_last = bn - 1;
int i;
for (i = 0; i < min_n; i++) {
if (wc) {
wc->masks.mpls_lse[a_last - i] = OVS_BE32_MAX;
wc->masks.mpls_lse[b_last - i] = OVS_BE32_MAX;
}
if (a->mpls_lse[a_last - i] != b->mpls_lse[b_last - i]) {
break;
} else {
common_n++;
}
}
return common_n;
}
}
/* Adds a new outermost MPLS label to 'flow' and changes 'flow''s Ethernet type
* to 'mpls_eth_type', which must be an MPLS Ethertype.
*
* If the new label is the first MPLS label in 'flow', it is generated as;
*
* - label: 2, if 'flow' is IPv6, otherwise 0.
*
* - TTL: IPv4 or IPv6 TTL, if present and nonzero, otherwise 64.
*
* - TC: IPv4 or IPv6 TOS, if present, otherwise 0.
*
* - BoS: 1.
*
* If the new label is the second or later label MPLS label in 'flow', it is
* generated as;
*
* - label: Copied from outer label.
*
* - TTL: Copied from outer label.
*
* - TC: Copied from outer label.
*
* - BoS: 0.
*
* 'n' must be flow_count_mpls_labels(flow). 'n' must be less than
* FLOW_MAX_MPLS_LABELS (because otherwise flow->mpls_lse[] would overflow).
*/
void
flow_push_mpls(struct flow *flow, int n, ovs_be16 mpls_eth_type,
struct flow_wildcards *wc, bool clear_flow_L3)
{
ovs_assert(eth_type_mpls(mpls_eth_type));
ovs_assert(n < FLOW_MAX_MPLS_LABELS);
if (n) {
int i;
if (wc) {
memset(&wc->masks.mpls_lse, 0xff, sizeof *wc->masks.mpls_lse * n);
}
for (i = n; i >= 1; i--) {
flow->mpls_lse[i] = flow->mpls_lse[i - 1];
}
flow->mpls_lse[0] = (flow->mpls_lse[1] & htonl(~MPLS_BOS_MASK));
} else {
int label = 0; /* IPv4 Explicit Null. */
int tc = 0;
int ttl = 64;
if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
label = 2;
}
if (is_ip_any(flow)) {
tc = (flow->nw_tos & IP_DSCP_MASK) >> 2;
if (wc) {
wc->masks.nw_tos |= IP_DSCP_MASK;
wc->masks.nw_ttl = 0xff;
}
if (flow->nw_ttl) {
ttl = flow->nw_ttl;
}
}
flow->mpls_lse[0] = set_mpls_lse_values(ttl, tc, 1, htonl(label));
if (clear_flow_L3) {
/* Clear all L3 and L4 fields and dp_hash. */
BUILD_ASSERT(FLOW_WC_SEQ == 36);
memset((char *) flow + FLOW_SEGMENT_2_ENDS_AT, 0,
sizeof(struct flow) - FLOW_SEGMENT_2_ENDS_AT);
flow->dp_hash = 0;
}
}
flow->dl_type = mpls_eth_type;
}
/* Tries to remove the outermost MPLS label from 'flow'. Returns true if
* successful, false otherwise. On success, sets 'flow''s Ethernet type to
* 'eth_type'.
*
* 'n' must be flow_count_mpls_labels(flow). */
bool
flow_pop_mpls(struct flow *flow, int n, ovs_be16 eth_type,
struct flow_wildcards *wc)
{
int i;
if (n == 0) {
/* Nothing to pop. */
return false;
} else if (n == FLOW_MAX_MPLS_LABELS) {
if (wc) {
wc->masks.mpls_lse[n - 1] |= htonl(MPLS_BOS_MASK);
}
if (!(flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK))) {
/* Can't pop because don't know what to fill in mpls_lse[n - 1]. */
return false;
}
}
if (wc) {
memset(&wc->masks.mpls_lse[1], 0xff,
sizeof *wc->masks.mpls_lse * (n - 1));
}
for (i = 1; i < n; i++) {
flow->mpls_lse[i - 1] = flow->mpls_lse[i];
}
flow->mpls_lse[n - 1] = 0;
flow->dl_type = eth_type;
return true;
}
/* Sets the MPLS Label that 'flow' matches to 'label', which is interpreted
* as an OpenFlow 1.1 "mpls_label" value. */
void
flow_set_mpls_label(struct flow *flow, int idx, ovs_be32 label)
{
set_mpls_lse_label(&flow->mpls_lse[idx], label);
}
/* Sets the MPLS TTL that 'flow' matches to 'ttl', which should be in the
* range 0...255. */
void
flow_set_mpls_ttl(struct flow *flow, int idx, uint8_t ttl)
{
set_mpls_lse_ttl(&flow->mpls_lse[idx], ttl);
}
/* Sets the MPLS TC that 'flow' matches to 'tc', which should be in the
* range 0...7. */
void
flow_set_mpls_tc(struct flow *flow, int idx, uint8_t tc)
{
set_mpls_lse_tc(&flow->mpls_lse[idx], tc);
}
/* Sets the MPLS BOS bit that 'flow' matches to which should be 0 or 1. */
void
flow_set_mpls_bos(struct flow *flow, int idx, uint8_t bos)
{
set_mpls_lse_bos(&flow->mpls_lse[idx], bos);
}
/* Sets the entire MPLS LSE. */
void
flow_set_mpls_lse(struct flow *flow, int idx, ovs_be32 lse)
{
flow->mpls_lse[idx] = lse;
}
static size_t
flow_compose_l4(struct dp_packet *p, const struct flow *flow)
{
size_t l4_len = 0;
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp;
l4_len = sizeof *tcp;
tcp = dp_packet_put_zeros(p, l4_len);
tcp->tcp_src = flow->tp_src;
tcp->tcp_dst = flow->tp_dst;
tcp->tcp_ctl = TCP_CTL(ntohs(flow->tcp_flags), 5);
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp;
l4_len = sizeof *udp;
udp = dp_packet_put_zeros(p, l4_len);
udp->udp_src = flow->tp_src;
udp->udp_dst = flow->tp_dst;
udp->udp_len = htons(l4_len);
} else if (flow->nw_proto == IPPROTO_SCTP) {
struct sctp_header *sctp;
l4_len = sizeof *sctp;
sctp = dp_packet_put_zeros(p, l4_len);
sctp->sctp_src = flow->tp_src;
sctp->sctp_dst = flow->tp_dst;
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp;
l4_len = sizeof *icmp;
icmp = dp_packet_put_zeros(p, l4_len);
icmp->icmp_type = ntohs(flow->tp_src);
icmp->icmp_code = ntohs(flow->tp_dst);
} else if (flow->nw_proto == IPPROTO_IGMP) {
struct igmp_header *igmp;
l4_len = sizeof *igmp;
igmp = dp_packet_put_zeros(p, l4_len);
igmp->igmp_type = ntohs(flow->tp_src);
igmp->igmp_code = ntohs(flow->tp_dst);
put_16aligned_be32(&igmp->group, flow->igmp_group_ip4);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp;
l4_len = sizeof *icmp;
icmp = dp_packet_put_zeros(p, l4_len);
icmp->icmp6_type = ntohs(flow->tp_src);
icmp->icmp6_code = ntohs(flow->tp_dst);
if (icmp->icmp6_code == 0 &&
(icmp->icmp6_type == ND_NEIGHBOR_SOLICIT ||
icmp->icmp6_type == ND_NEIGHBOR_ADVERT)) {
struct in6_addr *nd_target;
struct ovs_nd_opt *nd_opt;
l4_len += sizeof *nd_target;
nd_target = dp_packet_put_zeros(p, sizeof *nd_target);
*nd_target = flow->nd_target;
if (!eth_addr_is_zero(flow->arp_sha)) {
l4_len += 8;
nd_opt = dp_packet_put_zeros(p, 8);
nd_opt->nd_opt_len = 1;
nd_opt->nd_opt_type = ND_OPT_SOURCE_LINKADDR;
nd_opt->nd_opt_mac = flow->arp_sha;
}
if (!eth_addr_is_zero(flow->arp_tha)) {
l4_len += 8;
nd_opt = dp_packet_put_zeros(p, 8);
nd_opt->nd_opt_len = 1;
nd_opt->nd_opt_type = ND_OPT_TARGET_LINKADDR;
nd_opt->nd_opt_mac = flow->arp_tha;
}
}
}
}
return l4_len;
}
static void
flow_compose_l4_csum(struct dp_packet *p, const struct flow *flow,
uint32_t pseudo_hdr_csum)
{
size_t l4_len = (char *) dp_packet_tail(p) - (char *) dp_packet_l4(p);
if (!(flow->nw_frag & FLOW_NW_FRAG_ANY)
|| !(flow->nw_frag & FLOW_NW_FRAG_LATER)) {
if (flow->nw_proto == IPPROTO_TCP) {
struct tcp_header *tcp = dp_packet_l4(p);
/* Checksum has already been zeroed by put_zeros call in
* flow_compose_l4(). */
tcp->tcp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
tcp, l4_len));
} else if (flow->nw_proto == IPPROTO_UDP) {
struct udp_header *udp = dp_packet_l4(p);
/* Checksum has already been zeroed by put_zeros call in
* flow_compose_l4(). */
udp->udp_csum = csum_finish(csum_continue(pseudo_hdr_csum,
udp, l4_len));
} else if (flow->nw_proto == IPPROTO_ICMP) {
struct icmp_header *icmp = dp_packet_l4(p);
/* Checksum has already been zeroed by put_zeros call in
* flow_compose_l4(). */
icmp->icmp_csum = csum(icmp, l4_len);
} else if (flow->nw_proto == IPPROTO_IGMP) {
struct igmp_header *igmp = dp_packet_l4(p);
/* Checksum has already been zeroed by put_zeros call in
* flow_compose_l4(). */
igmp->igmp_csum = csum(igmp, l4_len);
} else if (flow->nw_proto == IPPROTO_ICMPV6) {
struct icmp6_hdr *icmp = dp_packet_l4(p);
/* Checksum has already been zeroed by put_zeros call in
* flow_compose_l4(). */
icmp->icmp6_cksum = (OVS_FORCE uint16_t)
csum_finish(csum_continue(pseudo_hdr_csum, icmp, l4_len));
}
}
}
/* Puts into 'b' a packet that flow_extract() would parse as having the given
* 'flow'.
*
* (This is useful only for testing, obviously, and the packet isn't really
* valid. Lots of fields are just zeroed.) */
void
flow_compose(struct dp_packet *p, const struct flow *flow)
{
uint32_t pseudo_hdr_csum;
size_t l4_len;
/* eth_compose() sets l3 pointer and makes sure it is 32-bit aligned. */
eth_compose(p, flow->dl_dst, flow->dl_src, ntohs(flow->dl_type), 0);
if (flow->dl_type == htons(FLOW_DL_TYPE_NONE)) {
struct eth_header *eth = dp_packet_l2(p);
eth->eth_type = htons(dp_packet_size(p));
return;
}
if (flow->vlan_tci & htons(VLAN_CFI)) {
eth_push_vlan(p, htons(ETH_TYPE_VLAN), flow->vlan_tci);
}
if (flow->dl_type == htons(ETH_TYPE_IP)) {
struct ip_header *ip;
ip = dp_packet_put_zeros(p, sizeof *ip);
ip->ip_ihl_ver = IP_IHL_VER(5, 4);
ip->ip_tos = flow->nw_tos;
ip->ip_ttl = flow->nw_ttl;
ip->ip_proto = flow->nw_proto;
put_16aligned_be32(&ip->ip_src, flow->nw_src);
put_16aligned_be32(&ip->ip_dst, flow->nw_dst);
if (flow->nw_frag & FLOW_NW_FRAG_ANY) {
ip->ip_frag_off |= htons(IP_MORE_FRAGMENTS);
if (flow->nw_frag & FLOW_NW_FRAG_LATER) {
ip->ip_frag_off |= htons(100);
}
}
dp_packet_set_l4(p, dp_packet_tail(p));
l4_len = flow_compose_l4(p, flow);
ip = dp_packet_l3(p);
ip->ip_tot_len = htons(p->l4_ofs - p->l3_ofs + l4_len);
/* Checksum has already been zeroed by put_zeros call. */
ip->ip_csum = csum(ip, sizeof *ip);
pseudo_hdr_csum = packet_csum_pseudoheader(ip);
flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
} else if (flow->dl_type == htons(ETH_TYPE_IPV6)) {
struct ovs_16aligned_ip6_hdr *nh;
nh = dp_packet_put_zeros(p, sizeof *nh);
put_16aligned_be32(&nh->ip6_flow, htonl(6 << 28) |
htonl(flow->nw_tos << 20) | flow->ipv6_label);
nh->ip6_hlim = flow->nw_ttl;
nh->ip6_nxt = flow->nw_proto;
memcpy(&nh->ip6_src, &flow->ipv6_src, sizeof(nh->ip6_src));
memcpy(&nh->ip6_dst, &flow->ipv6_dst, sizeof(nh->ip6_dst));
dp_packet_set_l4(p, dp_packet_tail(p));
l4_len = flow_compose_l4(p, flow);
nh = dp_packet_l3(p);
nh->ip6_plen = htons(l4_len);
pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
flow_compose_l4_csum(p, flow, pseudo_hdr_csum);
} else if (flow->dl_type == htons(ETH_TYPE_ARP) ||
flow->dl_type == htons(ETH_TYPE_RARP)) {
struct arp_eth_header *arp;
arp = dp_packet_put_zeros(p, sizeof *arp);
dp_packet_set_l3(p, arp);
arp->ar_hrd = htons(1);
arp->ar_pro = htons(ETH_TYPE_IP);
arp->ar_hln = ETH_ADDR_LEN;
arp->ar_pln = 4;
arp->ar_op = htons(flow->nw_proto);
if (flow->nw_proto == ARP_OP_REQUEST ||
flow->nw_proto == ARP_OP_REPLY) {
put_16aligned_be32(&arp->ar_spa, flow->nw_src);
put_16aligned_be32(&arp->ar_tpa, flow->nw_dst);
arp->ar_sha = flow->arp_sha;
arp->ar_tha = flow->arp_tha;
}
}
if (eth_type_mpls(flow->dl_type)) {
int n;
p->l2_5_ofs = p->l3_ofs;
for (n = 1; n < FLOW_MAX_MPLS_LABELS; n++) {
if (flow->mpls_lse[n - 1] & htonl(MPLS_BOS_MASK)) {
break;
}
}
while (n > 0) {
push_mpls(p, flow->dl_type, flow->mpls_lse[--n]);
}
}
}
/* Compressed flow. */
/* Completes an initialization of 'dst' as a miniflow copy of 'src' begun by
* the caller. The caller must have already computed 'dst->map' properly to
* indicate the significant uint64_t elements of 'src'.
*
* Normally the significant elements are the ones that are non-zero. However,
* when a miniflow is initialized from a (mini)mask, the values can be zeroes,
* so that the flow and mask always have the same maps. */
void
miniflow_init(struct miniflow *dst, const struct flow *src)
{
uint64_t *dst_u64 = miniflow_values(dst);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, dst->map) {
*dst_u64++ = flow_u64_value(src, idx);
}
}
/* Initialize the maps of 'flow' from 'src'. */
void
miniflow_map_init(struct miniflow *flow, const struct flow *src)
{
/* Initialize map, counting the number of nonzero elements. */
flowmap_init(&flow->map);
for (size_t i = 0; i < FLOW_U64S; i++) {
if (flow_u64_value(src, i)) {
flowmap_set(&flow->map, i, 1);
}
}
}
/* Allocates 'n' count of miniflows, consecutive in memory, initializing the
* map of each from 'src'.
* Returns the size of the miniflow data. */
size_t
miniflow_alloc(struct miniflow *dsts[], size_t n, const struct miniflow *src)
{
size_t n_values = miniflow_n_values(src);
size_t data_size = MINIFLOW_VALUES_SIZE(n_values);
struct miniflow *dst = xmalloc(n * (sizeof *src + data_size));
size_t i;
COVERAGE_INC(miniflow_malloc);
for (i = 0; i < n; i++) {
*dst = *src; /* Copy maps. */
dsts[i] = dst;
dst += 1; /* Just past the maps. */
dst = (struct miniflow *)((uint64_t *)dst + n_values); /* Skip data. */
}
return data_size;
}
/* Returns a miniflow copy of 'src'. The caller must eventually free() the
* returned miniflow. */
struct miniflow *
miniflow_create(const struct flow *src)
{
struct miniflow tmp;
struct miniflow *dst;
miniflow_map_init(&tmp, src);
miniflow_alloc(&dst, 1, &tmp);
miniflow_init(dst, src);
return dst;
}
/* Initializes 'dst' as a copy of 'src'. The caller must have allocated
* 'dst' to have inline space for 'n_values' data in 'src'. */
void
miniflow_clone(struct miniflow *dst, const struct miniflow *src,
size_t n_values)
{
*dst = *src; /* Copy maps. */
memcpy(miniflow_values(dst), miniflow_get_values(src),
MINIFLOW_VALUES_SIZE(n_values));
}
/* Initializes 'dst' as a copy of 'src'. */
void
miniflow_expand(const struct miniflow *src, struct flow *dst)
{
memset(dst, 0, sizeof *dst);
flow_union_with_miniflow(dst, src);
}
/* Returns true if 'a' and 'b' are equal miniflows, false otherwise. */
bool
miniflow_equal(const struct miniflow *a, const struct miniflow *b)
{
const uint64_t *ap = miniflow_get_values(a);
const uint64_t *bp = miniflow_get_values(b);
/* This is mostly called after a matching hash, so it is highly likely that
* the maps are equal as well. */
if (OVS_LIKELY(flowmap_equal(a->map, b->map))) {
return !memcmp(ap, bp, miniflow_n_values(a) * sizeof *ap);
} else {
size_t idx;
FLOWMAP_FOR_EACH_INDEX (idx, flowmap_or(a->map, b->map)) {
if ((flowmap_is_set(&a->map, idx) ? *ap++ : 0)
!= (flowmap_is_set(&b->map, idx) ? *bp++ : 0)) {
return false;
}
}
}
return true;
}
/* Returns false if 'a' and 'b' differ at the places where there are 1-bits
* in 'mask', true otherwise. */
bool
miniflow_equal_in_minimask(const struct miniflow *a, const struct miniflow *b,
const struct minimask *mask)
{
const uint64_t *p = miniflow_get_values(&mask->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
if ((miniflow_get(a, idx) ^ miniflow_get(b, idx)) & *p++) {
return false;
}
}
return true;
}
/* Returns true if 'a' and 'b' are equal at the places where there are 1-bits
* in 'mask', false if they differ. */
bool
miniflow_equal_flow_in_minimask(const struct miniflow *a, const struct flow *b,
const struct minimask *mask)
{
const uint64_t *p = miniflow_get_values(&mask->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, mask->masks.map) {
if ((miniflow_get(a, idx) ^ flow_u64_value(b, idx)) & *p++) {
return false;
}
}
return true;
}
void
minimask_init(struct minimask *mask, const struct flow_wildcards *wc)
{
miniflow_init(&mask->masks, &wc->masks);
}
/* Returns a minimask copy of 'wc'. The caller must eventually free the
* returned minimask with free(). */
struct minimask *
minimask_create(const struct flow_wildcards *wc)
{
return (struct minimask *)miniflow_create(&wc->masks);
}
/* Initializes 'dst_' as the bit-wise "and" of 'a_' and 'b_'.
*
* The caller must provide room for FLOW_U64S "uint64_t"s in 'storage', which
* must follow '*dst_' in memory, for use by 'dst_'. The caller must *not*
* free 'dst_' free(). */
void
minimask_combine(struct minimask *dst_,
const struct minimask *a_, const struct minimask *b_,
uint64_t storage[FLOW_U64S])
{
struct miniflow *dst = &dst_->masks;
uint64_t *dst_values = storage;
const struct miniflow *a = &a_->masks;
const struct miniflow *b = &b_->masks;
size_t idx;
flowmap_init(&dst->map);
FLOWMAP_FOR_EACH_INDEX(idx, flowmap_and(a->map, b->map)) {
/* Both 'a' and 'b' have non-zero data at 'idx'. */
uint64_t mask = *miniflow_get__(a, idx) & *miniflow_get__(b, idx);
if (mask) {
flowmap_set(&dst->map, idx, 1);
*dst_values++ = mask;
}
}
}
/* Initializes 'wc' as a copy of 'mask'. */
void
minimask_expand(const struct minimask *mask, struct flow_wildcards *wc)
{
miniflow_expand(&mask->masks, &wc->masks);
}
/* Returns true if 'a' and 'b' are the same flow mask, false otherwise.
* Minimasks may not have zero data values, so for the minimasks to be the
* same, they need to have the same map and the same data values. */
bool
minimask_equal(const struct minimask *a, const struct minimask *b)
{
return !memcmp(a, b, sizeof *a
+ MINIFLOW_VALUES_SIZE(miniflow_n_values(&a->masks)));
}
/* Returns true if at least one bit matched by 'b' is wildcarded by 'a',
* false otherwise. */
bool
minimask_has_extra(const struct minimask *a, const struct minimask *b)
{
const uint64_t *bp = miniflow_get_values(&b->masks);
size_t idx;
FLOWMAP_FOR_EACH_INDEX(idx, b->masks.map) {
uint64_t b_u64 = *bp++;
/* 'b_u64' is non-zero, check if the data in 'a' is either zero
* or misses some of the bits in 'b_u64'. */
if (!MINIFLOW_IN_MAP(&a->masks, idx)
|| ((*miniflow_get__(&a->masks, idx) & b_u64) != b_u64)) {
return true; /* 'a' wildcards some bits 'b' doesn't. */
}
}
return false;
}
|