1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
|
/*
* Copyright (c) 2014, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "cmap.h"
#include "coverage.h"
#include "bitmap.h"
#include "hash.h"
#include "ovs-rcu.h"
#include "random.h"
#include "util.h"
COVERAGE_DEFINE(cmap_expand);
COVERAGE_DEFINE(cmap_shrink);
/* Optimistic Concurrent Cuckoo Hash
* =================================
*
* A "cuckoo hash" is an open addressing hash table schema, designed such that
* a given element can be in one of only a small number of buckets 'd', each of
* which holds up to a small number 'k' elements. Thus, the expected and
* worst-case lookup times are O(1) because they require comparing no more than
* a fixed number of elements (k * d). Inserting a new element can require
* moving around existing elements, but it is also O(1) amortized expected
* time.
*
* An optimistic concurrent hash table goes one step further, making it
* possible for a single writer to execute concurrently with any number of
* readers without requiring the readers to take any locks.
*
* This cuckoo hash implementation uses:
*
* - Two hash functions (d=2). More hash functions allow for a higher load
* factor, but increasing 'k' is easier and the benefits of increasing 'd'
* quickly fall off with the 'k' values used here. Also, the method of
* generating hashes used in this implementation is hard to reasonably
* extend beyond d=2. Finally, each additional hash function means that a
* lookup has to look at least one extra cache line.
*
* - 5 or 7 elements per bucket (k=5 or k=7), chosen to make buckets
* exactly one cache line in size.
*
* According to Erlingsson [4], these parameters suggest a maximum load factor
* of about 93%. The current implementation is conservative, expanding the
* hash table when it is over 85% full.
*
* When the load factor is below 20%, the hash table will be shrinked by half.
* This is to reduce the memory utilization of the hash table and to avoid
* the hash table occupying the top of heap chunk which prevents the trimming
* of heap.
*
* Hash Functions
* ==============
*
* A cuckoo hash requires multiple hash functions. When reorganizing the hash
* becomes too difficult, it also requires the ability to change the hash
* functions. Requiring the client to provide multiple hashes and to be able
* to change them to new hashes upon insertion is inconvenient.
*
* This implementation takes another approach. The client provides a single,
* fixed hash. The cuckoo hash internally "rehashes" this hash against a
* randomly selected basis value (see rehash()). This rehashed value is one of
* the two hashes. The other hash is computed by 16-bit circular rotation of
* the rehashed value. Updating the basis changes the hash functions.
*
* To work properly, the hash functions used by a cuckoo hash must be
* independent. If one hash function is a function of the other (e.g. h2(x) =
* h1(x) + 1, or h2(x) = hash(h1(x))), then insertion will eventually fail
* catastrophically (loop forever) because of collisions. With this rehashing
* technique, the two hashes are completely independent for masks up to 16 bits
* wide. For masks wider than 16 bits, only 32-n bits are independent between
* the two hashes. Thus, it becomes risky to grow a cuckoo hash table beyond
* about 2**24 buckets (about 71 million elements with k=5 and maximum load
* 85%). Fortunately, Open vSwitch does not normally deal with hash tables
* this large.
*
*
* Handling Duplicates
* ===================
*
* This cuckoo hash table implementation deals with duplicate client-provided
* hash values by chaining: the second and subsequent cmap_nodes with a given
* hash are chained off the initially inserted node's 'next' member. The hash
* table maintains the invariant that a single client-provided hash value
* exists in only a single chain in a single bucket (even though that hash
* could be stored in two buckets).
*
*
* References
* ==========
*
* [1] D. Zhou, B. Fan, H. Lim, M. Kaminsky, D. G. Andersen, "Scalable, High
* Performance Ethernet Forwarding with CuckooSwitch". In Proc. 9th
* CoNEXT, Dec. 2013.
*
* [2] B. Fan, D. G. Andersen, and M. Kaminsky. "MemC3: Compact and concurrent
* memcache with dumber caching and smarter hashing". In Proc. 10th USENIX
* NSDI, Apr. 2013
*
* [3] R. Pagh and F. Rodler. "Cuckoo hashing". Journal of Algorithms, 51(2):
* 122-144, May 2004.
*
* [4] U. Erlingsson, M. Manasse, F. McSherry, "A Cool and Practical
* Alternative to Traditional Hash Tables". In Proc. 7th Workshop on
* Distributed Data and Structures (WDAS'06), 2006.
*/
/* An entry is an int and a pointer: 8 bytes on 32-bit, 12 bytes on 64-bit. */
#define CMAP_ENTRY_SIZE (4 + (UINTPTR_MAX == UINT32_MAX ? 4 : 8))
/* Number of entries per bucket: 7 on 32-bit, 5 on 64-bit for 64B cacheline. */
#define CMAP_K ((CACHE_LINE_SIZE - 4) / CMAP_ENTRY_SIZE)
/* A cuckoo hash bucket. Designed to be cache-aligned and exactly one cache
* line long. */
struct cmap_bucket {
/* Padding to make cmap_bucket exactly one cache line long. */
PADDED_MEMBERS(CACHE_LINE_SIZE,
/* Allows readers to track in-progress changes. Initially zero, each
* writer increments this value just before and just after each change
* (see cmap_set_bucket()). Thus, a reader can ensure that it gets a
* consistent snapshot by waiting for the counter to become even (see
* read_even_counter()), then checking that its value does not change
* while examining the bucket (see cmap_find()). */
atomic_uint32_t counter;
/* (hash, node) slots. They are parallel arrays instead of an array of
* structs to reduce the amount of space lost to padding.
*
* The slots are in no particular order. A null pointer indicates that
* a pair is unused. In-use slots are not necessarily in the earliest
* slots. */
uint32_t hashes[CMAP_K];
struct cmap_node nodes[CMAP_K];
);
};
BUILD_ASSERT_DECL(sizeof(struct cmap_bucket) == CACHE_LINE_SIZE);
/* Default maximum load factor (as a fraction of UINT32_MAX + 1) before
* enlarging a cmap. Reasonable values lie between about 75% and 93%. Smaller
* values waste memory; larger values increase the average insertion time. */
#define CMAP_MAX_LOAD ((uint32_t) (UINT32_MAX * .85))
/* Default minimum load factor (as a fraction of UINT32_MAX + 1) before
* shrinking a cmap. Currently, the value is chosen to be 20%, this
* means cmap will have a 40% load factor after shrink. */
#define CMAP_MIN_LOAD ((uint32_t) (UINT32_MAX * .20))
/* The implementation of a concurrent hash map. */
struct cmap_impl {
PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline0,
unsigned int n; /* Number of in-use elements. */
unsigned int max_n; /* Max elements before enlarging. */
unsigned int min_n; /* Min elements before shrinking. */
uint32_t mask; /* Number of 'buckets', minus one. */
uint32_t basis; /* Basis for rehashing client's
hash values. */
);
PADDED_MEMBERS_CACHELINE_MARKER(CACHE_LINE_SIZE, cacheline1,
struct cmap_bucket buckets[1];
);
};
BUILD_ASSERT_DECL(sizeof(struct cmap_impl) == CACHE_LINE_SIZE * 2);
/* An empty cmap. */
OVS_ALIGNED_VAR(CACHE_LINE_SIZE) const struct cmap_impl empty_cmap;
static struct cmap_impl *cmap_rehash(struct cmap *, uint32_t mask);
/* Explicit inline keywords in utility functions seem to be necessary
* to prevent performance regression on cmap_find(). */
/* Given a rehashed value 'hash', returns the other hash for that rehashed
* value. This is symmetric: other_hash(other_hash(x)) == x. (See also "Hash
* Functions" at the top of this file.) */
static inline uint32_t
other_hash(uint32_t hash)
{
return (hash << 16) | (hash >> 16);
}
/* Returns the rehashed value for 'hash' within 'impl'. (See also "Hash
* Functions" at the top of this file.) */
static inline uint32_t
rehash(const struct cmap_impl *impl, uint32_t hash)
{
return hash_finish(impl->basis, hash);
}
/* Not always without the inline keyword. */
static inline struct cmap_impl *
cmap_get_impl(const struct cmap *cmap)
{
return ovsrcu_get(struct cmap_impl *, &cmap->impl);
}
static uint32_t
calc_max_n(uint32_t mask)
{
return ((uint64_t) (mask + 1) * CMAP_K * CMAP_MAX_LOAD) >> 32;
}
static uint32_t
calc_min_n(uint32_t mask)
{
return ((uint64_t) (mask + 1) * CMAP_K * CMAP_MIN_LOAD) >> 32;
}
static struct cmap_impl *
cmap_impl_create(uint32_t mask)
{
struct cmap_impl *impl;
ovs_assert(is_pow2(mask + 1));
/* There are 'mask + 1' buckets but struct cmap_impl has one bucket built
* in, so we only need to add space for the extra 'mask' buckets. */
impl = xzalloc_cacheline(sizeof *impl + mask * sizeof *impl->buckets);
impl->n = 0;
impl->max_n = calc_max_n(mask);
impl->min_n = calc_min_n(mask);
impl->mask = mask;
impl->basis = random_uint32();
return impl;
}
/* Initializes 'cmap' as an empty concurrent hash map. */
void
cmap_init(struct cmap *cmap)
{
ovsrcu_set(&cmap->impl, CONST_CAST(struct cmap_impl *, &empty_cmap));
}
/* Destroys 'cmap'.
*
* The client is responsible for destroying any data previously held in
* 'cmap'. */
void
cmap_destroy(struct cmap *cmap)
{
if (cmap) {
struct cmap_impl *impl = cmap_get_impl(cmap);
if (impl != &empty_cmap) {
ovsrcu_postpone(free_cacheline, impl);
}
}
}
/* Returns the number of elements in 'cmap'. */
size_t
cmap_count(const struct cmap *cmap)
{
return cmap_get_impl(cmap)->n;
}
/* Returns true if 'cmap' is empty, false otherwise. */
bool
cmap_is_empty(const struct cmap *cmap)
{
return cmap_count(cmap) == 0;
}
static inline uint32_t
read_counter(const struct cmap_bucket *bucket_)
{
struct cmap_bucket *bucket = CONST_CAST(struct cmap_bucket *, bucket_);
uint32_t counter;
atomic_read_explicit(&bucket->counter, &counter, memory_order_acquire);
return counter;
}
static inline uint32_t
read_even_counter(const struct cmap_bucket *bucket)
{
uint32_t counter;
do {
counter = read_counter(bucket);
} while (OVS_UNLIKELY(counter & 1));
return counter;
}
static inline bool
counter_changed(const struct cmap_bucket *b_, uint32_t c)
{
struct cmap_bucket *b = CONST_CAST(struct cmap_bucket *, b_);
uint32_t counter;
/* Need to make sure the counter read is not moved up, before the hash and
* cmap_node_next(). Using atomic_read_explicit with memory_order_acquire
* would allow prior reads to be moved after the barrier.
* atomic_thread_fence prevents all following memory accesses from moving
* prior to preceding loads. */
atomic_thread_fence(memory_order_acquire);
atomic_read_relaxed(&b->counter, &counter);
return OVS_UNLIKELY(counter != c);
}
static inline const struct cmap_node *
cmap_find_in_bucket(const struct cmap_bucket *bucket, uint32_t hash)
{
for (int i = 0; i < CMAP_K; i++) {
if (bucket->hashes[i] == hash) {
return cmap_node_next(&bucket->nodes[i]);
}
}
return NULL;
}
static inline const struct cmap_node *
cmap_find__(const struct cmap_bucket *b1, const struct cmap_bucket *b2,
uint32_t hash)
{
uint32_t c1, c2;
const struct cmap_node *node;
do {
do {
c1 = read_even_counter(b1);
node = cmap_find_in_bucket(b1, hash);
} while (OVS_UNLIKELY(counter_changed(b1, c1)));
if (node) {
break;
}
do {
c2 = read_even_counter(b2);
node = cmap_find_in_bucket(b2, hash);
} while (OVS_UNLIKELY(counter_changed(b2, c2)));
if (node) {
break;
}
} while (OVS_UNLIKELY(counter_changed(b1, c1)));
return node;
}
/* Searches 'cmap' for an element with the specified 'hash'. If one or more is
* found, returns a pointer to the first one, otherwise a null pointer. All of
* the nodes on the returned list are guaranteed to have exactly the given
* 'hash'.
*
* This function works even if 'cmap' is changing concurrently. If 'cmap' is
* not changing, then cmap_find_protected() is slightly faster.
*
* CMAP_FOR_EACH_WITH_HASH is usually more convenient. */
const struct cmap_node *
cmap_find(const struct cmap *cmap, uint32_t hash)
{
const struct cmap_impl *impl = cmap_get_impl(cmap);
uint32_t h1 = rehash(impl, hash);
uint32_t h2 = other_hash(h1);
return cmap_find__(&impl->buckets[h1 & impl->mask],
&impl->buckets[h2 & impl->mask],
hash);
}
/* Find a node by the index of the entry of cmap. Index N means the N/CMAP_K
* bucket and N%CMAP_K entry in that bucket.
* Notice that it is not protected by the optimistic lock (versioning) because
* it does not compare the hashes. Currently it is only used by the datapath
* SMC cache.
*
* Return node for the entry of index or NULL if the index beyond boundary */
const struct cmap_node *
cmap_find_by_index(const struct cmap *cmap, uint32_t index)
{
const struct cmap_impl *impl = cmap_get_impl(cmap);
uint32_t b = index / CMAP_K;
uint32_t e = index % CMAP_K;
if (b > impl->mask) {
return NULL;
}
const struct cmap_bucket *bucket = &impl->buckets[b];
return cmap_node_next(&bucket->nodes[e]);
}
/* Find the index of certain hash value. Currently only used by the datapath
* SMC cache.
*
* Return the index of the entry if found, or UINT32_MAX if not found. The
* function assumes entry index cannot be larger than UINT32_MAX. */
uint32_t
cmap_find_index(const struct cmap *cmap, uint32_t hash)
{
const struct cmap_impl *impl = cmap_get_impl(cmap);
uint32_t h1 = rehash(impl, hash);
uint32_t h2 = other_hash(h1);
uint32_t b_index1 = h1 & impl->mask;
uint32_t b_index2 = h2 & impl->mask;
uint32_t c1, c2;
uint32_t index = UINT32_MAX;
const struct cmap_bucket *b1 = &impl->buckets[b_index1];
const struct cmap_bucket *b2 = &impl->buckets[b_index2];
do {
do {
c1 = read_even_counter(b1);
for (int i = 0; i < CMAP_K; i++) {
if (b1->hashes[i] == hash) {
index = b_index1 * CMAP_K + i;
}
}
} while (OVS_UNLIKELY(counter_changed(b1, c1)));
if (index != UINT32_MAX) {
break;
}
do {
c2 = read_even_counter(b2);
for (int i = 0; i < CMAP_K; i++) {
if (b2->hashes[i] == hash) {
index = b_index2 * CMAP_K + i;
}
}
} while (OVS_UNLIKELY(counter_changed(b2, c2)));
if (index != UINT32_MAX) {
break;
}
} while (OVS_UNLIKELY(counter_changed(b1, c1)));
return index;
}
/* Looks up multiple 'hashes', when the corresponding bit in 'map' is 1,
* and sets the corresponding pointer in 'nodes', if the hash value was
* found from the 'cmap'. In other cases the 'nodes' values are not changed,
* i.e., no NULL pointers are stored there.
* Returns a map where a bit is set to 1 if the corresponding 'nodes' pointer
* was stored, 0 otherwise.
* Generally, the caller wants to use CMAP_NODE_FOR_EACH to verify for
* hash collisions. */
unsigned long
cmap_find_batch(const struct cmap *cmap, unsigned long map,
uint32_t hashes[], const struct cmap_node *nodes[])
{
const struct cmap_impl *impl = cmap_get_impl(cmap);
unsigned long result = map;
int i;
uint32_t h1s[sizeof map * CHAR_BIT];
const struct cmap_bucket *b1s[sizeof map * CHAR_BIT];
const struct cmap_bucket *b2s[sizeof map * CHAR_BIT];
uint32_t c1s[sizeof map * CHAR_BIT];
/* Compute hashes and prefetch 1st buckets. */
ULLONG_FOR_EACH_1(i, map) {
h1s[i] = rehash(impl, hashes[i]);
b1s[i] = &impl->buckets[h1s[i] & impl->mask];
OVS_PREFETCH(b1s[i]);
}
/* Lookups, Round 1. Only look up at the first bucket. */
ULLONG_FOR_EACH_1(i, map) {
uint32_t c1;
const struct cmap_bucket *b1 = b1s[i];
const struct cmap_node *node;
do {
c1 = read_even_counter(b1);
node = cmap_find_in_bucket(b1, hashes[i]);
} while (OVS_UNLIKELY(counter_changed(b1, c1)));
if (!node) {
/* Not found (yet); Prefetch the 2nd bucket. */
b2s[i] = &impl->buckets[other_hash(h1s[i]) & impl->mask];
OVS_PREFETCH(b2s[i]);
c1s[i] = c1; /* We may need to check this after Round 2. */
continue;
}
/* Found. */
ULLONG_SET0(map, i); /* Ignore this on round 2. */
OVS_PREFETCH(node);
nodes[i] = node;
}
/* Round 2. Look into the 2nd bucket, if needed. */
ULLONG_FOR_EACH_1(i, map) {
uint32_t c2;
const struct cmap_bucket *b2 = b2s[i];
const struct cmap_node *node;
do {
c2 = read_even_counter(b2);
node = cmap_find_in_bucket(b2, hashes[i]);
} while (OVS_UNLIKELY(counter_changed(b2, c2)));
if (!node) {
/* Not found, but the node may have been moved from b2 to b1 right
* after we finished with b1 earlier. We just got a clean reading
* of the 2nd bucket, so we check the counter of the 1st bucket
* only. However, we need to check both buckets again, as the
* entry may be moved again to the 2nd bucket. Basically, we
* need to loop as long as it takes to get stable readings of
* both buckets. cmap_find__() does that, and now that we have
* fetched both buckets we can just use it. */
if (OVS_UNLIKELY(counter_changed(b1s[i], c1s[i]))) {
node = cmap_find__(b1s[i], b2s[i], hashes[i]);
if (node) {
goto found;
}
}
/* Not found. */
ULLONG_SET0(result, i); /* Fix the result. */
continue;
}
found:
OVS_PREFETCH(node);
nodes[i] = node;
}
return result;
}
static int
cmap_find_slot_protected(struct cmap_bucket *b, uint32_t hash)
{
int i;
for (i = 0; i < CMAP_K; i++) {
if (b->hashes[i] == hash && cmap_node_next_protected(&b->nodes[i])) {
return i;
}
}
return -1;
}
static struct cmap_node *
cmap_find_bucket_protected(struct cmap_impl *impl, uint32_t hash, uint32_t h)
{
struct cmap_bucket *b = &impl->buckets[h & impl->mask];
int i;
for (i = 0; i < CMAP_K; i++) {
if (b->hashes[i] == hash) {
return cmap_node_next_protected(&b->nodes[i]);
}
}
return NULL;
}
/* Like cmap_find(), but only for use if 'cmap' cannot change concurrently.
*
* CMAP_FOR_EACH_WITH_HASH_PROTECTED is usually more convenient. */
struct cmap_node *
cmap_find_protected(const struct cmap *cmap, uint32_t hash)
{
struct cmap_impl *impl = cmap_get_impl(cmap);
uint32_t h1 = rehash(impl, hash);
uint32_t h2 = other_hash(h1);
struct cmap_node *node;
node = cmap_find_bucket_protected(impl, hash, h1);
if (node) {
return node;
}
return cmap_find_bucket_protected(impl, hash, h2);
}
static int
cmap_find_empty_slot_protected(const struct cmap_bucket *b)
{
int i;
for (i = 0; i < CMAP_K; i++) {
if (!cmap_node_next_protected(&b->nodes[i])) {
return i;
}
}
return -1;
}
static void
cmap_set_bucket(struct cmap_bucket *b, int i,
struct cmap_node *node, uint32_t hash)
{
uint32_t c;
atomic_read_explicit(&b->counter, &c, memory_order_acquire);
atomic_store_explicit(&b->counter, c + 1, memory_order_relaxed);
/* Need to make sure setting hash is not moved up before counter update. */
atomic_thread_fence(memory_order_release);
ovsrcu_set(&b->nodes[i].next, node); /* Also atomic. */
b->hashes[i] = hash;
atomic_store_explicit(&b->counter, c + 2, memory_order_release);
}
/* Searches 'b' for a node with the given 'hash'. If it finds one, adds
* 'new_node' to the node's linked list and returns true. If it does not find
* one, returns false. */
static bool
cmap_insert_dup(struct cmap_node *new_node, uint32_t hash,
struct cmap_bucket *b)
{
int i;
for (i = 0; i < CMAP_K; i++) {
if (b->hashes[i] == hash) {
struct cmap_node *node = cmap_node_next_protected(&b->nodes[i]);
if (node) {
struct cmap_node *p;
/* The common case is that 'new_node' is a singleton,
* with a null 'next' pointer. Rehashing can add a
* longer chain, but due to our invariant of always
* having all nodes with the same (user) hash value at
* a single chain, rehashing will always insert the
* chain to an empty node. The only way we can end up
* here is by the user inserting a chain of nodes at
* once. Find the end of the chain starting at
* 'new_node', then splice 'node' to the end of that
* chain. */
p = new_node;
for (;;) {
struct cmap_node *next = cmap_node_next_protected(p);
if (!next) {
break;
}
p = next;
}
ovsrcu_set_hidden(&p->next, node);
} else {
/* The hash value is there from some previous insertion, but
* the associated node has been removed. We're not really
* inserting a duplicate, but we can still reuse the slot.
* Carry on. */
}
/* Change the bucket to point to 'new_node'. This is a degenerate
* form of cmap_set_bucket() that doesn't update the counter since
* we're only touching one field and in a way that doesn't change
* the bucket's meaning for readers. */
ovsrcu_set(&b->nodes[i].next, new_node);
return true;
}
}
return false;
}
/* Searches 'b' for an empty slot. If successful, stores 'node' and 'hash' in
* the slot and returns true. Otherwise, returns false. */
static bool
cmap_insert_bucket(struct cmap_node *node, uint32_t hash,
struct cmap_bucket *b)
{
int i;
for (i = 0; i < CMAP_K; i++) {
if (!cmap_node_next_protected(&b->nodes[i])) {
cmap_set_bucket(b, i, node, hash);
return true;
}
}
return false;
}
/* Returns the other bucket that b->nodes[slot] could occupy in 'impl'. (This
* might be the same as 'b'.) */
static struct cmap_bucket *
other_bucket_protected(struct cmap_impl *impl, struct cmap_bucket *b, int slot)
{
uint32_t h1 = rehash(impl, b->hashes[slot]);
uint32_t h2 = other_hash(h1);
uint32_t b_idx = b - impl->buckets;
uint32_t other_h = (h1 & impl->mask) == b_idx ? h2 : h1;
return &impl->buckets[other_h & impl->mask];
}
/* 'new_node' is to be inserted into 'impl', but both candidate buckets 'b1'
* and 'b2' are full. This function attempts to rearrange buckets within
* 'impl' to make room for 'new_node'.
*
* The implementation is a general-purpose breadth-first search. At first
* glance, this is more complex than a random walk through 'impl' (suggested by
* some references), but random walks have a tendency to loop back through a
* single bucket. We have to move nodes backward along the path that we find,
* so that no node actually disappears from the hash table, which means a
* random walk would have to be careful to deal with loops. By contrast, a
* successful breadth-first search always finds a *shortest* path through the
* hash table, and a shortest path will never contain loops, so it avoids that
* problem entirely.
*/
static bool
cmap_insert_bfs(struct cmap_impl *impl, struct cmap_node *new_node,
uint32_t hash, struct cmap_bucket *b1, struct cmap_bucket *b2)
{
enum { MAX_DEPTH = 4 };
/* A path from 'start' to 'end' via the 'n' steps in 'slots[]'.
*
* One can follow the path via:
*
* struct cmap_bucket *b;
* int i;
*
* b = path->start;
* for (i = 0; i < path->n; i++) {
* b = other_bucket_protected(impl, b, path->slots[i]);
* }
* ovs_assert(b == path->end);
*/
struct cmap_path {
struct cmap_bucket *start; /* First bucket along the path. */
struct cmap_bucket *end; /* Last bucket on the path. */
uint8_t slots[MAX_DEPTH]; /* Slots used for each hop. */
int n; /* Number of slots[]. */
};
/* We need to limit the amount of work we do trying to find a path. It
* might actually be impossible to rearrange the cmap, and after some time
* it is likely to be easier to rehash the entire cmap.
*
* This value of MAX_QUEUE is an arbitrary limit suggested by one of the
* references. Empirically, it seems to work OK. */
enum { MAX_QUEUE = 500 };
struct cmap_path queue[MAX_QUEUE];
int head = 0;
int tail = 0;
/* Add 'b1' and 'b2' as starting points for the search. */
queue[head].start = b1;
queue[head].end = b1;
queue[head].n = 0;
head++;
if (b1 != b2) {
queue[head].start = b2;
queue[head].end = b2;
queue[head].n = 0;
head++;
}
while (tail < head) {
const struct cmap_path *path = &queue[tail++];
struct cmap_bucket *this = path->end;
int i;
for (i = 0; i < CMAP_K; i++) {
struct cmap_bucket *next = other_bucket_protected(impl, this, i);
int j;
if (this == next) {
continue;
}
j = cmap_find_empty_slot_protected(next);
if (j >= 0) {
/* We've found a path along which we can rearrange the hash
* table: Start at path->start, follow all the slots in
* path->slots[], then follow slot 'i', then the bucket you
* arrive at has slot 'j' empty. */
struct cmap_bucket *buckets[MAX_DEPTH + 2];
int slots[MAX_DEPTH + 2];
int k;
/* Figure out the full sequence of slots. */
for (k = 0; k < path->n; k++) {
slots[k] = path->slots[k];
}
slots[path->n] = i;
slots[path->n + 1] = j;
/* Figure out the full sequence of buckets. */
buckets[0] = path->start;
for (k = 0; k <= path->n; k++) {
buckets[k + 1] = other_bucket_protected(impl, buckets[k], slots[k]);
}
/* Now the path is fully expressed. One can start from
* buckets[0], go via slots[0] to buckets[1], via slots[1] to
* buckets[2], and so on.
*
* Move all the nodes across the path "backward". After each
* step some node appears in two buckets. Thus, every node is
* always visible to a concurrent search. */
for (k = path->n + 1; k > 0; k--) {
int slot = slots[k - 1];
cmap_set_bucket(
buckets[k], slots[k],
cmap_node_next_protected(&buckets[k - 1]->nodes[slot]),
buckets[k - 1]->hashes[slot]);
}
/* Finally, replace the first node on the path by
* 'new_node'. */
cmap_set_bucket(buckets[0], slots[0], new_node, hash);
return true;
}
if (path->n < MAX_DEPTH && head < MAX_QUEUE) {
struct cmap_path *new_path = &queue[head++];
*new_path = *path;
new_path->end = next;
new_path->slots[new_path->n++] = i;
}
}
}
return false;
}
/* Adds 'node', with the given 'hash', to 'impl'.
*
* 'node' is ordinarily a single node, with a null 'next' pointer. When
* rehashing, however, it may be a longer chain of nodes. */
static bool
cmap_try_insert(struct cmap_impl *impl, struct cmap_node *node, uint32_t hash)
{
uint32_t h1 = rehash(impl, hash);
uint32_t h2 = other_hash(h1);
struct cmap_bucket *b1 = &impl->buckets[h1 & impl->mask];
struct cmap_bucket *b2 = &impl->buckets[h2 & impl->mask];
return (OVS_UNLIKELY(cmap_insert_dup(node, hash, b1) ||
cmap_insert_dup(node, hash, b2)) ||
OVS_LIKELY(cmap_insert_bucket(node, hash, b1) ||
cmap_insert_bucket(node, hash, b2)) ||
cmap_insert_bfs(impl, node, hash, b1, b2));
}
/* Inserts 'node', with the given 'hash', into 'cmap'. The caller must ensure
* that 'cmap' cannot change concurrently (from another thread). If duplicates
* are undesirable, the caller must have already verified that 'cmap' does not
* contain a duplicate of 'node'.
*
* Returns the current number of nodes in the cmap after the insertion. */
size_t
cmap_insert(struct cmap *cmap, struct cmap_node *node, uint32_t hash)
{
struct cmap_impl *impl = cmap_get_impl(cmap);
ovsrcu_set_hidden(&node->next, NULL);
if (OVS_UNLIKELY(impl->n >= impl->max_n)) {
COVERAGE_INC(cmap_expand);
impl = cmap_rehash(cmap, (impl->mask << 1) | 1);
}
while (OVS_UNLIKELY(!cmap_try_insert(impl, node, hash))) {
impl = cmap_rehash(cmap, impl->mask);
}
return ++impl->n;
}
static bool
cmap_replace__(struct cmap_impl *impl, struct cmap_node *node,
struct cmap_node *replacement, uint32_t hash, uint32_t h)
{
struct cmap_bucket *b = &impl->buckets[h & impl->mask];
int slot;
slot = cmap_find_slot_protected(b, hash);
if (slot < 0) {
return false;
}
/* The pointer to 'node' is changed to point to 'replacement',
* which is the next node if no replacement node is given. */
if (!replacement) {
replacement = cmap_node_next_protected(node);
} else {
/* 'replacement' takes the position of 'node' in the list. */
ovsrcu_set_hidden(&replacement->next, cmap_node_next_protected(node));
}
struct cmap_node *iter = &b->nodes[slot];
for (;;) {
struct cmap_node *next = cmap_node_next_protected(iter);
if (next == node) {
ovsrcu_set(&iter->next, replacement);
return true;
}
iter = next;
}
}
/* Replaces 'old_node' in 'cmap' with 'new_node'. The caller must
* ensure that 'cmap' cannot change concurrently (from another thread).
*
* 'old_node' must not be destroyed or modified or inserted back into 'cmap' or
* into any other concurrent hash map while any other thread might be accessing
* it. One correct way to do this is to free it from an RCU callback with
* ovsrcu_postpone().
*
* Returns the current number of nodes in the cmap after the replacement. The
* number of nodes decreases by one if 'new_node' is NULL. */
size_t
cmap_replace(struct cmap *cmap, struct cmap_node *old_node,
struct cmap_node *new_node, uint32_t hash)
{
struct cmap_impl *impl = cmap_get_impl(cmap);
uint32_t h1 = rehash(impl, hash);
uint32_t h2 = other_hash(h1);
ovs_assert(cmap_replace__(impl, old_node, new_node, hash, h1) ||
cmap_replace__(impl, old_node, new_node, hash, h2));
if (!new_node) {
impl->n--;
if (OVS_UNLIKELY(impl->n < impl->min_n)) {
COVERAGE_INC(cmap_shrink);
impl = cmap_rehash(cmap, impl->mask >> 1);
}
}
return impl->n;
}
static bool
cmap_try_rehash(const struct cmap_impl *old, struct cmap_impl *new)
{
const struct cmap_bucket *b;
for (b = old->buckets; b <= &old->buckets[old->mask]; b++) {
int i;
for (i = 0; i < CMAP_K; i++) {
/* possible optimization here because we know the hashes are
* unique */
struct cmap_node *node = cmap_node_next_protected(&b->nodes[i]);
if (node && !cmap_try_insert(new, node, b->hashes[i])) {
return false;
}
}
}
return true;
}
static struct cmap_impl *
cmap_rehash(struct cmap *cmap, uint32_t mask)
{
struct cmap_impl *old = cmap_get_impl(cmap);
struct cmap_impl *new;
new = cmap_impl_create(mask);
ovs_assert(old->n < new->max_n);
while (!cmap_try_rehash(old, new)) {
memset(new->buckets, 0, (mask + 1) * sizeof *new->buckets);
new->basis = random_uint32();
}
new->n = old->n;
ovsrcu_set(&cmap->impl, new);
if (old != &empty_cmap) {
ovsrcu_postpone(free_cacheline, old);
}
return new;
}
struct cmap_cursor
cmap_cursor_start(const struct cmap *cmap)
{
struct cmap_cursor cursor;
cursor.impl = cmap_get_impl(cmap);
cursor.bucket_idx = 0;
cursor.entry_idx = 0;
cursor.node = NULL;
cmap_cursor_advance(&cursor);
return cursor;
}
void
cmap_cursor_advance(struct cmap_cursor *cursor)
{
const struct cmap_impl *impl = cursor->impl;
if (cursor->node) {
cursor->node = cmap_node_next(cursor->node);
if (cursor->node) {
return;
}
}
while (cursor->bucket_idx <= impl->mask) {
const struct cmap_bucket *b = &impl->buckets[cursor->bucket_idx];
while (cursor->entry_idx < CMAP_K) {
cursor->node = cmap_node_next(&b->nodes[cursor->entry_idx++]);
if (cursor->node) {
return;
}
}
cursor->bucket_idx++;
cursor->entry_idx = 0;
}
}
/* Returns the next node in 'cmap' in hash order, or NULL if no nodes remain in
* 'cmap'. Uses '*pos' to determine where to begin iteration, and updates
* '*pos' to pass on the next iteration into them before returning.
*
* It's better to use plain CMAP_FOR_EACH and related functions, since they are
* faster and better at dealing with cmaps that change during iteration.
*
* Before beginning iteration, set '*pos' to all zeros. */
struct cmap_node *
cmap_next_position(const struct cmap *cmap,
struct cmap_position *pos)
{
struct cmap_impl *impl = cmap_get_impl(cmap);
unsigned int bucket = pos->bucket;
unsigned int entry = pos->entry;
unsigned int offset = pos->offset;
while (bucket <= impl->mask) {
const struct cmap_bucket *b = &impl->buckets[bucket];
while (entry < CMAP_K) {
const struct cmap_node *node = cmap_node_next(&b->nodes[entry]);
unsigned int i;
for (i = 0; node; i++, node = cmap_node_next(node)) {
if (i == offset) {
if (cmap_node_next(node)) {
offset++;
} else {
entry++;
offset = 0;
}
pos->bucket = bucket;
pos->entry = entry;
pos->offset = offset;
return CONST_CAST(struct cmap_node *, node);
}
}
entry++;
offset = 0;
}
bucket++;
entry = offset = 0;
}
pos->bucket = pos->entry = pos->offset = 0;
return NULL;
}
|