1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
|
/*
* Copyright (c) 2020, Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __x86_64__
#if !defined(__CHECKER__)
#include <config.h>
#include "dpif-netdev.h"
#include "dpif-netdev-lookup.h"
#include "cmap.h"
#include "flow.h"
#include "pvector.h"
#include "openvswitch/vlog.h"
#include "immintrin.h"
/* Each AVX512 register (zmm register in assembly notation) can contain up to
* 512 bits, which is equivalent to 8 uint64_t variables. This is the maximum
* number of miniflow blocks that can be processed in a single pass of the
* AVX512 code at a time.
*/
#define NUM_U64_IN_ZMM_REG (8)
/* This implementation of AVX512 gather allows up to 16 blocks of MF data to be
* present in the blocks_cache, hence the multiply by 2 in the blocks count.
*/
#define MF_BLOCKS_PER_PACKET (NUM_U64_IN_ZMM_REG * 2)
/* Blocks cache size is the maximum number of miniflow blocks that this
* implementation of lookup can handle.
*/
#define BLOCKS_CACHE_SIZE (NETDEV_MAX_BURST * MF_BLOCKS_PER_PACKET)
/* The gather instruction can handle a scale for the size of the items to
* gather. For uint64_t data, this scale is 8.
*/
#define GATHER_SCALE_8 (8)
VLOG_DEFINE_THIS_MODULE(dpif_lookup_avx512_gather);
static inline __m512i
_mm512_popcnt_epi64_manual(__m512i v_in)
{
static const uint8_t pop_lut[64] = {
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
};
__m512i v_pop_lut = _mm512_loadu_si512(pop_lut);
__m512i v_in_srl8 = _mm512_srli_epi64(v_in, 4);
__m512i v_nibble_mask = _mm512_set1_epi8(0xF);
__m512i v_in_lo = _mm512_and_si512(v_in, v_nibble_mask);
__m512i v_in_hi = _mm512_and_si512(v_in_srl8, v_nibble_mask);
__m512i v_lo_pop = _mm512_shuffle_epi8(v_pop_lut, v_in_lo);
__m512i v_hi_pop = _mm512_shuffle_epi8(v_pop_lut, v_in_hi);
__m512i v_u8_pop = _mm512_add_epi8(v_lo_pop, v_hi_pop);
return _mm512_sad_epu8(v_u8_pop, _mm512_setzero_si512());
}
/* Wrapper function required to enable ISA. First check if the compiler
* supports the ISA itself. If the ISA is supported, enable it via the
* attribute target. If the ISA is not supported by the compiler it indicates
* the compiler is too old or is not capable of compiling the requested ISA
* level, so fallback to the integer manual implementation.
*/
#if HAVE_AVX512VPOPCNTDQ
static inline __m512i
__attribute__((__target__("avx512vpopcntdq")))
_mm512_popcnt_epi64_wrapper(__m512i v_in)
{
return _mm512_popcnt_epi64(v_in);
}
#else
static inline __m512i
_mm512_popcnt_epi64_wrapper(__m512i v_in)
{
return _mm512_popcnt_epi64_manual(v_in);
}
#endif
static inline uint64_t
netdev_rule_matches_key(const struct dpcls_rule *rule,
const uint32_t mf_bits_total,
const uint64_t * block_cache)
{
const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
const uint32_t lane_mask = (1ULL << mf_bits_total) - 1;
/* Always load a full cache line from blocks_cache. Other loads must be
* trimmed to the amount of data required for mf_bits_total blocks.
*/
uint32_t res_mask;
/* To avoid a loop, we have two iterations of a block of code here.
* Note the scope brackets { } are used to avoid accidental variable usage
* in the second iteration.
*/
{
__m512i v_blocks = _mm512_loadu_si512(&block_cache[0]);
__m512i v_mask = _mm512_maskz_loadu_epi64(lane_mask, &maskp[0]);
__m512i v_key = _mm512_maskz_loadu_epi64(lane_mask, &keyp[0]);
__m512i v_data = _mm512_and_si512(v_blocks, v_mask);
res_mask = _mm512_mask_cmpeq_epi64_mask(lane_mask, v_data, v_key);
}
if (mf_bits_total > 8) {
uint32_t lane_mask_gt8 = lane_mask >> 8;
__m512i v_blocks = _mm512_loadu_si512(&block_cache[8]);
__m512i v_mask = _mm512_maskz_loadu_epi64(lane_mask_gt8, &maskp[8]);
__m512i v_key = _mm512_maskz_loadu_epi64(lane_mask_gt8, &keyp[8]);
__m512i v_data = _mm512_and_si512(v_blocks, v_mask);
uint32_t c = _mm512_mask_cmpeq_epi64_mask(lane_mask_gt8, v_data,
v_key);
res_mask |= (c << 8);
}
/* Returns 1 assuming result of SIMD compare is all blocks matching. */
return res_mask == lane_mask;
}
/* Takes u0 and u1 inputs, and gathers the next 8 blocks to be stored
* contiguously into the blocks cache. Note that the pointers and bitmasks
* passed into this function must be incremented for handling next 8 blocks.
*
* Register contents on entry:
* v_u0: register with all u64 lanes filled with u0 bits.
* v_u1: register with all u64 lanes filled with u1 bits.
* pkt_blocks: pointer to packet blocks.
* tbl_blocks: pointer to table blocks.
* tbl_mf_masks: pointer to miniflow bitmasks for this subtable.
* u1_bcast_msk: bitmask of lanes where u1 bits are used.
* pkt_mf_u0_pop: population count of bits in u0 of the packet.
* zero_mask: bitmask of lanes to zero as packet doesn't have mf bits set.
* u64_lanes_mask: bitmask of lanes to process.
* use_vpop: compile-time constant indicating if VPOPCNT instruction allowed.
*/
static inline ALWAYS_INLINE __m512i
avx512_blocks_gather(__m512i v_u0,
__m512i v_u1,
const void *pkt_blocks,
const void *tbl_blocks,
const void *tbl_mf_masks,
__mmask64 u1_bcast_msk,
const uint64_t pkt_mf_u0_pop,
__mmask64 zero_mask,
__mmask64 u64_lanes_mask,
const uint32_t use_vpop)
{
/* Suggest to compiler to load tbl blocks ahead of gather(). */
__m512i v_tbl_blocks = _mm512_maskz_loadu_epi64(u64_lanes_mask,
tbl_blocks);
/* Blend u0 and u1 bits together for these 8 blocks. */
__m512i v_pkt_bits = _mm512_mask_blend_epi64(u1_bcast_msk, v_u0, v_u1);
/* Load pre-created tbl miniflow bitmasks, bitwise AND with them. */
__m512i v_tbl_masks = _mm512_maskz_loadu_epi64(u64_lanes_mask,
tbl_mf_masks);
__m512i v_masks = _mm512_and_si512(v_pkt_bits, v_tbl_masks);
/* Calculate AVX512 popcount for u64 lanes using the native instruction
* if available, or using emulation if not available.
*/
__m512i v_popcnts;
if (use_vpop) {
v_popcnts = _mm512_popcnt_epi64_wrapper(v_masks);
} else {
v_popcnts = _mm512_popcnt_epi64_manual(v_masks);
}
/* Add popcounts and offset for u1 bits. */
__m512i v_idx_u0_offset = _mm512_maskz_set1_epi64(u1_bcast_msk,
pkt_mf_u0_pop);
__m512i v_indexes = _mm512_add_epi64(v_popcnts, v_idx_u0_offset);
/* Gather u64 blocks from packet miniflow. */
__m512i v_zeros = _mm512_setzero_si512();
__m512i v_blocks = _mm512_mask_i64gather_epi64(v_zeros, u64_lanes_mask,
v_indexes, pkt_blocks,
GATHER_SCALE_8);
/* Mask pkt blocks with subtable blocks, k-mask to zero lanes. */
__m512i v_masked_blocks = _mm512_maskz_and_epi64(zero_mask, v_blocks,
v_tbl_blocks);
return v_masked_blocks;
}
static inline uint32_t ALWAYS_INLINE
avx512_lookup_impl(struct dpcls_subtable *subtable,
uint32_t keys_map,
const struct netdev_flow_key *keys[],
struct dpcls_rule **rules,
const uint32_t bit_count_u0,
const uint32_t bit_count_u1,
const uint32_t use_vpop)
{
OVS_ALIGNED_VAR(CACHE_LINE_SIZE)uint64_t block_cache[BLOCKS_CACHE_SIZE];
uint32_t hashes[NETDEV_MAX_BURST];
const uint32_t n_pkts = __builtin_popcountll(keys_map);
ovs_assert(NETDEV_MAX_BURST >= n_pkts);
const uint32_t bit_count_total = bit_count_u0 + bit_count_u1;
const uint64_t bit_count_total_mask = (1ULL << bit_count_total) - 1;
const uint64_t tbl_u0 = subtable->mask.mf.map.bits[0];
const uint64_t tbl_u1 = subtable->mask.mf.map.bits[1];
const uint64_t *tbl_blocks = miniflow_get_values(&subtable->mask.mf);
const uint64_t *tbl_mf_masks = subtable->mf_masks;
int i;
ULLONG_FOR_EACH_1 (i, keys_map) {
/* Create mask register with packet-specific u0 offset.
* Note that as 16 blocks can be handled in total, the width of the
* mask register must be >=16.
*/
const uint64_t pkt_mf_u0_bits = keys[i]->mf.map.bits[0];
const uint64_t pkt_mf_u0_pop = __builtin_popcountll(pkt_mf_u0_bits);
const __mmask64 u1_bcast_mask = (UINT64_MAX << bit_count_u0);
/* Broadcast u0, u1 bitmasks to 8x u64 lanes. */
__m512i v_u0 = _mm512_set1_epi64(keys[i]->mf.map.bits[0]);
__m512i v_u1 = _mm512_set1_epi64(keys[i]->mf.map.bits[1]);
/* Zero out bits that pkt doesn't have:
* - 2x pext() to extract bits from packet miniflow as needed by TBL
* - Shift u1 over by bit_count of u0, OR to create zero bitmask
*/
uint64_t u0_to_zero = _pext_u64(keys[i]->mf.map.bits[0], tbl_u0);
uint64_t u1_to_zero = _pext_u64(keys[i]->mf.map.bits[1], tbl_u1);
const uint64_t zero_mask_wip = (u1_to_zero << bit_count_u0) |
u0_to_zero;
const uint64_t zero_mask = zero_mask_wip & bit_count_total_mask;
/* Get ptr to packet data blocks. */
const uint64_t *pkt_blocks = miniflow_get_values(&keys[i]->mf);
/* Store first 8 blocks cache, full cache line aligned. */
__m512i v_blocks = avx512_blocks_gather(v_u0, v_u1,
&pkt_blocks[0],
&tbl_blocks[0],
&tbl_mf_masks[0],
u1_bcast_mask,
pkt_mf_u0_pop,
zero_mask,
bit_count_total_mask,
use_vpop);
_mm512_storeu_si512(&block_cache[i * MF_BLOCKS_PER_PACKET], v_blocks);
if (bit_count_total > 8) {
/* Shift masks over by 8.
* Pkt blocks pointer remains 0, it is incremented by popcount.
* Move tbl and mf masks pointers forward.
* Increase offsets by 8.
* Re-run same gather code.
*/
uint64_t zero_mask_gt8 = (zero_mask >> 8);
uint64_t u1_bcast_mask_gt8 = (u1_bcast_mask >> 8);
uint64_t bit_count_gt8_mask = bit_count_total_mask >> 8;
__m512i v_blocks_gt8 = avx512_blocks_gather(v_u0, v_u1,
&pkt_blocks[0],
&tbl_blocks[8],
&tbl_mf_masks[8],
u1_bcast_mask_gt8,
pkt_mf_u0_pop,
zero_mask_gt8,
bit_count_gt8_mask,
use_vpop);
_mm512_storeu_si512(&block_cache[(i * MF_BLOCKS_PER_PACKET) + 8],
v_blocks_gt8);
}
}
/* Hash the now linearized blocks of packet metadata. */
ULLONG_FOR_EACH_1 (i, keys_map) {
uint64_t *block_ptr = &block_cache[i * MF_BLOCKS_PER_PACKET];
uint32_t hash = hash_add_words64(0, block_ptr, bit_count_total);
hashes[i] = hash_finish(hash, bit_count_total * 8);
}
/* Lookup: this returns a bitmask of packets where the hash table had
* an entry for the given hash key. Presence of a hash key does not
* guarantee matching the key, as there can be hash collisions.
*/
uint32_t found_map;
const struct cmap_node *nodes[NETDEV_MAX_BURST];
found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
/* Verify that packet actually matched rule. If not found, a hash
* collision has taken place, so continue searching with the next node.
*/
ULLONG_FOR_EACH_1 (i, found_map) {
struct dpcls_rule *rule;
CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
const uint32_t cidx = i * MF_BLOCKS_PER_PACKET;
uint32_t match = netdev_rule_matches_key(rule, bit_count_total,
&block_cache[cidx]);
if (OVS_LIKELY(match)) {
rules[i] = rule;
subtable->hit_cnt++;
goto next;
}
}
/* None of the found rules was a match. Clear the i-th bit to
* search for this key in the next subtable. */
ULLONG_SET0(found_map, i);
next:
; /* Keep Sparse happy. */
}
return found_map;
}
/* Use a different pattern to conditionally use the VPOPCNTDQ target attribute
* here.
* The usual pattern using a '#if HAVE_AVX512VPOPCNTDQ' type check won't work
* inside a macro.
* Define VPOPCNTDQ_TARGET which will either be the "avx512vpopcntdq" target
* attribute or nothing depending on AVX512VPOPCNTDQ support in the compiler.
*/
#if HAVE_AVX512VPOPCNTDQ
#define VPOPCNTDQ_TARGET __attribute__((__target__("avx512vpopcntdq")))
#else
#define VPOPCNTDQ_TARGET
#endif
/* Expand out specialized functions with U0 and U1 bit attributes. As the
* AVX512 vpopcnt instruction is not supported on all AVX512 capable CPUs,
* create two functions for each miniflow signature. This allows the runtime
* CPU detection in probe() to select the ideal implementation.
*/
#define DECLARE_OPTIMIZED_LOOKUP_FUNCTION(U0, U1) \
static uint32_t \
dpcls_avx512_gather_mf_##U0##_##U1(struct dpcls_subtable *subtable, \
uint32_t keys_map, \
const struct netdev_flow_key *keys[], \
struct dpcls_rule **rules) \
{ \
const uint32_t use_vpop = 0; \
return avx512_lookup_impl(subtable, keys_map, keys, rules, \
U0, U1, use_vpop); \
} \
\
static uint32_t VPOPCNTDQ_TARGET \
dpcls_avx512_gather_mf_##U0##_##U1##_vpop(struct dpcls_subtable *subtable,\
uint32_t keys_map, \
const struct netdev_flow_key *keys[], \
struct dpcls_rule **rules) \
{ \
const uint32_t use_vpop = 1; \
return avx512_lookup_impl(subtable, keys_map, keys, rules, \
U0, U1, use_vpop); \
} \
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 4)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(8, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 3)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 2)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 0)
/* Check if a specialized function is valid for the required subtable.
* The use_vpop variable is used to decide if the VPOPCNT instruction can be
* used or not.
*/
#define CHECK_LOOKUP_FUNCTION(U0, U1, use_vpop) \
ovs_assert((U0 + U1) <= (NUM_U64_IN_ZMM_REG * 2)); \
if (!f && u0_bits == U0 && u1_bits == U1) { \
if (use_vpop) { \
f = dpcls_avx512_gather_mf_##U0##_##U1##_vpop; \
} else { \
f = dpcls_avx512_gather_mf_##U0##_##U1; \
} \
}
static uint32_t
dpcls_avx512_gather_mf_any(struct dpcls_subtable *subtable, uint32_t keys_map,
const struct netdev_flow_key *keys[],
struct dpcls_rule **rules)
{
const uint32_t use_vpop = 0;
return avx512_lookup_impl(subtable, keys_map, keys, rules,
subtable->mf_bits_set_unit0,
subtable->mf_bits_set_unit1,
use_vpop);
}
dpcls_subtable_lookup_func
dpcls_subtable_avx512_gather_probe__(uint32_t u0_bits, uint32_t u1_bits,
bool use_vpop)
{
dpcls_subtable_lookup_func f = NULL;
CHECK_LOOKUP_FUNCTION(9, 4, use_vpop);
CHECK_LOOKUP_FUNCTION(9, 1, use_vpop);
CHECK_LOOKUP_FUNCTION(8, 1, use_vpop);
CHECK_LOOKUP_FUNCTION(5, 3, use_vpop);
CHECK_LOOKUP_FUNCTION(5, 2, use_vpop);
CHECK_LOOKUP_FUNCTION(5, 1, use_vpop);
CHECK_LOOKUP_FUNCTION(4, 1, use_vpop);
CHECK_LOOKUP_FUNCTION(4, 0, use_vpop);
/* Check if the _any looping version of the code can perform this miniflow
* lookup. Performance gain may be less pronounced due to non-specialized
* hashing, however there is usually a good performance win overall.
*/
if (!f && (u0_bits + u1_bits) < (NUM_U64_IN_ZMM_REG * 2)) {
f = dpcls_avx512_gather_mf_any;
VLOG_INFO_ONCE("Using non-specialized AVX512 lookup for subtable"
" (%d,%d) and possibly others.", u0_bits, u1_bits);
}
return f;
}
#endif /* CHECKER */
#endif /* __x86_64__ */
|