1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2016, 2017 Nicira, Inc.
* Copyright (c) 2019, 2020 Intel Corporation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "dpif-netdev.h"
#include "dpif-netdev-lookup.h"
#include "bitmap.h"
#include "cmap.h"
#include "dp-packet.h"
#include "dpif.h"
#include "dpif-netdev-perf.h"
#include "dpif-provider.h"
#include "flow.h"
#include "ovs-thread.h"
#include "packets.h"
#include "pvector.h"
VLOG_DEFINE_THIS_MODULE(dpif_lookup_generic);
/* Lookup functions below depends on the internal structure of flowmap. */
BUILD_ASSERT_DECL(FLOWMAP_UNITS == 2);
struct block_array {
uint32_t count; /* Number of items allocated in 'blocks' */
uint64_t blocks[];
};
DEFINE_PER_THREAD_MALLOCED_DATA(struct block_array *, block_array);
static inline uint64_t *
get_blocks_scratch(uint32_t required_count)
{
struct block_array *array = block_array_get();
/* Check if this thread already has a large enough array allocated.
* This is a predictable and unlikely branch, as it occurs only once at
* startup, or if a subtable with higher block count is added.
*/
if (OVS_UNLIKELY(!array || array->count < required_count)) {
array = xrealloc(array, sizeof *array +
(required_count * sizeof array->blocks[0]));
array->count = required_count;
block_array_set_unsafe(array);
VLOG_DBG("Block array resized to %"PRIu32, required_count);
}
return &array->blocks[0];
}
static inline void
netdev_flow_key_flatten_unit(const uint64_t *pkt_blocks,
const uint64_t *tbl_blocks,
const uint64_t *mf_masks,
uint64_t *blocks_scratch,
const uint64_t pkt_mf_bits,
const uint32_t count)
{
uint32_t i;
for (i = 0; i < count; i++) {
uint64_t mf_mask = mf_masks[i];
/* Calculate the block index for the packet metadata. */
uint64_t idx_bits = mf_mask & pkt_mf_bits;
const uint32_t pkt_idx = count_1bits(idx_bits);
/* Check if the packet has the subtable miniflow bit set. If yes, the
* block at the above pkt_idx will be stored, otherwise it is masked
* out to be zero.
*/
uint64_t pkt_has_mf_bit = (mf_mask + 1) & pkt_mf_bits;
uint64_t no_bit = ((!pkt_has_mf_bit) > 0) - 1;
/* Mask packet block by table block, and mask to zero if packet
* doesn't actually contain this block of metadata.
*/
blocks_scratch[i] = pkt_blocks[pkt_idx] & tbl_blocks[i] & no_bit;
}
}
/* This function takes a packet, and subtable and writes an array of uint64_t
* blocks. The blocks contain the metadata that the subtable matches on, in
* the same order as the subtable, allowing linear iteration over the blocks.
*
* To calculate the blocks contents, the netdev_flow_key_flatten_unit function
* is called twice, once for each "unit" of the miniflow. This call can be
* inlined by the compiler for performance.
*
* Note that the u0_count and u1_count variables can be compile-time constants,
* allowing the loop in the inlined flatten_unit() function to be compile-time
* unrolled, or possibly removed totally by unrolling by the loop iterations.
* The compile time optimizations enabled by this design improves performance.
*/
static inline void
netdev_flow_key_flatten(const struct netdev_flow_key *key,
const struct netdev_flow_key *mask,
const uint64_t *mf_masks,
uint64_t *blocks_scratch,
const uint32_t u0_count,
const uint32_t u1_count)
{
/* Load mask from subtable, mask with packet mf, popcount to get idx. */
const uint64_t *pkt_blocks = miniflow_get_values(&key->mf);
const uint64_t *tbl_blocks = miniflow_get_values(&mask->mf);
/* Packet miniflow bits to be masked by pre-calculated mf_masks. */
const uint64_t pkt_bits_u0 = key->mf.map.bits[0];
const uint32_t pkt_bits_u0_pop = count_1bits(pkt_bits_u0);
const uint64_t pkt_bits_u1 = key->mf.map.bits[1];
/* Unit 0 flattening */
netdev_flow_key_flatten_unit(&pkt_blocks[0],
&tbl_blocks[0],
&mf_masks[0],
&blocks_scratch[0],
pkt_bits_u0,
u0_count);
/* Unit 1 flattening:
* Move the pointers forward in the arrays based on u0 offsets, NOTE:
* 1) pkt blocks indexed by actual popcount of u0, which is NOT always
* the same as the amount of bits set in the subtable.
* 2) mf_masks, tbl_block and blocks_scratch are all "flat" arrays, so
* the index is always u0_count.
*/
netdev_flow_key_flatten_unit(&pkt_blocks[pkt_bits_u0_pop],
&tbl_blocks[u0_count],
&mf_masks[u0_count],
&blocks_scratch[u0_count],
pkt_bits_u1,
u1_count);
}
/* Compares a rule and the blocks representing a key, returns 1 on a match. */
static inline uint64_t
netdev_rule_matches_key(const struct dpcls_rule *rule,
const uint32_t mf_bits_total,
const uint64_t *blocks_scratch)
{
const uint64_t *keyp = miniflow_get_values(&rule->flow.mf);
const uint64_t *maskp = miniflow_get_values(&rule->mask->mf);
uint64_t not_match = 0;
for (int i = 0; i < mf_bits_total; i++) {
not_match |= (blocks_scratch[i] & maskp[i]) != keyp[i];
}
/* Invert result to show match as 1. */
return !not_match;
}
/* Const prop version of the function: note that mf bits total and u0 are
* explicitly passed in here, while they're also available at runtime from the
* subtable pointer. By making them compile time, we enable the compiler to
* unroll loops and flatten out code-sequences based on the knowledge of the
* mf_bits_* compile time values. This results in improved performance.
*
* Note: this function is marked with ALWAYS_INLINE to ensure the compiler
* inlines the below code, and then uses the compile time constants to make
* specialized versions of the runtime code. Without ALWAYS_INLINE, the
* compiler might decide to not inline, and performance will suffer.
*/
static inline uint32_t ALWAYS_INLINE
lookup_generic_impl(struct dpcls_subtable *subtable,
uint32_t keys_map,
const struct netdev_flow_key *keys[],
struct dpcls_rule **rules,
const uint32_t bit_count_u0,
const uint32_t bit_count_u1)
{
const uint32_t n_pkts = count_1bits(keys_map);
ovs_assert(NETDEV_MAX_BURST >= n_pkts);
uint32_t hashes[NETDEV_MAX_BURST];
const uint32_t bit_count_total = bit_count_u0 + bit_count_u1;
const uint32_t block_count_required = bit_count_total * NETDEV_MAX_BURST;
uint64_t *mf_masks = subtable->mf_masks;
int i;
/* Blocks scratch is an optimization to re-use the same packet miniflow
* block data when doing rule-verify. This reduces work done during lookup
* and hence improves performance. The blocks_scratch array is stored as a
* thread local variable, as each thread requires its own blocks memory.
*/
uint64_t *blocks_scratch = get_blocks_scratch(block_count_required);
/* Flatten the packet metadata into the blocks_scratch[] using subtable. */
ULLONG_FOR_EACH_1 (i, keys_map) {
netdev_flow_key_flatten(keys[i],
&subtable->mask,
mf_masks,
&blocks_scratch[i * bit_count_total],
bit_count_u0,
bit_count_u1);
}
/* Hash the now linearized blocks of packet metadata. */
ULLONG_FOR_EACH_1 (i, keys_map) {
uint64_t *block_ptr = &blocks_scratch[i * bit_count_total];
uint32_t hash = hash_add_words64(0, block_ptr, bit_count_total);
hashes[i] = hash_finish(hash, bit_count_total * 8);
}
/* Lookup: this returns a bitmask of packets where the hash table had
* an entry for the given hash key. Presence of a hash key does not
* guarantee matching the key, as there can be hash collisions.
*/
uint32_t found_map;
const struct cmap_node *nodes[NETDEV_MAX_BURST];
found_map = cmap_find_batch(&subtable->rules, keys_map, hashes, nodes);
/* Verify that packet actually matched rule. If not found, a hash
* collision has taken place, so continue searching with the next node.
*/
ULLONG_FOR_EACH_1 (i, found_map) {
struct dpcls_rule *rule;
CMAP_NODE_FOR_EACH (rule, cmap_node, nodes[i]) {
const uint32_t cidx = i * bit_count_total;
uint32_t match = netdev_rule_matches_key(rule, bit_count_total,
&blocks_scratch[cidx]);
if (OVS_LIKELY(match)) {
rules[i] = rule;
subtable->hit_cnt++;
goto next;
}
}
/* None of the found rules was a match. Reset the i-th bit to
* keep searching this key in the next subtable. */
ULLONG_SET0(found_map, i); /* Did not match. */
next:
; /* Keep Sparse happy. */
}
return found_map;
}
/* Generic lookup function that uses runtime provided mf bits for iterating. */
static uint32_t
dpcls_subtable_lookup_generic(struct dpcls_subtable *subtable,
uint32_t keys_map,
const struct netdev_flow_key *keys[],
struct dpcls_rule **rules)
{
/* Here the runtime subtable->mf_bits counts are used, which forces the
* compiler to iterate normal for() loops. Due to this limitation in the
* compilers available optimizations, this function has lower performance
* than the below specialized functions.
*/
return lookup_generic_impl(subtable, keys_map, keys, rules,
subtable->mf_bits_set_unit0,
subtable->mf_bits_set_unit1);
}
/* Expand out specialized functions with U0 and U1 bit attributes. */
#define DECLARE_OPTIMIZED_LOOKUP_FUNCTION(U0, U1) \
static uint32_t \
dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1( \
struct dpcls_subtable *subtable, \
uint32_t keys_map, \
const struct netdev_flow_key *keys[],\
struct dpcls_rule **rules) \
{ \
return lookup_generic_impl(subtable, keys_map, keys, rules, U0, U1); \
} \
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 4)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(9, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(8, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 3)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 2)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(5, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 1)
DECLARE_OPTIMIZED_LOOKUP_FUNCTION(4, 0)
/* Check if a specialized function is valid for the required subtable. */
#define CHECK_LOOKUP_FUNCTION(U0, U1) \
if (!f && u0_bits == U0 && u1_bits == U1) { \
f = dpcls_subtable_lookup_mf_u0w##U0##_u1w##U1; \
}
/* Probe function to lookup an available specialized function.
* If capable to run the requested miniflow fingerprint, this function returns
* the most optimal implementation for that miniflow fingerprint.
* @retval Non-NULL A valid function to handle the miniflow bit pattern
* @retval NULL The requested miniflow is not supported by this implementation.
*/
dpcls_subtable_lookup_func
dpcls_subtable_generic_probe(uint32_t u0_bits, uint32_t u1_bits)
{
dpcls_subtable_lookup_func f = NULL;
CHECK_LOOKUP_FUNCTION(9, 4);
CHECK_LOOKUP_FUNCTION(9, 1);
CHECK_LOOKUP_FUNCTION(8, 1);
CHECK_LOOKUP_FUNCTION(5, 3);
CHECK_LOOKUP_FUNCTION(5, 2);
CHECK_LOOKUP_FUNCTION(5, 1);
CHECK_LOOKUP_FUNCTION(4, 1);
CHECK_LOOKUP_FUNCTION(4, 0);
if (f) {
VLOG_DBG("Subtable using Generic Optimized for u0 %d, u1 %d\n",
u0_bits, u1_bits);
} else {
/* Always return the generic function. */
f = dpcls_subtable_lookup_generic;
}
return f;
}
|