1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
* Copyright (c) 2014 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* This header implements atomic operation primitives on x86_64 with GCC. */
#ifndef IN_OVS_ATOMIC_H
#error "This header should only be included indirectly via ovs-atomic.h."
#endif
#define OVS_ATOMIC_X86_64_IMPL 1
/*
* x86_64 Memory model (http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html):
*
* - 1, 2, 4, and 8 byte loads and stores are atomic on aligned memory.
* - Loads are not reordered with other loads.
* - Stores are not reordered with OLDER loads.
* - Loads may be reordered with OLDER stores to a different memory location,
* but not with OLDER stores to the same memory location.
* - Stores are not reordered with other stores, except for special
* instructions (CLFLUSH, streaming stores, fast string operations).
* Most of these are not emitted by compilers, and as long as the
* atomic stores are not combined with any other stores, even the allowed
* reordering of the stores by a single fast string operation (e.g., "stos")
* is not a problem.
* - Neither loads nor stores are reordered with locked instructions.
* - Loads cannot pass earlier LFENCE or MFENCE instructions.
* - Stores cannot pass earlier LFENCE, SFENCE, or MFENCE instructions.
* - LFENCE instruction cannot pass earlier loads.
* - SFENCE instruction cannot pass earlier stores.
* - MFENCE instruction cannot pass earlier loads or stores.
* - Stores by a single processor are observed in the same order by all
* processors.
* - (Unlocked) Stores from different processors are NOT ordered.
* - Memory ordering obeys causality (memory ordering respects transitive
* visibility).
* - Any two stores are seen in a consistent order by processors other than
* the those performing the stores.
* - Locked instructions have total order.
*
* These rules imply that:
*
* - Locked instructions are not needed for aligned loads or stores to make
* them atomic.
* - All stores have release semantics; none of the preceding stores or loads
* can be reordered with following stores. Following loads could still be
* reordered to happen before the store, but that is not a violation of the
* release semantics.
* - All loads from a given memory location have acquire semantics with
* respect to the stores on the same memory location; none of the following
* loads or stores can be reordered with the load. Preceding stores to a
* different memory location MAY be reordered with the load, but that is not
* a violation of the acquire semantics (i.e., the loads and stores of two
* critical sections guarded by a different memory location can overlap).
* - Locked instructions serve as CPU memory barriers by themselves.
* - Locked stores implement the sequential consistency memory order. Using
* locked instructions when seq_cst memory order is requested allows normal
* loads to observe the stores in the same (total) order without using CPU
* memory barrier after the loads.
*
* NOTE: Some older AMD Opteron processors have a bug that violates the
* acquire semantics described above. The bug manifests as an unlocked
* read-modify-write operation following a "semaphore operation" operating
* on data that existed before entering the critical section; i.e., the
* preceding "semaphore operation" fails to function as an acquire barrier.
* The affected CPUs are AMD family 15, models 32 to 63.
*
* Ref. http://support.amd.com/TechDocs/25759.pdf errata #147.
*/
/* Barriers. */
#define compiler_barrier() asm volatile(" " : : : "memory")
#define cpu_barrier() asm volatile("mfence;" : : : "memory")
/*
* The 'volatile' keyword prevents the compiler from keeping the atomic
* value in a register, and generates a new memory access for each atomic
* operation. This allows the implementations of memory_order_relaxed and
* memory_order_consume to avoid issuing a compiler memory barrier, allowing
* full optimization of all surrounding non-atomic variables.
*
* The placement of the 'volatile' keyword after the 'TYPE' below is highly
* significant when the TYPE is a pointer type. In that case we want the
* pointer to be declared volatile, not the data type that is being pointed
* at!
*/
#define ATOMIC(TYPE) TYPE volatile
/* Memory ordering. Must be passed in as a constant. */
typedef enum {
memory_order_relaxed,
memory_order_consume,
memory_order_acquire,
memory_order_release,
memory_order_acq_rel,
memory_order_seq_cst
} memory_order;
#define ATOMIC_BOOL_LOCK_FREE 2
#define ATOMIC_CHAR_LOCK_FREE 2
#define ATOMIC_SHORT_LOCK_FREE 2
#define ATOMIC_INT_LOCK_FREE 2
#define ATOMIC_LONG_LOCK_FREE 2
#define ATOMIC_LLONG_LOCK_FREE 2
#define ATOMIC_POINTER_LOCK_FREE 2
#define IS_LOCKLESS_ATOMIC(OBJECT) \
(sizeof(OBJECT) <= 8 && IS_POW2(sizeof(OBJECT)))
#define atomic_init(OBJECT, VALUE) (*(OBJECT) = (VALUE), (void) 0)
/*
* The memory_model_relaxed does not need a compiler barrier, if the
* atomic operation can otherwise be guaranteed to not be moved with
* respect to other atomic operations on the same memory location. Using
* the 'volatile' keyword in the definition of the atomic types
* accomplishes this, as memory accesses to volatile data may not be
* optimized away, or be reordered with other volatile accesses.
*
* On x86 also memory_order_consume is automatic, and data dependency on a
* volatile atomic variable means that the compiler optimizations should not
* cause problems. That is, the compiler should not speculate the value of
* the atomic_read, as it is going to read it from the memory anyway.
* This allows omiting the compiler memory barrier on atomic_reads with
* memory_order_consume. This matches the definition of
* smp_read_barrier_depends() in Linux kernel as a nop for x86, and its usage
* in rcu_dereference().
*
* We use this same logic below to choose inline assembly statements with or
* without a compiler memory barrier.
*/
static inline void
atomic_compiler_barrier(memory_order order)
{
if (order > memory_order_consume) {
compiler_barrier();
}
}
static inline void
atomic_thread_fence(memory_order order)
{
if (order == memory_order_seq_cst) {
cpu_barrier();
} else {
atomic_compiler_barrier(order);
}
}
static inline void
atomic_signal_fence(memory_order order)
{
atomic_compiler_barrier(order);
}
#define atomic_is_lock_free(OBJ) \
((void) *(OBJ), \
IS_LOCKLESS_ATOMIC(*(OBJ)) ? 2 : 0)
#define atomic_exchange__(DST, SRC, ORDER) \
({ \
typeof(DST) dst___ = (DST); \
typeof(*(DST)) src___ = (SRC); \
\
if ((ORDER) > memory_order_consume) { \
asm volatile("xchg %1,%0 ; " \
"# atomic_exchange__" \
: "+r" (src___), /* 0 */ \
"+m" (*dst___) /* 1 */ \
:: "memory"); \
} else { \
asm volatile("xchg %1,%0 ; " \
"# atomic_exchange__" \
: "+r" (src___), /* 0 */ \
"+m" (*dst___)); /* 1 */ \
} \
src___; \
})
/* Atomic store: Valid memory models are:
*
* memory_order_relaxed, memory_order_release, and
* memory_order_seq_cst. */
#define atomic_store_explicit(DST, SRC, ORDER) \
({ \
typeof(DST) dst__ = (DST); \
typeof(*(DST)) src__ = (SRC); \
\
if ((ORDER) != memory_order_seq_cst) { \
atomic_compiler_barrier(ORDER); \
*dst__ = src__; \
} else { \
atomic_exchange__(dst__, src__, ORDER); \
} \
(void) 0; \
})
#define atomic_store(DST, SRC) \
atomic_store_explicit(DST, SRC, memory_order_seq_cst)
/* Atomic read: Valid memory models are:
*
* memory_order_relaxed, memory_order_consume, memory_model_acquire,
* and memory_order_seq_cst. */
#define atomic_read_explicit(SRC, DST, ORDER) \
({ \
typeof(DST) dst__ = (DST); \
typeof(SRC) src__ = (SRC); \
\
*dst__ = *src__; \
atomic_compiler_barrier(ORDER); \
(void) 0; \
})
#define atomic_read(SRC, DST) \
atomic_read_explicit(SRC, DST, memory_order_seq_cst)
#define atomic_compare_exchange__(DST, EXP, SRC, RES, CLOB) \
asm volatile("lock; cmpxchg %3,%1 ; " \
" sete %0 " \
"# atomic_compare_exchange__" \
: "=q" (RES), /* 0 */ \
"+m" (*DST), /* 1 */ \
"+a" (EXP) /* 2 */ \
: "r" (SRC) /* 3 */ \
: CLOB, "cc")
/* All memory models are valid for read-modify-write operations.
*
* Valid memory models for the read operation of the current value in
* the failure case are the same as for atomic read, but can not be
* stronger than the success memory model.
* ORD_FAIL is ignored, as atomic_compare_exchange__ already implements
* at least as strong a barrier as allowed for ORD_FAIL in all cases. */
#define atomic_compare_exchange_strong_explicit(DST, EXP, SRC, ORDER, ORD_FAIL) \
({ \
typeof(DST) dst__ = (DST); \
typeof(DST) expp__ = (EXP); \
typeof(*(DST)) src__ = (SRC); \
typeof(*(DST)) exp__ = *expp__; \
uint8_t res__; \
(void)ORD_FAIL; \
\
if ((ORDER) > memory_order_consume) { \
atomic_compare_exchange__(dst__, exp__, src__, res__, \
"memory"); \
} else { \
atomic_compare_exchange__(dst__, exp__, src__, res__, \
"cc"); \
} \
if (!res__) { \
*expp__ = exp__; \
} \
(bool)res__; \
})
#define atomic_compare_exchange_strong(DST, EXP, SRC) \
atomic_compare_exchange_strong_explicit(DST, EXP, SRC, \
memory_order_seq_cst, \
memory_order_seq_cst)
#define atomic_compare_exchange_weak \
atomic_compare_exchange_strong
#define atomic_compare_exchange_weak_explicit \
atomic_compare_exchange_strong_explicit
#define atomic_exchange_explicit(RMW, ARG, ORDER) \
atomic_exchange__(RMW, ARG, ORDER)
#define atomic_exchange(RMW, ARG) \
atomic_exchange_explicit(RMW, ARG, memory_order_seq_cst)
#define atomic_add__(RMW, ARG, CLOB) \
asm volatile("lock; xadd %0,%1 ; " \
"# atomic_add__ " \
: "+r" (ARG), /* 0 */ \
"+m" (*RMW) /* 1 */ \
:: CLOB, "cc")
#define atomic_add_explicit(RMW, ARG, ORIG, ORDER) \
({ \
typeof(RMW) rmw__ = (RMW); \
typeof(*(RMW)) arg__ = (ARG); \
\
if ((ORDER) > memory_order_consume) { \
atomic_add__(rmw__, arg__, "memory"); \
} else { \
atomic_add__(rmw__, arg__, "cc"); \
} \
*(ORIG) = arg__; \
})
#define atomic_add(RMW, ARG, ORIG) \
atomic_add_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
#define atomic_sub_explicit(RMW, ARG, ORIG, ORDER) \
atomic_add_explicit(RMW, -(ARG), ORIG, ORDER)
#define atomic_sub(RMW, ARG, ORIG) \
atomic_sub_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
/* We could use simple locked instructions if the original value was not
* needed. */
#define atomic_op__(RMW, OP, ARG, ORIG, ORDER) \
({ \
typeof(RMW) rmw__ = (RMW); \
typeof(ARG) arg__ = (ARG); \
\
typeof(*(RMW)) val__; \
\
atomic_read_explicit(rmw__, &val__, memory_order_relaxed); \
do { \
} while (!atomic_compare_exchange_weak_explicit(rmw__, &val__, \
val__ OP arg__, \
ORDER, \
memory_order_relaxed)); \
*(ORIG) = val__; \
})
#define atomic_or_explicit(RMW, ARG, ORIG, ORDER) \
atomic_op__(RMW, |, ARG, ORIG, ORDER)
#define atomic_or(RMW, ARG, ORIG) \
atomic_or_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
#define atomic_xor_explicit(RMW, ARG, ORIG, ORDER) \
atomic_op__(RMW, ^, ARG, ORIG, ORDER)
#define atomic_xor(RMW, ARG, ORIG) \
atomic_xor_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
#define atomic_and_explicit(RMW, ARG, ORIG, ORDER) \
atomic_op__(RMW, &, ARG, ORIG, ORDER)
#define atomic_and(RMW, ARG, ORIG) \
atomic_and_explicit(RMW, ARG, ORIG, memory_order_seq_cst)
/* atomic_flag */
typedef ATOMIC(int) atomic_flag;
#define ATOMIC_FLAG_INIT { false }
#define atomic_flag_test_and_set_explicit(FLAG, ORDER) \
((bool)atomic_exchange__(FLAG, 1, ORDER))
#define atomic_flag_test_and_set(FLAG) \
atomic_flag_test_and_set_explicit(FLAG, memory_order_seq_cst)
#define atomic_flag_clear_explicit(FLAG, ORDER) \
atomic_store_explicit(FLAG, 0, ORDER)
#define atomic_flag_clear(FLAG) \
atomic_flag_clear_explicit(FLAG, memory_order_seq_cst)
|