1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
|
/*
* Copyright (c) 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "ovs-thread.h"
#include <errno.h>
#include <poll.h>
#ifndef _WIN32
#include <signal.h>
#endif
#include <stdlib.h>
#include <unistd.h>
#include "compiler.h"
#include "fatal-signal.h"
#include "hash.h"
#include "openvswitch/list.h"
#include "ovs-rcu.h"
#include "openvswitch/poll-loop.h"
#include "seq.h"
#include "socket-util.h"
#include "timeval.h"
#include "util.h"
#ifdef __CHECKER__
/* Omit the definitions in this file because they are somewhat difficult to
* write without prompting "sparse" complaints, without ugliness or
* cut-and-paste. Since "sparse" is just a checker, not a compiler, it
* doesn't matter that we don't define them. */
#else
#include "openvswitch/vlog.h"
VLOG_DEFINE_THIS_MODULE(ovs_thread);
/* If there is a reason that we cannot fork anymore (unless the fork will be
* immediately followed by an exec), then this points to a string that
* explains why. */
static const char *must_not_fork;
/* True if we created any threads beyond the main initial thread. */
static bool multithreaded;
#define LOCK_FUNCTION(TYPE, FUN) \
void \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
VLOG_ABORT("%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
l->where = where; \
}
LOCK_FUNCTION(mutex, lock);
LOCK_FUNCTION(rwlock, rdlock);
LOCK_FUNCTION(rwlock, wrlock);
#ifdef HAVE_PTHREAD_SPIN_LOCK
LOCK_FUNCTION(spin, lock);
#endif
#define TRY_LOCK_FUNCTION(TYPE, FUN) \
int \
ovs_##TYPE##_##FUN##_at(const struct ovs_##TYPE *l_, \
const char *where) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
if (OVS_UNLIKELY(!l->where)) { \
VLOG_ABORT("%s: %s() passed uninitialized ovs_"#TYPE, \
where, __func__); \
} \
\
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error) && error != EBUSY) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
if (!error) { \
l->where = where; \
} \
return error; \
}
TRY_LOCK_FUNCTION(mutex, trylock);
TRY_LOCK_FUNCTION(rwlock, tryrdlock);
TRY_LOCK_FUNCTION(rwlock, trywrlock);
#ifdef HAVE_PTHREAD_SPIN_LOCK
TRY_LOCK_FUNCTION(spin, trylock);
#endif
#define UNLOCK_FUNCTION(TYPE, FUN, WHERE) \
void \
ovs_##TYPE##_##FUN(const struct ovs_##TYPE *l_) \
OVS_NO_THREAD_SAFETY_ANALYSIS \
{ \
struct ovs_##TYPE *l = CONST_CAST(struct ovs_##TYPE *, l_); \
int error; \
\
/* Verify that 'l' was initialized. */ \
ovs_assert(l->where); \
\
l->where = WHERE; \
error = pthread_##TYPE##_##FUN(&l->lock); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s: pthread_%s_%s failed: %s", l->where, #TYPE, #FUN, \
ovs_strerror(error)); \
} \
}
UNLOCK_FUNCTION(mutex, unlock, "<unlocked>");
UNLOCK_FUNCTION(mutex, destroy, NULL);
UNLOCK_FUNCTION(rwlock, unlock, "<unlocked>");
UNLOCK_FUNCTION(rwlock, destroy, NULL);
#ifdef HAVE_PTHREAD_SPIN_LOCK
UNLOCK_FUNCTION(spin, unlock, "<unlocked>");
UNLOCK_FUNCTION(spin, destroy, NULL);
#endif
#define XPTHREAD_FUNC1(FUNCTION, PARAM1) \
void \
x##FUNCTION(PARAM1 arg1) \
{ \
int error = FUNCTION(arg1); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
#define XPTHREAD_FUNC2(FUNCTION, PARAM1, PARAM2) \
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2) \
{ \
int error = FUNCTION(arg1, arg2); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
#define XPTHREAD_FUNC3(FUNCTION, PARAM1, PARAM2, PARAM3)\
void \
x##FUNCTION(PARAM1 arg1, PARAM2 arg2, PARAM3 arg3) \
{ \
int error = FUNCTION(arg1, arg2, arg3); \
if (OVS_UNLIKELY(error)) { \
VLOG_ABORT("%s failed: %s", #FUNCTION, \
ovs_strerror(error)); \
} \
}
XPTHREAD_FUNC1(pthread_mutexattr_init, pthread_mutexattr_t *);
XPTHREAD_FUNC1(pthread_mutexattr_destroy, pthread_mutexattr_t *);
XPTHREAD_FUNC2(pthread_mutexattr_settype, pthread_mutexattr_t *, int);
XPTHREAD_FUNC2(pthread_mutexattr_gettype, pthread_mutexattr_t *, int *);
XPTHREAD_FUNC1(pthread_rwlockattr_init, pthread_rwlockattr_t *);
XPTHREAD_FUNC1(pthread_rwlockattr_destroy, pthread_rwlockattr_t *);
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
XPTHREAD_FUNC2(pthread_rwlockattr_setkind_np, pthread_rwlockattr_t *, int);
#endif
XPTHREAD_FUNC2(pthread_cond_init, pthread_cond_t *, pthread_condattr_t *);
XPTHREAD_FUNC1(pthread_cond_destroy, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_signal, pthread_cond_t *);
XPTHREAD_FUNC1(pthread_cond_broadcast, pthread_cond_t *);
XPTHREAD_FUNC2(pthread_join, pthread_t, void **);
typedef void destructor_func(void *);
XPTHREAD_FUNC2(pthread_key_create, pthread_key_t *, destructor_func *);
XPTHREAD_FUNC1(pthread_key_delete, pthread_key_t);
XPTHREAD_FUNC2(pthread_setspecific, pthread_key_t, const void *);
#ifndef _WIN32
XPTHREAD_FUNC3(pthread_sigmask, int, const sigset_t *, sigset_t *);
#endif
static void
ovs_mutex_init__(const struct ovs_mutex *l_, int type)
{
struct ovs_mutex *l = CONST_CAST(struct ovs_mutex *, l_);
pthread_mutexattr_t attr;
int error;
l->where = "<unlocked>";
xpthread_mutexattr_init(&attr);
xpthread_mutexattr_settype(&attr, type);
error = pthread_mutex_init(&l->lock, &attr);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_mutex_init failed: %s", ovs_strerror(error));
}
xpthread_mutexattr_destroy(&attr);
}
/* Initializes 'mutex' as a normal (non-recursive) mutex. */
void
ovs_mutex_init(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ERRORCHECK);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_recursive(const struct ovs_mutex *mutex)
{
ovs_mutex_init__(mutex, PTHREAD_MUTEX_RECURSIVE);
}
/* Initializes 'mutex' as a recursive mutex. */
void
ovs_mutex_init_adaptive(const struct ovs_mutex *mutex)
{
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
ovs_mutex_init__(mutex, PTHREAD_MUTEX_ADAPTIVE_NP);
#else
ovs_mutex_init(mutex);
#endif
}
void
ovs_rwlock_init(const struct ovs_rwlock *l_)
{
struct ovs_rwlock *l = CONST_CAST(struct ovs_rwlock *, l_);
int error;
l->where = "<unlocked>";
#ifdef PTHREAD_RWLOCK_WRITER_NONRECURSIVE_INITIALIZER_NP
pthread_rwlockattr_t attr;
xpthread_rwlockattr_init(&attr);
xpthread_rwlockattr_setkind_np(
&attr, PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
error = pthread_rwlock_init(&l->lock, &attr);
xpthread_rwlockattr_destroy(&attr);
#else
/* It is important to avoid passing a rwlockattr in this case because
* Windows pthreads 2.9.1 (and earlier) fail and abort if passed one, even
* one without any special attributes. */
error = pthread_rwlock_init(&l->lock, NULL);
#endif
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_rwlock_init failed: %s", ovs_strerror(error));
}
}
/* Provides an error-checking wrapper around pthread_cond_wait().
*
* If the wait can take a significant amount of time, consider bracketing this
* call with calls to ovsrcu_quiesce_start() and ovsrcu_quiesce_end(). */
void
ovs_mutex_cond_wait(pthread_cond_t *cond, const struct ovs_mutex *mutex_)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct ovs_mutex *mutex = CONST_CAST(struct ovs_mutex *, mutex_);
int error;
error = pthread_cond_wait(cond, &mutex->lock);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_cond_wait failed: %s", ovs_strerror(error));
}
}
#ifdef HAVE_PTHREAD_SPIN_LOCK
static void
ovs_spin_init__(const struct ovs_spin *l_, int pshared)
{
struct ovs_spin *l = CONST_CAST(struct ovs_spin *, l_);
int error;
l->where = "<unlocked>";
error = pthread_spin_init(&l->lock, pshared);
if (OVS_UNLIKELY(error)) {
VLOG_ABORT("pthread_spin_init failed: %s", ovs_strerror(error));
}
}
void
ovs_spin_init(const struct ovs_spin *spin)
{
ovs_spin_init__(spin, PTHREAD_PROCESS_PRIVATE);
}
#endif
struct ovs_barrier_impl {
uint32_t size; /* Number of threads to wait. */
atomic_count count; /* Number of threads already hit the barrier. */
struct seq *seq;
struct ovs_refcount refcnt;
};
static void
ovs_barrier_impl_ref(struct ovs_barrier_impl *impl)
{
ovs_refcount_ref(&impl->refcnt);
}
static void
ovs_barrier_impl_unref(struct ovs_barrier_impl *impl)
{
if (ovs_refcount_unref(&impl->refcnt) == 1) {
seq_destroy(impl->seq);
free(impl);
}
}
/* Initializes the 'barrier'. 'size' is the number of threads
* expected to hit the barrier. */
void
ovs_barrier_init(struct ovs_barrier *barrier, uint32_t size)
{
struct ovs_barrier_impl *impl;
impl = xmalloc(sizeof *impl);
impl->size = size;
atomic_count_init(&impl->count, 0);
impl->seq = seq_create();
ovs_refcount_init(&impl->refcnt);
ovsrcu_set(&barrier->impl, impl);
}
/* Destroys the 'barrier'. */
void
ovs_barrier_destroy(struct ovs_barrier *barrier)
{
struct ovs_barrier_impl *impl;
impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
ovsrcu_set(&barrier->impl, NULL);
ovs_barrier_impl_unref(impl);
}
/* Makes the calling thread block on the 'barrier' until all
* 'barrier->size' threads hit the barrier.
* ovs_barrier provides the necessary acquire-release semantics to make
* the effects of prior memory accesses of all the participating threads
* visible on return and to prevent the following memory accesses to be
* reordered before the ovs_barrier_block(). */
void
ovs_barrier_block(struct ovs_barrier *barrier)
{
struct ovs_barrier_impl *impl;
uint32_t orig;
uint64_t seq;
impl = ovsrcu_get(struct ovs_barrier_impl *, &barrier->impl);
ovs_barrier_impl_ref(impl);
seq = seq_read(impl->seq);
orig = atomic_count_inc(&impl->count);
if (orig + 1 == impl->size) {
atomic_count_set(&impl->count, 0);
/* seq_change() serves as a release barrier against the other threads,
* so the zeroed count is visible to them as they continue. */
seq_change(impl->seq);
} else {
/* To prevent thread from waking up by other event,
* keeps waiting for the change of 'barrier->seq'. */
while (seq == seq_read(impl->seq)) {
seq_wait(impl->seq, seq);
poll_block();
}
}
ovs_barrier_impl_unref(impl);
}
DEFINE_EXTERN_PER_THREAD_DATA(ovsthread_id, OVSTHREAD_ID_UNSET);
struct ovsthread_aux {
void *(*start)(void *);
void *arg;
char name[16];
};
unsigned int
ovsthread_id_init(void)
{
static atomic_count next_id = ATOMIC_COUNT_INIT(0);
ovs_assert(*ovsthread_id_get() == OVSTHREAD_ID_UNSET);
return *ovsthread_id_get() = atomic_count_inc(&next_id);
}
static void *
ovsthread_wrapper(void *aux_)
{
struct ovsthread_aux *auxp = aux_;
struct ovsthread_aux aux;
unsigned int id;
id = ovsthread_id_init();
aux = *auxp;
free(auxp);
/* The order of the following calls is important, because
* ovsrcu_quiesce_end() saves a copy of the thread name. */
char *subprogram_name = xasprintf("%s%u", aux.name, id);
set_subprogram_name(subprogram_name);
free(subprogram_name);
ovsrcu_quiesce_end();
return aux.start(aux.arg);
}
static void
set_min_stack_size(pthread_attr_t *attr, size_t min_stacksize)
{
size_t stacksize;
int error;
error = pthread_attr_getstacksize(attr, &stacksize);
if (error) {
VLOG_ABORT("pthread_attr_getstacksize failed: %s",
ovs_strerror(error));
}
if (stacksize < min_stacksize) {
error = pthread_attr_setstacksize(attr, min_stacksize);
if (error) {
VLOG_ABORT("pthread_attr_setstacksize failed: %s",
ovs_strerror(error));
}
}
}
/* Starts a thread that calls 'start(arg)'. Sets the thread's name to 'name'
* (suffixed by its ovsthread_id()). Returns the new thread's pthread_t. */
pthread_t
ovs_thread_create(const char *name, void *(*start)(void *), void *arg)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct ovsthread_aux *aux;
pthread_t thread;
int error;
forbid_forking("multiple threads exist");
if (ovsthread_once_start(&once)) {
/* The first call to this function has to happen in the main thread.
* Before the process becomes multithreaded we make sure that the
* main thread is considered non quiescent.
*
* For other threads this is done in ovs_thread_wrapper(), but the
* main thread has no such wrapper.
*
* There's no reason to call ovsrcu_quiesce_end() in subsequent
* invocations of this function and it might introduce problems
* for other threads. */
ovsrcu_quiesce_end();
ovsthread_once_done(&once);
}
multithreaded = true;
aux = xmalloc(sizeof *aux);
aux->start = start;
aux->arg = arg;
ovs_strlcpy(aux->name, name, sizeof aux->name);
/* Some small systems use a default stack size as small as 80 kB, but OVS
* requires approximately 384 kB according to the following analysis:
* https://mail.openvswitch.org/pipermail/ovs-dev/2016-January/308592.html
*
* We use 512 kB to give us some margin of error. */
pthread_attr_t attr;
pthread_attr_init(&attr);
set_min_stack_size(&attr, 512 * 1024);
error = pthread_create(&thread, &attr, ovsthread_wrapper, aux);
if (error) {
VLOG_ABORT("pthread_create failed: %s", ovs_strerror(error));
}
pthread_attr_destroy(&attr);
return thread;
}
bool
ovsthread_once_start__(struct ovsthread_once *once)
{
ovs_mutex_lock(&once->mutex);
/* Mutex synchronizes memory, so we get the current value of 'done'. */
if (!once->done) {
return true;
}
ovs_mutex_unlock(&once->mutex);
return false;
}
void
ovsthread_once_done(struct ovsthread_once *once)
{
/* We need release semantics here, so that the following store may not
* be moved ahead of any of the preceding initialization operations.
* A release atomic_thread_fence provides that prior memory accesses
* will not be reordered to take place after the following store. */
atomic_thread_fence(memory_order_release);
once->done = true;
ovs_mutex_unlock(&once->mutex);
}
bool
single_threaded(void)
{
return !multithreaded;
}
/* Asserts that the process has not yet created any threads (beyond the initial
* thread).
*
* ('where' is used in logging. Commonly one would use
* assert_single_threaded() to automatically provide the caller's source file
* and line number for 'where'.) */
void
assert_single_threaded_at(const char *where)
{
if (multithreaded) {
VLOG_FATAL("%s: attempted operation not allowed when multithreaded",
where);
}
}
#ifndef _WIN32
/* Forks the current process (checking that this is allowed). Aborts with
* VLOG_FATAL if fork() returns an error, and otherwise returns the value
* returned by fork().
*
* ('where' is used in logging. Commonly one would use xfork() to
* automatically provide the caller's source file and line number for
* 'where'.) */
pid_t
xfork_at(const char *where)
{
pid_t pid;
if (must_not_fork) {
VLOG_FATAL("%s: attempted to fork but forking not allowed (%s)",
where, must_not_fork);
}
pid = fork();
if (pid < 0) {
VLOG_FATAL("%s: fork failed (%s)", where, ovs_strerror(errno));
}
return pid;
}
#endif
/* Notes that the process must not call fork() from now on, for the specified
* 'reason'. (The process may still fork() if it execs itself immediately
* afterward.) */
void
forbid_forking(const char *reason)
{
ovs_assert(reason != NULL);
must_not_fork = reason;
}
/* Returns true if the process is allowed to fork, false otherwise. */
bool
may_fork(void)
{
return !must_not_fork;
}
/* ovsthread_stats. */
void
ovsthread_stats_init(struct ovsthread_stats *stats)
{
int i;
ovs_mutex_init(&stats->mutex);
for (i = 0; i < ARRAY_SIZE(stats->buckets); i++) {
stats->buckets[i] = NULL;
}
}
void
ovsthread_stats_destroy(struct ovsthread_stats *stats)
{
ovs_mutex_destroy(&stats->mutex);
}
void *
ovsthread_stats_bucket_get(struct ovsthread_stats *stats,
void *(*new_bucket)(void))
{
unsigned int idx = ovsthread_id_self() & (ARRAY_SIZE(stats->buckets) - 1);
void *bucket = stats->buckets[idx];
if (!bucket) {
ovs_mutex_lock(&stats->mutex);
bucket = stats->buckets[idx];
if (!bucket) {
bucket = stats->buckets[idx] = new_bucket();
}
ovs_mutex_unlock(&stats->mutex);
}
return bucket;
}
size_t
ovs_thread_stats_next_bucket(const struct ovsthread_stats *stats, size_t i)
{
for (; i < ARRAY_SIZE(stats->buckets); i++) {
if (stats->buckets[i]) {
break;
}
}
return i;
}
static int
count_cpu_cores__(void)
{
long int n_cores;
#ifndef _WIN32
n_cores = sysconf(_SC_NPROCESSORS_ONLN);
#else
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
n_cores = sysinfo.dwNumberOfProcessors;
#endif
#ifdef __linux__
if (n_cores > 0) {
cpu_set_t *set = CPU_ALLOC(n_cores);
if (set) {
size_t size = CPU_ALLOC_SIZE(n_cores);
if (!sched_getaffinity(0, size, set)) {
n_cores = CPU_COUNT_S(size, set);
}
CPU_FREE(set);
}
}
#endif
return n_cores > 0 ? n_cores : 0;
}
/* It's unlikely that the available cpus change several times per second and
* even if it does, it's not needed (or desired) to react to such changes so
* quickly. */
#define COUNT_CPU_UPDATE_TIME_MS 10000
static struct ovs_mutex cpu_cores_mutex = OVS_MUTEX_INITIALIZER;
/* Returns the current total number of cores available to this process, or 0
* if the number cannot be determined. */
int
count_cpu_cores(void)
{
static long long int last_updated = 0;
long long int now = time_msec();
static int cpu_cores;
ovs_mutex_lock(&cpu_cores_mutex);
if (!last_updated || now - last_updated >= COUNT_CPU_UPDATE_TIME_MS) {
last_updated = now;
cpu_cores = count_cpu_cores__();
}
ovs_mutex_unlock(&cpu_cores_mutex);
return cpu_cores;
}
/* Returns the total number of cores on the system, or 0 if the
* number cannot be determined. */
int
count_total_cores(void)
{
long int n_cores;
#ifndef _WIN32
n_cores = sysconf(_SC_NPROCESSORS_CONF);
#else
n_cores = 0;
errno = ENOTSUP;
#endif
return n_cores > 0 ? n_cores : 0;
}
/* Returns 'true' if current thread is PMD thread. */
bool
thread_is_pmd(void)
{
const char *name = get_subprogram_name();
return !strncmp(name, "pmd", 3);
}
/* ovsthread_key. */
#define L1_SIZE 1024
#define L2_SIZE 1024
#define MAX_KEYS (L1_SIZE * L2_SIZE)
/* A piece of thread-specific data. */
struct ovsthread_key {
struct ovs_list list_node; /* In 'inuse_keys' or 'free_keys'. */
void (*destructor)(void *); /* Called at thread exit. */
/* Indexes into the per-thread array in struct ovsthread_key_slots.
* This key's data is stored in p1[index / L2_SIZE][index % L2_SIZE]. */
unsigned int index;
};
/* Per-thread data structure. */
struct ovsthread_key_slots {
struct ovs_list list_node; /* In 'slots_list'. */
void **p1[L1_SIZE];
};
/* Contains "struct ovsthread_key_slots *". */
static pthread_key_t tsd_key;
/* Guards data structures below. */
static struct ovs_mutex key_mutex = OVS_MUTEX_INITIALIZER;
/* 'inuse_keys' holds "struct ovsthread_key"s that have been created and not
* yet destroyed.
*
* 'free_keys' holds "struct ovsthread_key"s that have been deleted and are
* ready for reuse. (We keep them around only to be able to easily locate
* free indexes.)
*
* Together, 'inuse_keys' and 'free_keys' hold an ovsthread_key for every index
* from 0 to n_keys - 1, inclusive. */
static struct ovs_list inuse_keys OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&inuse_keys);
static struct ovs_list free_keys OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&free_keys);
static unsigned int n_keys OVS_GUARDED_BY(key_mutex);
/* All existing struct ovsthread_key_slots. */
static struct ovs_list slots_list OVS_GUARDED_BY(key_mutex)
= OVS_LIST_INITIALIZER(&slots_list);
static void *
clear_slot(struct ovsthread_key_slots *slots, unsigned int index)
{
void **p2 = slots->p1[index / L2_SIZE];
if (p2) {
void **valuep = &p2[index % L2_SIZE];
void *value = *valuep;
*valuep = NULL;
return value;
} else {
return NULL;
}
}
static void
ovsthread_key_destruct__(void *slots_)
{
struct ovsthread_key_slots *slots = slots_;
struct ovsthread_key *key;
unsigned int n;
int i;
ovs_mutex_lock(&key_mutex);
ovs_list_remove(&slots->list_node);
LIST_FOR_EACH (key, list_node, &inuse_keys) {
void *value = clear_slot(slots, key->index);
if (value && key->destructor) {
key->destructor(value);
}
}
n = n_keys;
ovs_mutex_unlock(&key_mutex);
for (i = 0; i < DIV_ROUND_UP(n, L2_SIZE); i++) {
free(slots->p1[i]);
}
free(slots);
}
/* Cancels the callback to ovsthread_key_destruct__().
*
* Cancelling the call to the destructor during the main thread exit
* is needed while using pthreads-win32 library in Windows. It has been
* observed that in pthreads-win32, a call to the destructor during
* main thread exit causes undefined behavior. */
static void
ovsthread_cancel_ovsthread_key_destruct__(void *aux OVS_UNUSED)
{
pthread_setspecific(tsd_key, NULL);
}
/* Initializes '*keyp' as a thread-specific data key. The data items are
* initially null in all threads.
*
* If a thread exits with non-null data, then 'destructor', if nonnull, will be
* called passing the final data value as its argument. 'destructor' must not
* call any thread-specific data functions in this API.
*
* This function is similar to xpthread_key_create(). */
void
ovsthread_key_create(ovsthread_key_t *keyp, void (*destructor)(void *))
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct ovsthread_key *key;
if (ovsthread_once_start(&once)) {
xpthread_key_create(&tsd_key, ovsthread_key_destruct__);
fatal_signal_add_hook(ovsthread_cancel_ovsthread_key_destruct__,
NULL, NULL, true);
ovsthread_once_done(&once);
}
ovs_mutex_lock(&key_mutex);
if (ovs_list_is_empty(&free_keys)) {
key = xmalloc(sizeof *key);
key->index = n_keys++;
if (key->index >= MAX_KEYS) {
abort();
}
} else {
key = CONTAINER_OF(ovs_list_pop_back(&free_keys),
struct ovsthread_key, list_node);
}
ovs_list_push_back(&inuse_keys, &key->list_node);
key->destructor = destructor;
ovs_mutex_unlock(&key_mutex);
*keyp = key;
}
/* Frees 'key'. The destructor supplied to ovsthread_key_create(), if any, is
* not called.
*
* This function is similar to xpthread_key_delete(). */
void
ovsthread_key_delete(ovsthread_key_t key)
{
struct ovsthread_key_slots *slots;
ovs_mutex_lock(&key_mutex);
/* Move 'key' from 'inuse_keys' to 'free_keys'. */
ovs_list_remove(&key->list_node);
ovs_list_push_back(&free_keys, &key->list_node);
/* Clear this slot in all threads. */
LIST_FOR_EACH (slots, list_node, &slots_list) {
clear_slot(slots, key->index);
}
ovs_mutex_unlock(&key_mutex);
}
static void **
ovsthread_key_lookup__(const struct ovsthread_key *key)
{
struct ovsthread_key_slots *slots;
void **p2;
slots = pthread_getspecific(tsd_key);
if (!slots) {
slots = xzalloc(sizeof *slots);
ovs_mutex_lock(&key_mutex);
pthread_setspecific(tsd_key, slots);
ovs_list_push_back(&slots_list, &slots->list_node);
ovs_mutex_unlock(&key_mutex);
}
p2 = slots->p1[key->index / L2_SIZE];
if (!p2) {
p2 = xzalloc(L2_SIZE * sizeof *p2);
slots->p1[key->index / L2_SIZE] = p2;
}
return &p2[key->index % L2_SIZE];
}
/* Sets the value of thread-specific data item 'key', in the current thread, to
* 'value'.
*
* This function is similar to pthread_setspecific(). */
void
ovsthread_setspecific(ovsthread_key_t key, const void *value)
{
*ovsthread_key_lookup__(key) = CONST_CAST(void *, value);
}
/* Returns the value of thread-specific data item 'key' in the current thread.
*
* This function is similar to pthread_getspecific(). */
void *
ovsthread_getspecific(ovsthread_key_t key)
{
return *ovsthread_key_lookup__(key);
}
#endif
|