1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
|
/*
* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "packets.h"
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <stdlib.h>
#include <netdb.h>
#include "byte-order.h"
#include "csum.h"
#include "crc32c.h"
#include "flow.h"
#include "openvswitch/hmap.h"
#include "openvswitch/dynamic-string.h"
#include "ovs-thread.h"
#include "odp-util.h"
#include "dp-packet.h"
#include "unaligned.h"
const struct in6_addr in6addr_exact = IN6ADDR_EXACT_INIT;
const struct in6_addr in6addr_all_hosts = IN6ADDR_ALL_HOSTS_INIT;
const struct in6_addr in6addr_all_routers = IN6ADDR_ALL_ROUTERS_INIT;
struct in6_addr
flow_tnl_dst(const struct flow_tnl *tnl)
{
return tnl->ip_dst ? in6_addr_mapped_ipv4(tnl->ip_dst) : tnl->ipv6_dst;
}
struct in6_addr
flow_tnl_src(const struct flow_tnl *tnl)
{
return tnl->ip_src ? in6_addr_mapped_ipv4(tnl->ip_src) : tnl->ipv6_src;
}
/* Returns true if 's' consists entirely of hex digits, false otherwise. */
static bool
is_all_hex(const char *s)
{
return s[strspn(s, "0123456789abcdefABCDEF")] == '\0';
}
/* Parses 's' as a 16-digit hexadecimal number representing a datapath ID. On
* success stores the dpid into '*dpidp' and returns true, on failure stores 0
* into '*dpidp' and returns false.
*
* Rejects an all-zeros dpid as invalid. */
bool
dpid_from_string(const char *s, uint64_t *dpidp)
{
size_t len = strlen(s);
*dpidp = ((len == 16 && is_all_hex(s))
|| (len <= 18 && s[0] == '0' && (s[1] == 'x' || s[1] == 'X')
&& is_all_hex(s + 2))
? strtoull(s, NULL, 16)
: 0);
return *dpidp != 0;
}
uint64_t
eth_addr_to_uint64(const struct eth_addr ea)
{
return (((uint64_t) ntohs(ea.be16[0]) << 32)
| ((uint64_t) ntohs(ea.be16[1]) << 16)
| ntohs(ea.be16[2]));
}
void
eth_addr_from_uint64(uint64_t x, struct eth_addr *ea)
{
ea->be16[0] = htons(x >> 32);
ea->be16[1] = htons((x & 0xFFFF0000) >> 16);
ea->be16[2] = htons(x & 0xFFFF);
}
void
eth_addr_mark_random(struct eth_addr *ea)
{
ea->ea[0] &= ~1; /* Unicast. */
ea->ea[0] |= 2; /* Private. */
}
/* Returns true if 'ea' is a reserved address, that a bridge must never
* forward, false otherwise.
*
* If you change this function's behavior, please update corresponding
* documentation in vswitch.xml at the same time. */
bool
eth_addr_is_reserved(const struct eth_addr ea)
{
struct eth_addr_node {
struct hmap_node hmap_node;
const uint64_t ea64;
};
static struct eth_addr_node nodes[] = {
/* STP, IEEE pause frames, and other reserved protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000000ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000001ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000002ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000003ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000004ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000005ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000006ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000007ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000008ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c2000009ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000aULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000bULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000cULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000dULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000eULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x0180c200000fULL },
/* Extreme protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000000ULL }, /* EDP. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000004ULL }, /* EAPS. */
{ HMAP_NODE_NULL_INITIALIZER, 0x00e02b000006ULL }, /* EAPS. */
/* Cisco protocols. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000c000000ULL }, /* ISL. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccccULL }, /* PAgP, UDLD, CDP,
* DTP, VTP. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccccccdULL }, /* PVST+. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000ccdcdcdULL }, /* STP Uplink Fast,
* FlexLink. */
/* Cisco CFM. */
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc0ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc1ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc2ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc3ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc4ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc5ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc6ULL },
{ HMAP_NODE_NULL_INITIALIZER, 0x01000cccccc7ULL },
};
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
struct eth_addr_node *node;
static struct hmap addrs;
uint64_t ea64;
if (ovsthread_once_start(&once)) {
hmap_init(&addrs);
for (node = nodes; node < &nodes[ARRAY_SIZE(nodes)]; node++) {
hmap_insert(&addrs, &node->hmap_node, hash_uint64(node->ea64));
}
ovsthread_once_done(&once);
}
ea64 = eth_addr_to_uint64(ea);
HMAP_FOR_EACH_IN_BUCKET (node, hmap_node, hash_uint64(ea64), &addrs) {
if (node->ea64 == ea64) {
return true;
}
}
return false;
}
/* Attempts to parse 's' as an Ethernet address. If successful, stores the
* address in 'ea' and returns true, otherwise zeros 'ea' and returns
* false. This function checks trailing characters. */
bool
eth_addr_from_string(const char *s, struct eth_addr *ea)
{
int n = 0;
if (ovs_scan(s, ETH_ADDR_SCAN_FMT"%n", ETH_ADDR_SCAN_ARGS(*ea), &n)
&& !s[n]) {
return true;
} else {
*ea = eth_addr_zero;
return false;
}
}
/* Fills 'b' with a Reverse ARP packet with Ethernet source address 'eth_src'.
* This function is used by Open vSwitch to compose packets in cases where
* context is important but content doesn't (or shouldn't) matter.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void
compose_rarp(struct dp_packet *b, const struct eth_addr eth_src)
{
struct eth_header *eth;
struct arp_eth_header *arp;
dp_packet_clear(b);
dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN
+ ARP_ETH_HEADER_LEN);
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
eth = dp_packet_put_uninit(b, sizeof *eth);
eth->eth_dst = eth_addr_broadcast;
eth->eth_src = eth_src;
eth->eth_type = htons(ETH_TYPE_RARP);
arp = dp_packet_put_uninit(b, sizeof *arp);
arp->ar_hrd = htons(ARP_HRD_ETHERNET);
arp->ar_pro = htons(ARP_PRO_IP);
arp->ar_hln = sizeof arp->ar_sha;
arp->ar_pln = sizeof arp->ar_spa;
arp->ar_op = htons(ARP_OP_RARP);
arp->ar_sha = eth_src;
put_16aligned_be32(&arp->ar_spa, htonl(0));
arp->ar_tha = eth_src;
put_16aligned_be32(&arp->ar_tpa, htonl(0));
dp_packet_set_l3(b, arp);
b->packet_type = htonl(PT_ETH);
}
/* Insert VLAN header according to given TCI. Packet passed must be Ethernet
* packet. Ignores the CFI bit of 'tci' using 0 instead.
*
* Also adjusts the layer offsets accordingly. */
void
eth_push_vlan(struct dp_packet *packet, ovs_be16 tpid, ovs_be16 tci)
{
struct vlan_eth_header *veh;
/* Insert new 802.1Q header. */
veh = dp_packet_resize_l2(packet, VLAN_HEADER_LEN);
memmove(veh, (char *)veh + VLAN_HEADER_LEN, 2 * ETH_ADDR_LEN);
veh->veth_type = tpid;
veh->veth_tci = tci & htons(~VLAN_CFI);
}
/* Removes outermost VLAN header (if any is present) from 'packet'.
*
* 'packet->l2_5' should initially point to 'packet''s outer-most VLAN header
* or may be NULL if there are no VLAN headers. */
void
eth_pop_vlan(struct dp_packet *packet)
{
struct vlan_eth_header *veh = dp_packet_eth(packet);
if (veh && dp_packet_size(packet) >= sizeof *veh
&& eth_type_vlan(veh->veth_type)) {
memmove((char *)veh + VLAN_HEADER_LEN, veh, 2 * ETH_ADDR_LEN);
dp_packet_resize_l2(packet, -VLAN_HEADER_LEN);
}
}
/* Push Ethernet header onto 'packet' assuming it is layer 3 */
void
push_eth(struct dp_packet *packet, const struct eth_addr *dst,
const struct eth_addr *src)
{
struct eth_header *eh;
ovs_assert(!dp_packet_is_eth(packet));
eh = dp_packet_resize_l2(packet, ETH_HEADER_LEN);
eh->eth_dst = *dst;
eh->eth_src = *src;
eh->eth_type = pt_ns_type_be(packet->packet_type);
packet->packet_type = htonl(PT_ETH);
}
/* Removes Ethernet header, including VLAN header, from 'packet'.
*
* Previous to calling this function, 'ofpbuf_l3(packet)' must not be NULL */
void
pop_eth(struct dp_packet *packet)
{
char *l2_5 = dp_packet_l2_5(packet);
char *l3 = dp_packet_l3(packet);
ovs_be16 ethertype;
int increment;
ovs_assert(dp_packet_is_eth(packet));
ovs_assert(l3 != NULL);
if (l2_5) {
increment = packet->l2_5_ofs;
ethertype = *(ALIGNED_CAST(ovs_be16 *, (l2_5 - 2)));
} else {
increment = packet->l3_ofs;
ethertype = *(ALIGNED_CAST(ovs_be16 *, (l3 - 2)));
}
dp_packet_resize_l2(packet, -increment);
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE, ntohs(ethertype));
}
/* Set ethertype of the packet. */
static void
set_ethertype(struct dp_packet *packet, ovs_be16 eth_type)
{
struct eth_header *eh = dp_packet_eth(packet);
if (!eh) {
return;
}
if (eth_type_vlan(eh->eth_type)) {
ovs_be16 *p;
char *l2_5 = dp_packet_l2_5(packet);
p = ALIGNED_CAST(ovs_be16 *,
(l2_5 ? l2_5 : (char *)dp_packet_l3(packet)) - 2);
*p = eth_type;
} else {
eh->eth_type = eth_type;
}
}
static bool is_mpls(struct dp_packet *packet)
{
return packet->l2_5_ofs != UINT16_MAX;
}
/* Set time to live (TTL) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_ttl(ovs_be32 *lse, uint8_t ttl)
{
*lse &= ~htonl(MPLS_TTL_MASK);
*lse |= htonl((ttl << MPLS_TTL_SHIFT) & MPLS_TTL_MASK);
}
/* Set traffic class (TC) of an MPLS label stack entry (LSE). */
void
set_mpls_lse_tc(ovs_be32 *lse, uint8_t tc)
{
*lse &= ~htonl(MPLS_TC_MASK);
*lse |= htonl((tc << MPLS_TC_SHIFT) & MPLS_TC_MASK);
}
/* Set label of an MPLS label stack entry (LSE). */
void
set_mpls_lse_label(ovs_be32 *lse, ovs_be32 label)
{
*lse &= ~htonl(MPLS_LABEL_MASK);
*lse |= htonl((ntohl(label) << MPLS_LABEL_SHIFT) & MPLS_LABEL_MASK);
}
/* Set bottom of stack (BoS) bit of an MPLS label stack entry (LSE). */
void
set_mpls_lse_bos(ovs_be32 *lse, uint8_t bos)
{
*lse &= ~htonl(MPLS_BOS_MASK);
*lse |= htonl((bos << MPLS_BOS_SHIFT) & MPLS_BOS_MASK);
}
/* Compose an MPLS label stack entry (LSE) from its components:
* label, traffic class (TC), time to live (TTL) and
* bottom of stack (BoS) bit. */
ovs_be32
set_mpls_lse_values(uint8_t ttl, uint8_t tc, uint8_t bos, ovs_be32 label)
{
ovs_be32 lse = htonl(0);
set_mpls_lse_ttl(&lse, ttl);
set_mpls_lse_tc(&lse, tc);
set_mpls_lse_bos(&lse, bos);
set_mpls_lse_label(&lse, label);
return lse;
}
/* Set MPLS label stack entry to outermost MPLS header.*/
void
set_mpls_lse(struct dp_packet *packet, ovs_be32 mpls_lse)
{
/* Packet type should be MPLS to set label stack entry. */
if (is_mpls(packet)) {
struct mpls_hdr *mh = dp_packet_l2_5(packet);
/* Update mpls label stack entry. */
put_16aligned_be32(&mh->mpls_lse, mpls_lse);
}
}
/* Push MPLS label stack entry 'lse' onto 'packet' as the outermost MPLS
* header. If 'packet' does not already have any MPLS labels, then its
* Ethertype is changed to 'ethtype' (which must be an MPLS Ethertype). */
void
push_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse)
{
char * header;
size_t len;
if (!eth_type_mpls(ethtype)) {
return;
}
if (!is_mpls(packet)) {
/* Set MPLS label stack offset. */
packet->l2_5_ofs = packet->l3_ofs;
}
set_ethertype(packet, ethtype);
/* Push new MPLS shim header onto packet. */
len = packet->l2_5_ofs;
header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
memmove(header, header + MPLS_HLEN, len);
memcpy(header + len, &lse, sizeof lse);
pkt_metadata_init_conn(&packet->md);
}
void
add_mpls(struct dp_packet *packet, ovs_be16 ethtype, ovs_be32 lse,
bool l3_encap)
{
if (!eth_type_mpls(ethtype)) {
return;
}
if (!l3_encap) {
struct mpls_hdr *header = dp_packet_resize_l2(packet, MPLS_HLEN);
put_16aligned_be32(&header->mpls_lse, lse);
packet->l2_5_ofs = 0;
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
ntohs(ethtype));
} else {
size_t len;
char *header;
if (!is_mpls(packet)) {
/* Set MPLS label stack offset. */
packet->l2_5_ofs = packet->l3_ofs;
}
set_ethertype(packet, ethtype);
/* Push new MPLS shim header onto packet. */
len = packet->l2_5_ofs;
header = dp_packet_resize_l2_5(packet, MPLS_HLEN);
memmove(header, header + MPLS_HLEN, len);
memcpy(header + len, &lse, sizeof lse);
}
pkt_metadata_init_conn(&packet->md);
}
/* If 'packet' is an MPLS packet, removes its outermost MPLS label stack entry.
* If the label that was removed was the only MPLS label, changes 'packet''s
* Ethertype to 'ethtype' (which ordinarily should not be an MPLS
* Ethertype). */
void
pop_mpls(struct dp_packet *packet, ovs_be16 ethtype)
{
if (is_mpls(packet)) {
struct mpls_hdr *mh = dp_packet_l2_5(packet);
size_t len = packet->l2_5_ofs;
set_ethertype(packet, ethtype);
if (get_16aligned_be32(&mh->mpls_lse) & htonl(MPLS_BOS_MASK)) {
dp_packet_set_l2_5(packet, NULL);
}
/* Shift the l2 header forward. */
memmove((char*)dp_packet_data(packet) + MPLS_HLEN, dp_packet_data(packet), len);
dp_packet_resize_l2_5(packet, -MPLS_HLEN);
/* Invalidate offload flags as they are not valid after
* decapsulation of MPLS header. */
dp_packet_reset_offload(packet);
/* packet_type must be reset for the MPLS packets with no l2 header */
if (!len) {
if (ethtype == htons(ETH_TYPE_TEB)) {
/* The inner packet must be classified as ethernet if the
* ethtype is ETH_TYPE_TEB. */
packet->packet_type = htonl(PT_ETH);
} else {
packet->packet_type = PACKET_TYPE_BE(OFPHTN_ETHERTYPE,
ntohs(ethtype));
}
}
}
}
void
push_nsh(struct dp_packet *packet, const struct nsh_hdr *nsh_hdr_src)
{
struct nsh_hdr *nsh;
size_t length = nsh_hdr_len(nsh_hdr_src);
uint8_t next_proto;
switch (ntohl(packet->packet_type)) {
case PT_ETH:
next_proto = NSH_P_ETHERNET;
break;
case PT_IPV4:
next_proto = NSH_P_IPV4;
break;
case PT_IPV6:
next_proto = NSH_P_IPV6;
break;
case PT_NSH:
next_proto = NSH_P_NSH;
break;
default:
OVS_NOT_REACHED();
}
nsh = (struct nsh_hdr *) dp_packet_resize_l2(packet, length);
memcpy(nsh, nsh_hdr_src, length);
nsh->next_proto = next_proto;
packet->packet_type = htonl(PT_NSH);
dp_packet_reset_offsets(packet);
packet->l3_ofs = 0;
}
bool
pop_nsh(struct dp_packet *packet)
{
struct nsh_hdr *nsh = (struct nsh_hdr *) dp_packet_l3(packet);
size_t length;
uint32_t next_pt;
if (packet->packet_type == htonl(PT_NSH) && nsh) {
switch (nsh->next_proto) {
case NSH_P_ETHERNET:
next_pt = PT_ETH;
break;
case NSH_P_IPV4:
next_pt = PT_IPV4;
break;
case NSH_P_IPV6:
next_pt = PT_IPV6;
break;
case NSH_P_NSH:
next_pt = PT_NSH;
break;
default:
/* Unknown inner packet type. Drop packet. */
return false;
}
length = nsh_hdr_len(nsh);
dp_packet_reset_packet(packet, length);
packet->packet_type = htonl(next_pt);
/* Packet must be recirculated for further processing. */
}
return true;
}
/* Converts hex digits in 'hex' to an Ethernet packet in '*packetp'. The
* caller must free '*packetp'. On success, returns NULL. On failure, returns
* an error message and stores NULL in '*packetp'.
*
* Aligns the L3 header of '*packetp' on a 32-bit boundary. */
const char *
eth_from_hex(const char *hex, struct dp_packet **packetp)
{
struct dp_packet *packet;
/* Use 2 bytes of headroom to 32-bit align the L3 header. */
packet = *packetp = dp_packet_new_with_headroom(strlen(hex) / 2, 2);
if (dp_packet_put_hex(packet, hex, NULL)[0] != '\0') {
dp_packet_delete(packet);
*packetp = NULL;
return "Trailing garbage in packet data";
}
if (dp_packet_size(packet) < ETH_HEADER_LEN) {
dp_packet_delete(packet);
*packetp = NULL;
return "Packet data too short for Ethernet";
}
return NULL;
}
void
eth_format_masked(const struct eth_addr eth,
const struct eth_addr *mask, struct ds *s)
{
ds_put_format(s, ETH_ADDR_FMT, ETH_ADDR_ARGS(eth));
if (mask && !eth_mask_is_exact(*mask)) {
ds_put_format(s, "/"ETH_ADDR_FMT, ETH_ADDR_ARGS(*mask));
}
}
void
in6_addr_solicited_node(struct in6_addr *addr, const struct in6_addr *ip6)
{
union ovs_16aligned_in6_addr *taddr =
(union ovs_16aligned_in6_addr *) addr;
memset(taddr->be16, 0, sizeof(taddr->be16));
taddr->be16[0] = htons(0xff02);
taddr->be16[5] = htons(0x1);
taddr->be16[6] = htons(0xff00);
memcpy(&addr->s6_addr[13], &ip6->s6_addr[13], 3);
}
/*
* Generates ipv6 EUI64 address from the given eth addr
* and prefix and stores it in 'lla'
*/
void
in6_generate_eui64(struct eth_addr ea, const struct in6_addr *prefix,
struct in6_addr *lla)
{
union ovs_16aligned_in6_addr *taddr =
(union ovs_16aligned_in6_addr *) lla;
union ovs_16aligned_in6_addr *prefix_taddr =
(union ovs_16aligned_in6_addr *) prefix;
taddr->be16[0] = prefix_taddr->be16[0];
taddr->be16[1] = prefix_taddr->be16[1];
taddr->be16[2] = prefix_taddr->be16[2];
taddr->be16[3] = prefix_taddr->be16[3];
taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
taddr->be16[7] = ea.be16[2];
}
/* Generates ipv6 link local address from the given eth addr
* with prefix 'fe80::/64' and stores it in 'lla'. */
void
in6_generate_lla(struct eth_addr ea, struct in6_addr *lla)
{
union ovs_16aligned_in6_addr *taddr =
(union ovs_16aligned_in6_addr *) lla;
memset(taddr->be16, 0, sizeof(taddr->be16));
taddr->be16[0] = htons(0xfe80);
taddr->be16[4] = htons(((ea.ea[0] ^ 0x02) << 8) | ea.ea[1]);
taddr->be16[5] = htons(ea.ea[2] << 8 | 0x00ff);
taddr->be16[6] = htons(0xfe << 8 | ea.ea[3]);
taddr->be16[7] = ea.be16[2];
}
/* Returns true if 'addr' is a link local address. Otherwise, false. */
bool
in6_is_lla(struct in6_addr *addr)
{
#ifdef s6_addr32
return addr->s6_addr32[0] == htonl(0xfe800000) && !(addr->s6_addr32[1]);
#else
return addr->s6_addr[0] == 0xfe && addr->s6_addr[1] == 0x80 &&
!(addr->s6_addr[2] | addr->s6_addr[3] | addr->s6_addr[4] |
addr->s6_addr[5] | addr->s6_addr[6] | addr->s6_addr[7]);
#endif
}
void
ipv6_multicast_to_ethernet(struct eth_addr *eth, const struct in6_addr *ip6)
{
eth->ea[0] = 0x33;
eth->ea[1] = 0x33;
eth->ea[2] = ip6->s6_addr[12];
eth->ea[3] = ip6->s6_addr[13];
eth->ea[4] = ip6->s6_addr[14];
eth->ea[5] = ip6->s6_addr[15];
}
/* Given the IP netmask 'netmask', returns the number of bits of the IP address
* that it specifies, that is, the number of 1-bits in 'netmask'.
*
* If 'netmask' is not a CIDR netmask (see ip_is_cidr()), the return value will
* still be in the valid range but isn't otherwise meaningful. */
int
ip_count_cidr_bits(ovs_be32 netmask)
{
return 32 - ctz32(ntohl(netmask));
}
void
ip_format_masked(ovs_be32 ip, ovs_be32 mask, struct ds *s)
{
ds_put_format(s, IP_FMT, IP_ARGS(ip));
if (mask != OVS_BE32_MAX) {
if (ip_is_cidr(mask)) {
ds_put_format(s, "/%d", ip_count_cidr_bits(mask));
} else {
ds_put_format(s, "/"IP_FMT, IP_ARGS(mask));
}
}
}
/* Parses string 's', which must be an IP address. Stores the IP address into
* '*ip'. Returns true if successful, otherwise false. */
bool
ip_parse(const char *s, ovs_be32 *ip)
{
return inet_pton(AF_INET, s, ip) == 1;
}
/* Parses string 's', which must be an IP address with a port number
* with ":" as a separator (e.g.: 192.168.1.2:80).
* Stores the IP address into '*ip' and port number to '*port'.
*
* Returns NULL if successful, otherwise an error message that the caller must
* free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_port(const char *s, ovs_be32 *ip, ovs_be16 *port)
{
int n = 0;
if (ovs_scan(s, IP_PORT_SCAN_FMT"%n", IP_PORT_SCAN_ARGS(ip, port), &n)
&& !s[n]) {
return NULL;
}
return xasprintf("%s: invalid IP address or port number", s);
}
/* Parses string 's', which must be an IP address with an optional netmask or
* CIDR prefix length. Stores the IP address into '*ip', netmask into '*mask',
* (255.255.255.255, if 's' lacks a netmask), and number of scanned characters
* into '*n'.
*
* Returns NULL if successful, otherwise an error message that the caller must
* free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_masked_len(const char *s, int *n, ovs_be32 *ip,
ovs_be32 *mask)
{
int prefix;
if (ovs_scan_len(s, n, IP_SCAN_FMT"/"IP_SCAN_FMT,
IP_SCAN_ARGS(ip), IP_SCAN_ARGS(mask))) {
/* OK. */
} else if (ovs_scan_len(s, n, IP_SCAN_FMT"/%d",
IP_SCAN_ARGS(ip), &prefix)) {
if (prefix < 0 || prefix > 32) {
return xasprintf("%s: IPv4 network prefix bits not between 0 and "
"32, inclusive", s);
}
*mask = be32_prefix_mask(prefix);
} else if (ovs_scan_len(s, n, IP_SCAN_FMT, IP_SCAN_ARGS(ip))) {
*mask = OVS_BE32_MAX;
} else {
return xasprintf("%s: invalid IP address", s);
}
return NULL;
}
/* This function is similar to ip_parse_masked_len(), but doesn't return the
* number of scanned characters and expects 's' to end after the ip/(optional)
* mask.
*
* Returns NULL if successful, otherwise an error message that the caller must
* free(). */
char * OVS_WARN_UNUSED_RESULT
ip_parse_masked(const char *s, ovs_be32 *ip, ovs_be32 *mask)
{
int n = 0;
char *error = ip_parse_masked_len(s, &n, ip, mask);
if (!error && s[n]) {
return xasprintf("%s: invalid IP address", s);
}
return error;
}
/* Similar to ip_parse_masked_len(), but the mask, if present, must be a CIDR
* mask and is returned as a prefix len in '*plen'. */
char * OVS_WARN_UNUSED_RESULT
ip_parse_cidr_len(const char *s, int *n, ovs_be32 *ip, unsigned int *plen)
{
ovs_be32 mask;
char *error;
error = ip_parse_masked_len(s, n, ip, &mask);
if (error) {
return error;
}
if (!ip_is_cidr(mask)) {
return xasprintf("%s: CIDR network required", s);
}
*plen = ip_count_cidr_bits(mask);
return NULL;
}
/* Similar to ip_parse_cidr_len(), but doesn't return the number of scanned
* characters and expects 's' to be NULL terminated at the end of the
* ip/(optional) cidr. */
char * OVS_WARN_UNUSED_RESULT
ip_parse_cidr(const char *s, ovs_be32 *ip, unsigned int *plen)
{
int n = 0;
char *error = ip_parse_cidr_len(s, &n, ip, plen);
if (!error && s[n]) {
return xasprintf("%s: invalid IP address", s);
}
return error;
}
/* Parses string 's', which must be an IPv6 address. Stores the IPv6 address
* into '*ip'. Returns true if successful, otherwise false. */
bool
ipv6_parse(const char *s, struct in6_addr *ip)
{
return inet_pton(AF_INET6, s, ip) == 1;
}
/* Parses string 's', which must be an IPv6 address with an optional netmask or
* CIDR prefix length. Stores the IPv6 address into '*ip' and the netmask into
* '*mask' (if 's' does not contain a netmask, all-one-bits is assumed), and
* number of scanned characters into '*n'.
*
* Returns NULL if successful, otherwise an error message that the caller must
* free(). */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_masked_len(const char *s, int *n, struct in6_addr *ip,
struct in6_addr *mask)
{
char ipv6_s[IPV6_SCAN_LEN + 1];
int prefix;
if (ovs_scan_len(s, n, " "IPV6_SCAN_FMT, ipv6_s)
&& ipv6_parse(ipv6_s, ip)) {
if (ovs_scan_len(s, n, "/%d", &prefix)) {
if (prefix < 0 || prefix > 128) {
return xasprintf("%s: IPv6 network prefix bits not between 0 "
"and 128, inclusive", s);
}
*mask = ipv6_create_mask(prefix);
} else if (ovs_scan_len(s, n, "/"IPV6_SCAN_FMT, ipv6_s)) {
if (!ipv6_parse(ipv6_s, mask)) {
return xasprintf("%s: Invalid IPv6 mask", s);
}
/* OK. */
} else {
/* OK. No mask. */
*mask = in6addr_exact;
}
return NULL;
}
return xasprintf("%s: invalid IPv6 address", s);
}
/* This function is similar to ipv6_parse_masked_len(), but doesn't return the
* number of scanned characters and expects 's' to end following the
* ipv6/(optional) mask. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_masked(const char *s, struct in6_addr *ip, struct in6_addr *mask)
{
int n = 0;
char *error = ipv6_parse_masked_len(s, &n, ip, mask);
if (!error && s[n]) {
return xasprintf("%s: invalid IPv6 address", s);
}
return error;
}
/* Similar to ipv6_parse_masked_len(), but the mask, if present, must be a CIDR
* mask and is returned as a prefix length in '*plen'. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_cidr_len(const char *s, int *n, struct in6_addr *ip,
unsigned int *plen)
{
struct in6_addr mask;
char *error;
error = ipv6_parse_masked_len(s, n, ip, &mask);
if (error) {
return error;
}
if (!ipv6_is_cidr(&mask)) {
return xasprintf("%s: IPv6 CIDR network required", s);
}
*plen = ipv6_count_cidr_bits(&mask);
return NULL;
}
/* Similar to ipv6_parse_cidr_len(), but doesn't return the number of scanned
* characters and expects 's' to end after the ipv6/(optional) cidr. */
char * OVS_WARN_UNUSED_RESULT
ipv6_parse_cidr(const char *s, struct in6_addr *ip, unsigned int *plen)
{
int n = 0;
char *error = ipv6_parse_cidr_len(s, &n, ip, plen);
if (!error && s[n]) {
return xasprintf("%s: invalid IPv6 address", s);
}
return error;
}
/* Stores the string representation of the IPv6 address 'addr' into the
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
* bytes long. */
void
ipv6_format_addr(const struct in6_addr *addr, struct ds *s)
{
char *dst;
ds_reserve(s, s->length + INET6_ADDRSTRLEN);
dst = s->string + s->length;
inet_ntop(AF_INET6, addr, dst, INET6_ADDRSTRLEN);
s->length += strlen(dst);
}
/* Same as print_ipv6_addr, but optionally encloses the address in square
* brackets. */
void
ipv6_format_addr_bracket(const struct in6_addr *addr, struct ds *s,
bool bracket)
{
if (bracket) {
ds_put_char(s, '[');
}
ipv6_format_addr(addr, s);
if (bracket) {
ds_put_char(s, ']');
}
}
void
ipv6_format_mapped(const struct in6_addr *addr, struct ds *s)
{
if (IN6_IS_ADDR_V4MAPPED(addr)) {
ds_put_format(s, IP_FMT, addr->s6_addr[12], addr->s6_addr[13],
addr->s6_addr[14], addr->s6_addr[15]);
} else {
ipv6_format_addr(addr, s);
}
}
void
ipv6_format_masked(const struct in6_addr *addr, const struct in6_addr *mask,
struct ds *s)
{
ipv6_format_addr(addr, s);
if (mask && !ipv6_mask_is_exact(mask)) {
if (ipv6_is_cidr(mask)) {
int cidr_bits = ipv6_count_cidr_bits(mask);
ds_put_format(s, "/%d", cidr_bits);
} else {
ds_put_char(s, '/');
ipv6_format_addr(mask, s);
}
}
}
/* Stores the string representation of the IPv6 address 'addr' into the
* character array 'addr_str', which must be at least INET6_ADDRSTRLEN
* bytes long. If addr is IPv4-mapped, store an IPv4 dotted-decimal string. */
const char *
ipv6_string_mapped(char *addr_str, const struct in6_addr *addr)
{
ovs_be32 ip;
ip = in6_addr_get_mapped_ipv4(addr);
if (ip) {
return inet_ntop(AF_INET, &ip, addr_str, INET6_ADDRSTRLEN);
} else {
return inet_ntop(AF_INET6, addr, addr_str, INET6_ADDRSTRLEN);
}
}
#ifdef s6_addr32
#define s6_addrX s6_addr32
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 4; VAR++)
#else
#define s6_addrX s6_addr
#define IPV6_FOR_EACH(VAR) for (int VAR = 0; VAR < 16; VAR++)
#endif
struct in6_addr
ipv6_addr_bitand(const struct in6_addr *a, const struct in6_addr *b)
{
struct in6_addr dst;
IPV6_FOR_EACH (i) {
dst.s6_addrX[i] = a->s6_addrX[i] & b->s6_addrX[i];
}
return dst;
}
struct in6_addr
ipv6_addr_bitxor(const struct in6_addr *a, const struct in6_addr *b)
{
struct in6_addr dst;
IPV6_FOR_EACH (i) {
dst.s6_addrX[i] = a->s6_addrX[i] ^ b->s6_addrX[i];
}
return dst;
}
bool
ipv6_is_zero(const struct in6_addr *a)
{
IPV6_FOR_EACH (i) {
if (a->s6_addrX[i]) {
return false;
}
}
return true;
}
/* Returns an in6_addr consisting of 'mask' high-order 1-bits and 128-N
* low-order 0-bits. */
struct in6_addr
ipv6_create_mask(int mask)
{
struct in6_addr netmask;
uint8_t *netmaskp = &netmask.s6_addr[0];
memset(&netmask, 0, sizeof netmask);
while (mask > 8) {
*netmaskp = 0xff;
netmaskp++;
mask -= 8;
}
if (mask) {
*netmaskp = 0xff << (8 - mask);
}
return netmask;
}
/* Given the IPv6 netmask 'netmask', returns the number of bits of the IPv6
* address that it specifies, that is, the number of 1-bits in 'netmask'.
* 'netmask' must be a CIDR netmask (see ipv6_is_cidr()).
*
* If 'netmask' is not a CIDR netmask (see ipv6_is_cidr()), the return value
* will still be in the valid range but isn't otherwise meaningful. */
int
ipv6_count_cidr_bits(const struct in6_addr *netmask)
{
int i;
int count = 0;
const uint8_t *netmaskp = &netmask->s6_addr[0];
for (i=0; i<16; i++) {
if (netmaskp[i] == 0xff) {
count += 8;
} else {
uint8_t nm;
for(nm = netmaskp[i]; nm; nm <<= 1) {
count++;
}
break;
}
}
return count;
}
/* Returns true if 'netmask' is a CIDR netmask, that is, if it consists of N
* high-order 1-bits and 128-N low-order 0-bits. */
bool
ipv6_is_cidr(const struct in6_addr *netmask)
{
const uint8_t *netmaskp = &netmask->s6_addr[0];
int i;
for (i=0; i<16; i++) {
if (netmaskp[i] != 0xff) {
uint8_t x = ~netmaskp[i];
if (x & (x + 1)) {
return false;
}
while (++i < 16) {
if (netmaskp[i]) {
return false;
}
}
}
}
return true;
}
/* Populates 'b' with an Ethernet II packet headed with the given 'eth_dst',
* 'eth_src' and 'eth_type' parameters. A payload of 'size' bytes is allocated
* in 'b' and returned. This payload may be populated with appropriate
* information by the caller. Sets 'b''s 'frame' pointer and 'l3' offset to
* the Ethernet header and payload respectively. Aligns b->l3 on a 32-bit
* boundary.
*
* The returned packet has enough headroom to insert an 802.1Q VLAN header if
* desired. */
void *
eth_compose(struct dp_packet *b, const struct eth_addr eth_dst,
const struct eth_addr eth_src, uint16_t eth_type,
size_t size)
{
void *data;
struct eth_header *eth;
dp_packet_clear(b);
/* The magic 2 here ensures that the L3 header (when it is added later)
* will be 32-bit aligned. */
dp_packet_prealloc_tailroom(b, 2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + size);
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
eth = dp_packet_put_uninit(b, ETH_HEADER_LEN);
data = dp_packet_put_zeros(b, size);
eth->eth_dst = eth_dst;
eth->eth_src = eth_src;
eth->eth_type = htons(eth_type);
b->packet_type = htonl(PT_ETH);
dp_packet_set_l3(b, data);
return data;
}
void
packet_set_ipv4_addr(struct dp_packet *packet,
ovs_16aligned_be32 *addr, ovs_be32 new_addr)
{
struct ip_header *nh = dp_packet_l3(packet);
ovs_be32 old_addr = get_16aligned_be32(addr);
size_t l4_size = dp_packet_l4_size(packet);
pkt_metadata_init_conn(&packet->md);
if (nh->ip_proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
if (dp_packet_hwol_l4_is_tcp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
} else {
struct tcp_header *th = dp_packet_l4(packet);
th->tcp_csum = recalc_csum32(th->tcp_csum, old_addr, new_addr);
}
} else if (nh->ip_proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN ) {
if (dp_packet_hwol_l4_is_udp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
} else {
struct udp_header *uh = dp_packet_l4(packet);
if (uh->udp_csum) {
uh->udp_csum = recalc_csum32(uh->udp_csum, old_addr, new_addr);
if (!uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
}
}
}
if (dp_packet_hwol_l3_ipv4(packet)) {
dp_packet_ol_reset_ip_csum_good(packet);
} else {
nh->ip_csum = recalc_csum32(nh->ip_csum, old_addr, new_addr);
}
put_16aligned_be32(addr, new_addr);
}
/* Returns true, if packet contains at least one routing header where
* segements_left > 0.
*
* This function assumes that L3 and L4 offsets are set in the packet. */
bool
packet_rh_present(struct dp_packet *packet, uint8_t *nexthdr, bool *first_frag)
{
const struct ovs_16aligned_ip6_hdr *nh;
size_t len;
size_t remaining;
uint8_t *data = dp_packet_l3(packet);
remaining = packet->l4_ofs - packet->l3_ofs;
if (remaining < sizeof *nh) {
return false;
}
nh = ALIGNED_CAST(struct ovs_16aligned_ip6_hdr *, data);
data += sizeof *nh;
remaining -= sizeof *nh;
*nexthdr = nh->ip6_nxt;
while (1) {
if ((*nexthdr != IPPROTO_HOPOPTS)
&& (*nexthdr != IPPROTO_ROUTING)
&& (*nexthdr != IPPROTO_DSTOPTS)
&& (*nexthdr != IPPROTO_AH)
&& (*nexthdr != IPPROTO_FRAGMENT)) {
/* It's either a terminal header (e.g., TCP, UDP) or one we
* don't understand. In either case, we're done with the
* packet, so use it to fill in 'nw_proto'. */
break;
}
/* We only verify that at least 8 bytes of the next header are
* available, but many of these headers are longer. Ensure that
* accesses within the extension header are within those first 8
* bytes. All extension headers are required to be at least 8
* bytes. */
if (remaining < 8) {
return false;
}
if (*nexthdr == IPPROTO_AH) {
/* A standard AH definition isn't available, but the fields
* we care about are in the same location as the generic
* option header--only the header length is calculated
* differently. */
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
*nexthdr = ext_hdr->ip6e_nxt;
len = (ext_hdr->ip6e_len + 2) * 4;
} else if (*nexthdr == IPPROTO_FRAGMENT) {
const struct ovs_16aligned_ip6_frag *frag_hdr
= ALIGNED_CAST(struct ovs_16aligned_ip6_frag *, data);
*first_frag = !(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) &&
(frag_hdr->ip6f_offlg & IP6F_MORE_FRAG);
*nexthdr = frag_hdr->ip6f_nxt;
len = sizeof *frag_hdr;
} else if (*nexthdr == IPPROTO_ROUTING) {
const struct ip6_rthdr *rh = (struct ip6_rthdr *)data;
if (rh->ip6r_segleft > 0) {
return true;
}
*nexthdr = rh->ip6r_nxt;
len = (rh->ip6r_len + 1) * 8;
} else {
const struct ip6_ext *ext_hdr = (struct ip6_ext *)data;
*nexthdr = ext_hdr->ip6e_nxt;
len = (ext_hdr->ip6e_len + 1) * 8;
}
if (remaining < len) {
return false;
}
remaining -= len;
data += len;
}
return false;
}
static void
packet_update_csum128(struct dp_packet *packet, uint8_t proto,
ovs_16aligned_be32 addr[4],
const struct in6_addr *new_addr)
{
size_t l4_size = dp_packet_l4_size(packet);
if (proto == IPPROTO_TCP && l4_size >= TCP_HEADER_LEN) {
if (dp_packet_hwol_l4_is_tcp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
} else {
struct tcp_header *th = dp_packet_l4(packet);
th->tcp_csum = recalc_csum128(th->tcp_csum, addr, new_addr);
}
} else if (proto == IPPROTO_UDP && l4_size >= UDP_HEADER_LEN) {
if (dp_packet_hwol_l4_is_udp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
} else {
struct udp_header *uh = dp_packet_l4(packet);
if (uh->udp_csum) {
uh->udp_csum = recalc_csum128(uh->udp_csum, addr, new_addr);
if (!uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
}
}
} else if (proto == IPPROTO_ICMPV6 &&
l4_size >= sizeof(struct icmp6_header)) {
struct icmp6_header *icmp = dp_packet_l4(packet);
icmp->icmp6_cksum = recalc_csum128(icmp->icmp6_cksum, addr, new_addr);
}
}
void
packet_set_ipv6_addr(struct dp_packet *packet, uint8_t proto,
ovs_16aligned_be32 addr[4],
const struct in6_addr *new_addr,
bool recalculate_csum)
{
if (recalculate_csum) {
packet_update_csum128(packet, proto, addr, new_addr);
}
memcpy(addr, new_addr, sizeof(ovs_be32[4]));
pkt_metadata_init_conn(&packet->md);
}
void
packet_set_ipv6_flow_label(ovs_16aligned_be32 *flow_label, ovs_be32 flow_key)
{
ovs_be32 old_label = get_16aligned_be32(flow_label);
ovs_be32 new_label = (old_label & htonl(~IPV6_LABEL_MASK)) | flow_key;
put_16aligned_be32(flow_label, new_label);
}
void
packet_set_ipv6_tc(ovs_16aligned_be32 *flow_label, uint8_t tc)
{
ovs_be32 old_label = get_16aligned_be32(flow_label);
ovs_be32 new_label = (old_label & htonl(0xF00FFFFF)) | htonl(tc << 20);
put_16aligned_be32(flow_label, new_label);
}
/* Modifies the IPv4 header fields of 'packet' to be consistent with 'src',
* 'dst', 'tos', and 'ttl'. Updates 'packet''s L4 checksums as appropriate.
* 'packet' must contain a valid IPv4 packet with correctly populated l[347]
* markers. */
void
packet_set_ipv4(struct dp_packet *packet, ovs_be32 src, ovs_be32 dst,
uint8_t tos, uint8_t ttl)
{
struct ip_header *nh = dp_packet_l3(packet);
if (get_16aligned_be32(&nh->ip_src) != src) {
packet_set_ipv4_addr(packet, &nh->ip_src, src);
}
if (get_16aligned_be32(&nh->ip_dst) != dst) {
packet_set_ipv4_addr(packet, &nh->ip_dst, dst);
}
if (nh->ip_tos != tos) {
uint8_t *field = &nh->ip_tos;
if (dp_packet_hwol_l3_ipv4(packet)) {
dp_packet_ol_reset_ip_csum_good(packet);
} else {
nh->ip_csum = recalc_csum16(nh->ip_csum, htons((uint16_t) *field),
htons((uint16_t) tos));
}
*field = tos;
}
if (nh->ip_ttl != ttl) {
uint8_t *field = &nh->ip_ttl;
if (dp_packet_hwol_l3_ipv4(packet)) {
dp_packet_ol_reset_ip_csum_good(packet);
} else {
nh->ip_csum = recalc_csum16(nh->ip_csum, htons(*field << 8),
htons(ttl << 8));
}
*field = ttl;
}
}
/* Modifies the IPv6 header fields of 'packet' to be consistent with 'src',
* 'dst', 'traffic class', and 'next hop'. Updates 'packet''s L4 checksums as
* appropriate. 'packet' must contain a valid IPv6 packet with correctly
* populated l[34] offsets. */
void
packet_set_ipv6(struct dp_packet *packet, const struct in6_addr *src,
const struct in6_addr *dst, uint8_t key_tc, ovs_be32 key_fl,
uint8_t key_hl)
{
struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(packet);
bool recalc_csum = true;
uint8_t proto = 0;
bool rh_present;
rh_present = packet_rh_present(packet, &proto, &recalc_csum);
if (memcmp(&nh->ip6_src, src, sizeof(ovs_be32[4]))) {
packet_set_ipv6_addr(packet, proto, nh->ip6_src.be32,
src, recalc_csum);
}
if (memcmp(&nh->ip6_dst, dst, sizeof(ovs_be32[4]))) {
packet_set_ipv6_addr(packet, proto, nh->ip6_dst.be32, dst,
!rh_present && recalc_csum);
}
packet_set_ipv6_tc(&nh->ip6_flow, key_tc);
packet_set_ipv6_flow_label(&nh->ip6_flow, key_fl);
nh->ip6_hlim = key_hl;
}
static void
packet_set_port(ovs_be16 *port, ovs_be16 new_port, ovs_be16 *csum)
{
if (*port != new_port) {
if (csum) {
*csum = recalc_csum16(*csum, *port, new_port);
}
*port = new_port;
}
}
/* Sets the TCP source and destination port ('src' and 'dst' respectively) of
* the TCP header contained in 'packet'. 'packet' must be a valid TCP packet
* with its l4 offset properly populated. */
void
packet_set_tcp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
struct tcp_header *th = dp_packet_l4(packet);
ovs_be16 *csum = NULL;
if (dp_packet_hwol_l4_is_tcp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
} else {
csum = &th->tcp_csum;
}
packet_set_port(&th->tcp_src, src, csum);
packet_set_port(&th->tcp_dst, dst, csum);
pkt_metadata_init_conn(&packet->md);
}
/* Sets the UDP source and destination port ('src' and 'dst' respectively) of
* the UDP header contained in 'packet'. 'packet' must be a valid UDP packet
* with its l4 offset properly populated. */
void
packet_set_udp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
struct udp_header *uh = dp_packet_l4(packet);
if (dp_packet_hwol_l4_is_udp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
packet_set_port(&uh->udp_src, src, NULL);
packet_set_port(&uh->udp_dst, dst, NULL);
} else {
ovs_be16 *csum = uh->udp_csum ? &uh->udp_csum : NULL;
packet_set_port(&uh->udp_src, src, csum);
packet_set_port(&uh->udp_dst, dst, csum);
if (csum && !uh->udp_csum) {
uh->udp_csum = htons(0xffff);
}
}
pkt_metadata_init_conn(&packet->md);
}
/* Sets the SCTP source and destination port ('src' and 'dst' respectively) of
* the SCTP header contained in 'packet'. 'packet' must be a valid SCTP packet
* with its l4 offset properly populated. */
void
packet_set_sctp_port(struct dp_packet *packet, ovs_be16 src, ovs_be16 dst)
{
struct sctp_header *sh = dp_packet_l4(packet);
if (dp_packet_hwol_l4_is_sctp(packet)) {
dp_packet_ol_reset_l4_csum_good(packet);
sh->sctp_src = src;
sh->sctp_dst = dst;
} else {
ovs_be32 old_csum, old_correct_csum, new_csum;
uint16_t tp_len = dp_packet_l4_size(packet);
old_csum = get_16aligned_be32(&sh->sctp_csum);
put_16aligned_be32(&sh->sctp_csum, 0);
old_correct_csum = crc32c((void *) sh, tp_len);
sh->sctp_src = src;
sh->sctp_dst = dst;
new_csum = crc32c((void *) sh, tp_len);
put_16aligned_be32(&sh->sctp_csum, old_csum ^ old_correct_csum
^ new_csum);
}
pkt_metadata_init_conn(&packet->md);
}
/* Sets the ICMP type and code of the ICMP header contained in 'packet'.
* 'packet' must be a valid ICMP packet with its l4 offset properly
* populated. */
void
packet_set_icmp(struct dp_packet *packet, uint8_t type, uint8_t code)
{
struct icmp_header *ih = dp_packet_l4(packet);
ovs_be16 orig_tc = htons(ih->icmp_type << 8 | ih->icmp_code);
ovs_be16 new_tc = htons(type << 8 | code);
if (orig_tc != new_tc) {
ih->icmp_type = type;
ih->icmp_code = code;
ih->icmp_csum = recalc_csum16(ih->icmp_csum, orig_tc, new_tc);
}
pkt_metadata_init_conn(&packet->md);
}
/* Sets the IGMP type to IGMP_HOST_MEMBERSHIP_QUERY and populates the
* v3 query header fields in 'packet'. 'packet' must be a valid IGMPv3
* query packet with its l4 offset properly populated.
*/
void
packet_set_igmp3_query(struct dp_packet *packet, uint8_t max_resp,
ovs_be32 group, bool srs, uint8_t qrv, uint8_t qqic)
{
struct igmpv3_query_header *igh = dp_packet_l4(packet);
ovs_be16 orig_type_max_resp =
htons(igh->type << 8 | igh->max_resp);
ovs_be16 new_type_max_resp =
htons(IGMP_HOST_MEMBERSHIP_QUERY << 8 | max_resp);
if (orig_type_max_resp != new_type_max_resp) {
igh->type = IGMP_HOST_MEMBERSHIP_QUERY;
igh->max_resp = max_resp;
igh->csum = recalc_csum16(igh->csum, orig_type_max_resp,
new_type_max_resp);
}
ovs_be32 old_group = get_16aligned_be32(&igh->group);
if (old_group != group) {
put_16aligned_be32(&igh->group, group);
igh->csum = recalc_csum32(igh->csum, old_group, group);
}
/* See RFC 3376 4.1.6. */
if (qrv > 7) {
qrv = 0;
}
ovs_be16 orig_srs_qrv_qqic = htons(igh->srs_qrv << 8 | igh->qqic);
ovs_be16 new_srs_qrv_qqic = htons(srs << 11 | qrv << 8 | qqic);
if (orig_srs_qrv_qqic != new_srs_qrv_qqic) {
igh->srs_qrv = (srs << 3 | qrv);
igh->qqic = qqic;
igh->csum = recalc_csum16(igh->csum, orig_srs_qrv_qqic,
new_srs_qrv_qqic);
}
}
void
packet_set_nd_ext(struct dp_packet *packet, const ovs_16aligned_be32 rso_flags,
const uint8_t opt_type)
{
struct ovs_nd_msg *ns;
struct ovs_nd_lla_opt *opt;
int bytes_remain = dp_packet_l4_size(packet);
struct ovs_16aligned_ip6_hdr * nh = dp_packet_l3(packet);
uint32_t pseudo_hdr_csum = 0;
if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
return;
}
if (nh) {
pseudo_hdr_csum = packet_csum_pseudoheader6(nh);
}
ns = dp_packet_l4(packet);
opt = &ns->options[0];
/* set RSO flags and option type */
ns->rso_flags = rso_flags;
opt->type = opt_type;
/* recalculate checksum */
ovs_be16 *csum_value = &(ns->icmph.icmp6_cksum);
*csum_value = 0;
*csum_value = csum_finish(csum_continue(pseudo_hdr_csum,
&(ns->icmph), bytes_remain));
}
void
packet_set_nd(struct dp_packet *packet, const struct in6_addr *target,
const struct eth_addr sll, const struct eth_addr tll)
{
struct ovs_nd_msg *ns;
struct ovs_nd_lla_opt *opt;
int bytes_remain = dp_packet_l4_size(packet);
if (OVS_UNLIKELY(bytes_remain < sizeof(*ns))) {
return;
}
ns = dp_packet_l4(packet);
opt = &ns->options[0];
bytes_remain -= sizeof(*ns);
if (memcmp(&ns->target, target, sizeof(ovs_be32[4]))) {
packet_set_ipv6_addr(packet, IPPROTO_ICMPV6, ns->target.be32, target,
true);
}
while (bytes_remain >= ND_LLA_OPT_LEN && opt->len != 0) {
if (opt->type == ND_OPT_SOURCE_LINKADDR && opt->len == 1) {
if (!eth_addr_equals(opt->mac, sll)) {
ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
*csum = recalc_csum48(*csum, opt->mac, sll);
opt->mac = sll;
}
/* A packet can only contain one SLL or TLL option */
break;
} else if (opt->type == ND_OPT_TARGET_LINKADDR && opt->len == 1) {
if (!eth_addr_equals(opt->mac, tll)) {
ovs_be16 *csum = &(ns->icmph.icmp6_cksum);
*csum = recalc_csum48(*csum, opt->mac, tll);
opt->mac = tll;
}
/* A packet can only contain one SLL or TLL option */
break;
}
opt += opt->len;
bytes_remain -= opt->len * ND_LLA_OPT_LEN;
}
}
const char *
packet_tcp_flag_to_string(uint32_t flag)
{
switch (flag) {
case TCP_FIN:
return "fin";
case TCP_SYN:
return "syn";
case TCP_RST:
return "rst";
case TCP_PSH:
return "psh";
case TCP_ACK:
return "ack";
case TCP_URG:
return "urg";
case TCP_ECE:
return "ece";
case TCP_CWR:
return "cwr";
case TCP_NS:
return "ns";
case 0x200:
return "[200]";
case 0x400:
return "[400]";
case 0x800:
return "[800]";
default:
return NULL;
}
}
/* Appends a string representation of the TCP flags value 'tcp_flags'
* (e.g. from struct flow.tcp_flags or obtained via TCP_FLAGS) to 's', in the
* format used by tcpdump. */
void
packet_format_tcp_flags(struct ds *s, uint16_t tcp_flags)
{
if (!tcp_flags) {
ds_put_cstr(s, "none");
return;
}
if (tcp_flags & TCP_SYN) {
ds_put_char(s, 'S');
}
if (tcp_flags & TCP_FIN) {
ds_put_char(s, 'F');
}
if (tcp_flags & TCP_PSH) {
ds_put_char(s, 'P');
}
if (tcp_flags & TCP_RST) {
ds_put_char(s, 'R');
}
if (tcp_flags & TCP_URG) {
ds_put_char(s, 'U');
}
if (tcp_flags & TCP_ACK) {
ds_put_char(s, '.');
}
if (tcp_flags & TCP_ECE) {
ds_put_cstr(s, "E");
}
if (tcp_flags & TCP_CWR) {
ds_put_cstr(s, "C");
}
if (tcp_flags & TCP_NS) {
ds_put_cstr(s, "N");
}
if (tcp_flags & 0x200) {
ds_put_cstr(s, "[200]");
}
if (tcp_flags & 0x400) {
ds_put_cstr(s, "[400]");
}
if (tcp_flags & 0x800) {
ds_put_cstr(s, "[800]");
}
}
#define ARP_PACKET_SIZE (2 + ETH_HEADER_LEN + VLAN_HEADER_LEN + \
ARP_ETH_HEADER_LEN)
/* Clears 'b' and replaces its contents by an ARP frame with the specified
* 'arp_op', 'arp_sha', 'arp_tha', 'arp_spa', and 'arp_tpa'. The outer
* Ethernet frame is initialized with Ethernet source 'arp_sha' and destination
* 'arp_tha', except that destination ff:ff:ff:ff:ff:ff is used instead if
* 'broadcast' is true. Points the L3 header to the ARP header. */
void
compose_arp(struct dp_packet *b, uint16_t arp_op,
const struct eth_addr arp_sha, const struct eth_addr arp_tha,
bool broadcast, ovs_be32 arp_spa, ovs_be32 arp_tpa)
{
compose_arp__(b);
struct eth_header *eth = dp_packet_eth(b);
eth->eth_dst = broadcast ? eth_addr_broadcast : arp_tha;
eth->eth_src = arp_sha;
struct arp_eth_header *arp = dp_packet_l3(b);
arp->ar_op = htons(arp_op);
arp->ar_sha = arp_sha;
arp->ar_tha = arp_tha;
put_16aligned_be32(&arp->ar_spa, arp_spa);
put_16aligned_be32(&arp->ar_tpa, arp_tpa);
}
/* Clears 'b' and replaces its contents by an ARP frame. Sets the fields in
* the Ethernet and ARP headers that are fixed for ARP frames to those fixed
* values, and zeroes the other fields. Points the L3 header to the ARP
* header. */
void
compose_arp__(struct dp_packet *b)
{
dp_packet_clear(b);
dp_packet_prealloc_tailroom(b, ARP_PACKET_SIZE);
dp_packet_reserve(b, 2 + VLAN_HEADER_LEN);
struct eth_header *eth = dp_packet_put_zeros(b, sizeof *eth);
eth->eth_type = htons(ETH_TYPE_ARP);
struct arp_eth_header *arp = dp_packet_put_zeros(b, sizeof *arp);
arp->ar_hrd = htons(ARP_HRD_ETHERNET);
arp->ar_pro = htons(ARP_PRO_IP);
arp->ar_hln = sizeof arp->ar_sha;
arp->ar_pln = sizeof arp->ar_spa;
dp_packet_set_l3(b, arp);
b->packet_type = htonl(PT_ETH);
}
/* This function expects packet with ethernet header with correct
* l3 pointer set. */
void *
compose_ipv6(struct dp_packet *packet, uint8_t proto,
const struct in6_addr *src, const struct in6_addr *dst,
uint8_t key_tc, ovs_be32 key_fl, uint8_t key_hl, int size)
{
struct ovs_16aligned_ip6_hdr *nh;
void *data;
nh = dp_packet_l3(packet);
nh->ip6_vfc = 0x60;
nh->ip6_nxt = proto;
nh->ip6_plen = htons(size);
data = dp_packet_put_zeros(packet, size);
dp_packet_set_l4(packet, data);
packet_set_ipv6(packet, src, dst, key_tc, key_fl, key_hl);
return data;
}
/* Compose an IPv6 Neighbor Discovery Neighbor Solicitation message. */
void
compose_nd_ns(struct dp_packet *b, const struct eth_addr eth_src,
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst)
{
struct in6_addr sn_addr;
struct eth_addr eth_dst;
struct ovs_nd_msg *ns;
struct ovs_nd_lla_opt *lla_opt;
uint32_t icmp_csum;
in6_addr_solicited_node(&sn_addr, ipv6_dst);
ipv6_multicast_to_ethernet(ð_dst, &sn_addr);
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
ns = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, &sn_addr,
0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
ns->icmph.icmp6_type = ND_NEIGHBOR_SOLICIT;
ns->icmph.icmp6_code = 0;
put_16aligned_be32(&ns->rso_flags, htonl(0));
lla_opt = &ns->options[0];
lla_opt->type = ND_OPT_SOURCE_LINKADDR;
lla_opt->len = 1;
packet_set_nd(b, ipv6_dst, eth_src, eth_addr_zero);
ns->icmph.icmp6_cksum = 0;
icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
ns->icmph.icmp6_cksum = csum_finish(
csum_continue(icmp_csum, ns, ND_MSG_LEN + ND_LLA_OPT_LEN));
}
/* Compose an IPv6 Neighbor Discovery Neighbor Advertisement message. */
void
compose_nd_na(struct dp_packet *b,
const struct eth_addr eth_src, const struct eth_addr eth_dst,
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
ovs_be32 rso_flags)
{
struct ovs_nd_msg *na;
struct ovs_nd_lla_opt *lla_opt;
uint32_t icmp_csum;
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
na = compose_ipv6(b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst,
0, 0, 255, ND_MSG_LEN + ND_LLA_OPT_LEN);
na->icmph.icmp6_type = ND_NEIGHBOR_ADVERT;
na->icmph.icmp6_code = 0;
put_16aligned_be32(&na->rso_flags, rso_flags);
lla_opt = &na->options[0];
lla_opt->type = ND_OPT_TARGET_LINKADDR;
lla_opt->len = 1;
packet_set_nd(b, ipv6_src, eth_addr_zero, eth_src);
na->icmph.icmp6_cksum = 0;
icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
na->icmph.icmp6_cksum = csum_finish(csum_continue(
icmp_csum, na, ND_MSG_LEN + ND_LLA_OPT_LEN));
}
/* Compose an IPv6 Neighbor Discovery Router Advertisement message with
* Source Link-layer Address Option and MTU Option.
* Caller can call packet_put_ra_prefix_opt to append Prefix Information
* Options to composed messags in 'b'. */
void
compose_nd_ra(struct dp_packet *b,
const struct eth_addr eth_src, const struct eth_addr eth_dst,
const struct in6_addr *ipv6_src, const struct in6_addr *ipv6_dst,
uint8_t cur_hop_limit, uint8_t mo_flags,
ovs_be16 router_lt, ovs_be32 reachable_time,
ovs_be32 retrans_timer, uint32_t mtu)
{
/* Don't compose Router Advertisement packet with MTU Option if mtu
* value is 0. */
bool with_mtu = mtu != 0;
size_t mtu_opt_len = with_mtu ? ND_MTU_OPT_LEN : 0;
eth_compose(b, eth_dst, eth_src, ETH_TYPE_IPV6, IPV6_HEADER_LEN);
struct ovs_ra_msg *ra = compose_ipv6(
b, IPPROTO_ICMPV6, ipv6_src, ipv6_dst, 0, 0, 255,
RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len);
ra->icmph.icmp6_type = ND_ROUTER_ADVERT;
ra->icmph.icmp6_code = 0;
ra->cur_hop_limit = cur_hop_limit;
ra->mo_flags = mo_flags;
ra->router_lifetime = router_lt;
ra->reachable_time = reachable_time;
ra->retrans_timer = retrans_timer;
struct ovs_nd_lla_opt *lla_opt = ra->options;
lla_opt->type = ND_OPT_SOURCE_LINKADDR;
lla_opt->len = 1;
lla_opt->mac = eth_src;
if (with_mtu) {
/* ovs_nd_mtu_opt has the same size with ovs_nd_lla_opt. */
struct ovs_nd_mtu_opt *mtu_opt
= (struct ovs_nd_mtu_opt *)(lla_opt + 1);
mtu_opt->type = ND_OPT_MTU;
mtu_opt->len = 1;
mtu_opt->reserved = 0;
put_16aligned_be32(&mtu_opt->mtu, htonl(mtu));
}
ra->icmph.icmp6_cksum = 0;
uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
ra->icmph.icmp6_cksum = csum_finish(csum_continue(
icmp_csum, ra, RA_MSG_LEN + ND_LLA_OPT_LEN + mtu_opt_len));
}
/* Append an IPv6 Neighbor Discovery Prefix Information option to a
* Router Advertisement message. */
void
packet_put_ra_prefix_opt(struct dp_packet *b,
uint8_t plen, uint8_t la_flags,
ovs_be32 valid_lifetime, ovs_be32 preferred_lifetime,
const ovs_be128 prefix)
{
size_t prev_l4_size = dp_packet_l4_size(b);
struct ovs_16aligned_ip6_hdr *nh = dp_packet_l3(b);
nh->ip6_plen = htons(prev_l4_size + ND_PREFIX_OPT_LEN);
struct ovs_nd_prefix_opt *prefix_opt =
dp_packet_put_uninit(b, sizeof *prefix_opt);
prefix_opt->type = ND_OPT_PREFIX_INFORMATION;
prefix_opt->len = 4;
prefix_opt->prefix_len = plen;
prefix_opt->la_flags = la_flags;
put_16aligned_be32(&prefix_opt->valid_lifetime, valid_lifetime);
put_16aligned_be32(&prefix_opt->preferred_lifetime, preferred_lifetime);
put_16aligned_be32(&prefix_opt->reserved, 0);
memcpy(prefix_opt->prefix.be32, prefix.be32, sizeof(ovs_be32[4]));
struct ovs_ra_msg *ra = dp_packet_l4(b);
ra->icmph.icmp6_cksum = 0;
uint32_t icmp_csum = packet_csum_pseudoheader6(dp_packet_l3(b));
ra->icmph.icmp6_cksum = csum_finish(csum_continue(
icmp_csum, ra, prev_l4_size + ND_PREFIX_OPT_LEN));
}
uint32_t
packet_csum_pseudoheader(const struct ip_header *ip)
{
uint32_t partial = 0;
partial = csum_add32(partial, get_16aligned_be32(&ip->ip_src));
partial = csum_add32(partial, get_16aligned_be32(&ip->ip_dst));
partial = csum_add16(partial, htons(ip->ip_proto));
partial = csum_add16(partial, htons(ntohs(ip->ip_tot_len) -
IP_IHL(ip->ip_ihl_ver) * 4));
return partial;
}
#ifndef __CHECKER__
uint32_t
packet_csum_pseudoheader6(const struct ovs_16aligned_ip6_hdr *ip6)
{
uint32_t partial = 0;
partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
partial = csum_add16(partial, htons(ip6->ip6_nxt));
partial = csum_add16(partial, ip6->ip6_plen);
return partial;
}
/* Calculate the IPv6 upper layer checksum according to RFC2460. We pass the
ip6_nxt and ip6_plen values, so it will also work if extension headers
are present. */
ovs_be16
packet_csum_upperlayer6(const struct ovs_16aligned_ip6_hdr *ip6,
const void *data, uint8_t l4_protocol,
uint16_t l4_size)
{
uint32_t partial = 0;
partial = csum_continue(partial, &ip6->ip6_src, sizeof ip6->ip6_src);
partial = csum_continue(partial, &ip6->ip6_dst, sizeof ip6->ip6_dst);
partial = csum_add16(partial, htons(l4_protocol));
partial = csum_add16(partial, htons(l4_size));
partial = csum_continue(partial, data, l4_size);
return csum_finish(partial);
}
#endif
void
IP_ECN_set_ce(struct dp_packet *pkt, bool is_ipv6)
{
if (is_ipv6) {
ovs_16aligned_be32 *ip6 = dp_packet_l3(pkt);
put_16aligned_be32(ip6, get_16aligned_be32(ip6) |
htonl(IP_ECN_CE << 20));
} else {
struct ip_header *nh = dp_packet_l3(pkt);
uint8_t tos = nh->ip_tos;
tos |= IP_ECN_CE;
if (nh->ip_tos != tos) {
if (dp_packet_hwol_l3_ipv4(pkt)) {
dp_packet_ol_reset_ip_csum_good(pkt);
} else {
nh->ip_csum = recalc_csum16(nh->ip_csum, htons(nh->ip_tos),
htons((uint16_t) tos));
}
nh->ip_tos = tos;
}
}
}
/* Set TCP checksum field in packet 'p' with complete checksum.
* The packet must have the L3 and L4 offsets. */
void
packet_tcp_complete_csum(struct dp_packet *p, bool inner)
{
struct tcp_header *tcp;
size_t tcp_sz;
void *ip_hdr;
bool is_v4;
if (inner) {
tcp = dp_packet_inner_l4(p);
ip_hdr = dp_packet_inner_l3(p);
tcp_sz = dp_packet_inner_l4_size(p);
} else {
tcp = dp_packet_l4(p);
ip_hdr = dp_packet_l3(p);
tcp_sz = dp_packet_l4_size(p);
}
ovs_assert(tcp);
ovs_assert(ip_hdr);
if (!inner && dp_packet_hwol_is_outer_ipv6(p)) {
is_v4 = false;
} else if (!inner && dp_packet_hwol_is_outer_ipv4(p)) {
is_v4 = true;
} else if (dp_packet_hwol_is_ipv4(p)) {
is_v4 = true;
} else if (dp_packet_hwol_tx_ipv6(p)) {
is_v4 = false;
} else {
OVS_NOT_REACHED();
}
tcp->tcp_csum = 0;
if (is_v4) {
struct ip_header *ip = ip_hdr;
tcp->tcp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
tcp, tcp_sz));
} else {
struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
tcp->tcp_csum = packet_csum_upperlayer6(ip6, tcp, ip6->ip6_nxt,
tcp_sz);
}
}
/* Set UDP checksum field in packet 'p' with complete checksum.
* The packet must have the L3 and L4 offsets. */
void
packet_udp_complete_csum(struct dp_packet *p, bool inner)
{
struct udp_header *udp;
size_t udp_sz;
void *ip_hdr;
bool is_v4;
if (inner) {
udp = dp_packet_inner_l4(p);
ip_hdr = dp_packet_inner_l3(p);
udp_sz = dp_packet_inner_l4_size(p);
} else {
udp = dp_packet_l4(p);
ip_hdr = dp_packet_l3(p);
udp_sz = dp_packet_l4_size(p);
}
ovs_assert(udp);
ovs_assert(ip_hdr);
/* Skip csum calculation if the udp_csum is zero. */
if (!udp->udp_csum) {
return;
}
if (!inner && dp_packet_hwol_is_outer_ipv6(p)) {
is_v4 = false;
} else if (!inner && dp_packet_hwol_is_outer_ipv4(p)) {
is_v4 = true;
} else if (dp_packet_hwol_is_ipv4(p)) {
is_v4 = true;
} else if (dp_packet_hwol_tx_ipv6(p)) {
is_v4 = false;
} else {
OVS_NOT_REACHED();
}
udp->udp_csum = 0;
if (is_v4) {
struct ip_header *ip = ip_hdr;
udp->udp_csum = csum_finish(csum_continue(packet_csum_pseudoheader(ip),
udp, udp_sz));
} else {
struct ovs_16aligned_ip6_hdr *ip6 = ip_hdr;
udp->udp_csum = packet_csum_upperlayer6(ip6, udp, ip6->ip6_nxt,
udp_sz);
}
if (!udp->udp_csum) {
udp->udp_csum = htons(0xffff);
}
}
/* Set SCTP checksum field in packet 'p' with complete checksum.
* The packet must have the L3 and L4 offsets. */
void
packet_sctp_complete_csum(struct dp_packet *p, bool inner)
{
struct sctp_header *sh;
uint16_t tp_len;
ovs_be32 csum;
if (inner) {
sh = dp_packet_inner_l4(p);
tp_len = dp_packet_inner_l4_size(p);
} else {
sh = dp_packet_l4(p);
tp_len = dp_packet_l4_size(p);
}
ovs_assert(sh);
put_16aligned_be32(&sh->sctp_csum, 0);
csum = crc32c((void *) sh, tp_len);
put_16aligned_be32(&sh->sctp_csum, csum);
}
|