1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
|
/* Copyright (c) 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <config.h>
#include "ofproto-dpif-upcall.h"
#include <errno.h>
#include <stdbool.h>
#include <inttypes.h>
#include "connmgr.h"
#include "coverage.h"
#include "cmap.h"
#include "lib/dpif-provider.h"
#include "dpif.h"
#include "openvswitch/dynamic-string.h"
#include "fail-open.h"
#include "guarded-list.h"
#include "latch.h"
#include "openvswitch/list.h"
#include "netlink.h"
#include "openvswitch/ofpbuf.h"
#include "ofproto-dpif-ipfix.h"
#include "ofproto-dpif-sflow.h"
#include "ofproto-dpif-xlate.h"
#include "ofproto-dpif-xlate-cache.h"
#include "ofproto-dpif-trace.h"
#include "ovs-rcu.h"
#include "packets.h"
#include "openvswitch/poll-loop.h"
#include "seq.h"
#include "tunnel.h"
#include "unixctl.h"
#include "openvswitch/usdt-probes.h"
#include "openvswitch/vlog.h"
#include "lib/netdev-provider.h"
#define UPCALL_MAX_BATCH 64
#define REVALIDATE_MAX_BATCH 50
#define UINT64_THREE_QUARTERS (UINT64_MAX / 4 * 3)
VLOG_DEFINE_THIS_MODULE(ofproto_dpif_upcall);
COVERAGE_DEFINE(dumped_duplicate_flow);
COVERAGE_DEFINE(dumped_inconsistent_flow);
COVERAGE_DEFINE(dumped_new_flow);
COVERAGE_DEFINE(handler_duplicate_upcall);
COVERAGE_DEFINE(revalidate_missed_dp_flow);
COVERAGE_DEFINE(revalidate_missing_dp_flow);
COVERAGE_DEFINE(ukey_dp_change);
COVERAGE_DEFINE(ukey_invalid_stat_reset);
COVERAGE_DEFINE(ukey_replace_contention);
COVERAGE_DEFINE(upcall_flow_limit_grew);
COVERAGE_DEFINE(upcall_flow_limit_hit);
COVERAGE_DEFINE(upcall_flow_limit_kill);
COVERAGE_DEFINE(upcall_flow_limit_reduced);
COVERAGE_DEFINE(upcall_flow_limit_scaled);
COVERAGE_DEFINE(upcall_ukey_contention);
COVERAGE_DEFINE(upcall_ukey_replace);
/* A thread that reads upcalls from dpif, forwards each upcall's packet,
* and possibly sets up a kernel flow as a cache. */
struct handler {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
uint32_t handler_id; /* Handler id. */
};
/* In the absence of a multiple-writer multiple-reader datastructure for
* storing udpif_keys ("ukeys"), we use a large number of cmaps, each with its
* own lock for writing. */
#define N_UMAPS 512 /* per udpif. */
struct umap {
struct ovs_mutex mutex; /* Take for writing to the following. */
struct cmap cmap; /* Datapath flow keys. */
};
/* A thread that processes datapath flows, updates OpenFlow statistics, and
* updates or removes them if necessary.
*
* Revalidator threads operate in two phases: "dump" and "sweep". In between
* each phase, all revalidators sync up so that all revalidator threads are
* either in one phase or the other, but not a combination.
*
* During the dump phase, revalidators fetch flows from the datapath and
* attribute the statistics to OpenFlow rules. Each datapath flow has a
* corresponding ukey which caches the most recently seen statistics. If
* a flow needs to be deleted (for example, because it is unused over a
* period of time), revalidator threads may delete the flow during the
* dump phase. The datapath is not guaranteed to reliably dump all flows
* from the datapath, and there is no mapping between datapath flows to
* revalidators, so a particular flow may be handled by zero or more
* revalidators during a single dump phase. To avoid duplicate attribution
* of statistics, ukeys are never deleted during this phase.
*
* During the sweep phase, each revalidator takes ownership of a different
* slice of umaps and sweeps through all ukeys in those umaps to figure out
* whether they need to be deleted. During this phase, revalidators may
* fetch individual flows which were not dumped during the dump phase to
* validate them and attribute statistics.
*/
struct revalidator {
struct udpif *udpif; /* Parent udpif. */
pthread_t thread; /* Thread ID. */
unsigned int id; /* ovsthread_id_self(). */
};
/* An upcall handler for ofproto_dpif.
*
* udpif keeps records of two kind of logically separate units:
*
* upcall handling
* ---------------
*
* - An array of 'struct handler's for upcall handling and flow
* installation.
*
* flow revalidation
* -----------------
*
* - Revalidation threads which read the datapath flow table and maintains
* them.
*/
struct udpif {
struct ovs_list list_node; /* In all_udpifs list. */
struct dpif *dpif; /* Datapath handle. */
struct dpif_backer *backer; /* Opaque dpif_backer pointer. */
struct handler *handlers; /* Upcall handlers. */
uint32_t n_handlers;
struct revalidator *revalidators; /* Flow revalidators. */
uint32_t n_revalidators;
struct latch exit_latch; /* Tells child threads to exit. */
/* Revalidation. */
struct seq *reval_seq; /* Incremented to force revalidation. */
bool reval_exit; /* Set by leader on 'exit_latch. */
struct ovs_barrier reval_barrier; /* Barrier used by revalidators. */
struct dpif_flow_dump *dump; /* DPIF flow dump state. */
long long int dump_duration; /* Duration of the last flow dump. */
struct seq *dump_seq; /* Increments each dump iteration. */
atomic_bool enable_ufid; /* If true, skip dumping flow attrs. */
/* These variables provide a mechanism for the main thread to pause
* all revalidation without having to completely shut the threads down.
* 'pause_latch' is shared between the main thread and the lead
* revalidator thread, so when it is desirable to halt revalidation, the
* main thread will set the latch. 'pause' and 'pause_barrier' are shared
* by revalidator threads. The lead revalidator will set 'pause' when it
* observes the latch has been set, and this will cause all revalidator
* threads to wait on 'pause_barrier' at the beginning of the next
* revalidation round. */
bool pause; /* Set by leader on 'pause_latch. */
struct latch pause_latch; /* Set to force revalidators pause. */
struct ovs_barrier pause_barrier; /* Barrier used to pause all */
/* revalidators by main thread. */
/* There are 'N_UMAPS' maps containing 'struct udpif_key' elements.
*
* During the flow dump phase, revalidators insert into these with a random
* distribution. During the garbage collection phase, each revalidator
* takes care of garbage collecting a slice of these maps. */
struct umap *ukeys;
/* Datapath flow statistics. */
unsigned int max_n_flows;
unsigned int avg_n_flows;
/* Following fields are accessed and modified by different threads. */
atomic_uint flow_limit; /* Datapath flow hard limit. */
/* n_flows_mutex prevents multiple threads updating these concurrently. */
atomic_uint n_flows; /* Number of flows in the datapath. */
atomic_llong n_flows_timestamp; /* Last time n_flows was updated. */
struct ovs_mutex n_flows_mutex;
/* Following fields are accessed and modified only from the main thread. */
struct unixctl_conn **conns; /* Connections waiting on dump_seq. */
uint64_t conn_seq; /* Corresponds to 'dump_seq' when
conns[n_conns-1] was stored. */
size_t n_conns; /* Number of connections waiting. */
long long int offload_rebalance_time; /* Time of last offload rebalance */
};
enum upcall_type {
BAD_UPCALL, /* Some kind of bug somewhere. */
MISS_UPCALL, /* A flow miss. */
SLOW_PATH_UPCALL, /* Slow path upcall. */
SFLOW_UPCALL, /* sFlow sample. */
FLOW_SAMPLE_UPCALL, /* Per-flow sampling. */
IPFIX_UPCALL, /* Per-bridge sampling. */
CONTROLLER_UPCALL /* Destined for the controller. */
};
enum reval_result {
UKEY_KEEP,
UKEY_DELETE,
UKEY_MODIFY
};
struct upcall {
struct ofproto_dpif *ofproto; /* Parent ofproto. */
const struct recirc_id_node *recirc; /* Recirculation context. */
bool have_recirc_ref; /* Reference held on recirc ctx? */
/* The flow and packet are only required to be constant when using
* dpif-netdev. If a modification is absolutely necessary, a const cast
* may be used with other datapaths. */
const struct flow *flow; /* Parsed representation of the packet. */
enum odp_key_fitness fitness; /* Fitness of 'flow' relative to ODP key. */
const ovs_u128 *ufid; /* Unique identifier for 'flow'. */
unsigned pmd_id; /* Datapath poll mode driver id. */
const struct dp_packet *packet; /* Packet associated with this upcall. */
ofp_port_t ofp_in_port; /* OpenFlow in port, or OFPP_NONE. */
uint16_t mru; /* If !0, Maximum receive unit of
fragmented IP packet */
uint64_t hash;
enum upcall_type type; /* Type of the upcall. */
const struct nlattr *actions; /* Flow actions in DPIF_UC_ACTION Upcalls. */
bool xout_initialized; /* True if 'xout' must be uninitialized. */
struct xlate_out xout; /* Result of xlate_actions(). */
struct ofpbuf odp_actions; /* Datapath actions from xlate_actions(). */
struct flow_wildcards wc; /* Dependencies that megaflow must match. */
struct ofpbuf put_actions; /* Actions 'put' in the fastpath. */
struct dpif_ipfix *ipfix; /* IPFIX pointer or NULL. */
struct dpif_sflow *sflow; /* SFlow pointer or NULL. */
struct udpif_key *ukey; /* Revalidator flow cache. */
bool ukey_persists; /* Set true to keep 'ukey' beyond the
lifetime of this upcall. */
uint64_t reval_seq; /* udpif->reval_seq at translation time. */
/* Not used by the upcall callback interface. */
const struct nlattr *key; /* Datapath flow key. */
size_t key_len; /* Datapath flow key length. */
const struct nlattr *out_tun_key; /* Datapath output tunnel key. */
struct user_action_cookie cookie;
uint64_t odp_actions_stub[1024 / 8]; /* Stub for odp_actions. */
};
/* Ukeys must transition through these states using transition_ukey(). */
enum ukey_state {
UKEY_CREATED = 0,
UKEY_VISIBLE, /* Ukey is in umap, datapath flow install is queued. */
UKEY_OPERATIONAL, /* Ukey is in umap, datapath flow is installed. */
UKEY_INCONSISTENT, /* Ukey is in umap, datapath flow is inconsistent. */
UKEY_EVICTING, /* Ukey is in umap, datapath flow delete is queued. */
UKEY_EVICTED, /* Ukey is in umap, datapath flow is deleted. */
UKEY_DELETED, /* Ukey removed from umap, ukey free is deferred. */
};
#define N_UKEY_STATES (UKEY_DELETED + 1)
/* Ukey delete reasons used by USDT probes. Please keep in sync with the
* definition in utilities/usdt-scripts/flow_reval_monitor.py. */
enum flow_del_reason {
FDR_NONE = 0, /* No delete reason specified. */
FDR_AVOID_CACHING, /* Cache avoidance flag set. */
FDR_BAD_ODP_FIT, /* Bad ODP flow fit. */
FDR_FLOW_IDLE, /* Flow idle timeout. */
FDR_FLOW_LIMIT, /* Kill all flows condition reached. */
FDR_FLOW_WILDCARDED, /* Flow needs a narrower wildcard mask. */
FDR_NO_OFPROTO, /* Bridge not found. */
FDR_PURGE, /* User requested flow deletion. */
FDR_TOO_EXPENSIVE, /* Too expensive to revalidate. */
FDR_UPDATE_FAIL, /* Datapath update failed. */
FDR_XLATION_ERROR, /* Flow translation error. */
FDR_FLOW_MISSING_DP, /* Flow is missing from the datapath. */
};
/* 'udpif_key's are responsible for tracking the little bit of state udpif
* needs to do flow expiration which can't be pulled directly from the
* datapath. They may be created by any handler or revalidator thread at any
* time, and read by any revalidator during the dump phase. They are however
* each owned by a single revalidator which takes care of destroying them
* during the garbage-collection phase.
*
* The mutex within the ukey protects some members of the ukey. The ukey
* itself is protected by RCU and is held within a umap in the parent udpif.
* Adding or removing a ukey from a umap is only safe when holding the
* corresponding umap lock. */
struct udpif_key {
struct cmap_node cmap_node; /* In parent revalidator 'ukeys' map. */
/* These elements are read only once created, and therefore aren't
* protected by a mutex. */
const struct nlattr *key; /* Datapath flow key. */
size_t key_len; /* Length of 'key'. */
const struct nlattr *mask; /* Datapath flow mask. */
size_t mask_len; /* Length of 'mask'. */
ovs_u128 ufid; /* Unique flow identifier. */
bool ufid_present; /* True if 'ufid' is in datapath. */
uint32_t hash; /* Pre-computed hash for 'key'. */
unsigned pmd_id; /* Datapath poll mode driver id. */
struct ovs_mutex mutex; /* Guards the following. */
struct dpif_flow_stats stats OVS_GUARDED; /* Last known stats.*/
const char *dp_layer OVS_GUARDED; /* Last known dp_layer. */
long long int created OVS_GUARDED; /* Estimate of creation time. */
uint64_t dump_seq OVS_GUARDED; /* Tracks udpif->dump_seq. */
uint64_t reval_seq OVS_GUARDED; /* Tracks udpif->reval_seq. */
enum ukey_state state OVS_GUARDED; /* Tracks ukey lifetime. */
uint32_t missed_dumps OVS_GUARDED; /* Missed consecutive dumps. */
/* 'state' debug information. */
unsigned int state_thread OVS_GUARDED; /* Thread that transitions. */
const char *state_where OVS_GUARDED; /* transition_ukey() locator. */
/* Datapath flow actions as nlattrs. Protected by RCU. Read with
* ukey_get_actions(), and write with ukey_set_actions(). */
OVSRCU_TYPE(struct ofpbuf *) actions;
struct xlate_cache *xcache OVS_GUARDED; /* Cache for xlate entries that
* are affected by this ukey.
* Used for stats and learning.*/
union {
struct odputil_keybuf buf;
struct nlattr nla;
} keybuf, maskbuf;
uint32_t key_recirc_id; /* Non-zero if reference is held by the ukey. */
struct recirc_refs recircs; /* Action recirc IDs with references held. */
#define OFFL_REBAL_INTVL_MSEC 3000 /* dynamic offload rebalance freq */
struct netdev *in_netdev; /* in_odp_port's netdev */
bool offloaded; /* True if flow is offloaded */
uint64_t flow_pps_rate; /* Packets-Per-Second rate */
long long int flow_time; /* last pps update time */
uint64_t flow_packets; /* #pkts seen in interval */
uint64_t flow_backlog_packets; /* prev-mode #pkts (offl or kernel) */
};
/* Datapath operation with optional ukey attached. */
struct ukey_op {
struct udpif_key *ukey;
struct dpif_flow_stats stats; /* Stats for 'op'. */
struct dpif_op dop; /* Flow operation. */
};
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(1, 5);
static struct ovs_list all_udpifs = OVS_LIST_INITIALIZER(&all_udpifs);
static size_t recv_upcalls(struct handler *);
static int process_upcall(struct udpif *, struct upcall *,
struct ofpbuf *odp_actions, struct flow_wildcards *);
static void handle_upcalls(struct udpif *, struct upcall *, size_t n_upcalls);
static void udpif_stop_threads(struct udpif *, bool delete_flows);
static void udpif_start_threads(struct udpif *, uint32_t n_handlers,
uint32_t n_revalidators);
static void udpif_pause_revalidators(struct udpif *);
static void udpif_resume_revalidators(struct udpif *);
static void *udpif_upcall_handler(void *);
static void *udpif_revalidator(void *);
static unsigned long udpif_get_n_flows(struct udpif *);
static void revalidate(struct revalidator *);
static void revalidator_pause(struct revalidator *);
static void revalidator_sweep(struct revalidator *);
static void revalidator_purge(struct revalidator *);
static void upcall_unixctl_show(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_disable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_enable_megaflows(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_disable_ufid(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_enable_ufid(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_set_flow_limit(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_dump_wait(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_purge(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_pause(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_resume(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux);
static void upcall_unixctl_ofproto_detrace(struct unixctl_conn *, int argc,
const char *argv[], void *aux);
static struct udpif_key *ukey_create_from_upcall(struct upcall *,
struct flow_wildcards *);
static int ukey_create_from_dpif_flow(const struct udpif *,
const struct dpif_flow *,
struct udpif_key **);
static void ukey_get_actions(struct udpif_key *, const struct nlattr **actions,
size_t *size);
static bool ukey_install__(struct udpif *, struct udpif_key *ukey)
OVS_TRY_LOCK(true, ukey->mutex);
static bool ukey_install(struct udpif *udpif, struct udpif_key *ukey);
static void transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
const char *where)
OVS_REQUIRES(ukey->mutex);
#define transition_ukey(UKEY, DST) \
transition_ukey_at(UKEY, DST, OVS_SOURCE_LOCATOR)
static struct udpif_key *ukey_lookup(struct udpif *udpif,
const ovs_u128 *ufid,
const unsigned pmd_id);
static int ukey_acquire(struct udpif *, const struct dpif_flow *,
struct udpif_key **result, int *error);
static void ukey_delete__(struct udpif_key *);
static void ukey_delete(struct umap *, struct udpif_key *);
static enum upcall_type classify_upcall(enum dpif_upcall_type type,
const struct nlattr *userdata,
struct user_action_cookie *cookie);
static void put_op_init(struct ukey_op *op, struct udpif_key *ukey,
enum dpif_flow_put_flags flags);
static void delete_op_init(struct udpif *udpif, struct ukey_op *op,
struct udpif_key *ukey);
static int upcall_receive(struct upcall *, const struct dpif_backer *,
const struct dp_packet *packet, enum dpif_upcall_type,
const struct nlattr *userdata, const struct flow *,
const unsigned int mru,
const ovs_u128 *ufid, const unsigned pmd_id,
char **errorp);
static void upcall_uninit(struct upcall *);
static void udpif_flow_rebalance(struct udpif *udpif);
static int udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type);
static int udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type);
static upcall_callback upcall_cb;
static dp_purge_callback dp_purge_cb;
static atomic_bool enable_megaflows = true;
static atomic_bool enable_ufid = true;
void
udpif_init(void)
{
static struct ovsthread_once once = OVSTHREAD_ONCE_INITIALIZER;
if (ovsthread_once_start(&once)) {
unixctl_command_register("upcall/show", "", 0, 0, upcall_unixctl_show,
NULL);
unixctl_command_register("upcall/disable-megaflows", "", 0, 0,
upcall_unixctl_disable_megaflows, NULL);
unixctl_command_register("upcall/enable-megaflows", "", 0, 0,
upcall_unixctl_enable_megaflows, NULL);
unixctl_command_register("upcall/disable-ufid", "", 0, 0,
upcall_unixctl_disable_ufid, NULL);
unixctl_command_register("upcall/enable-ufid", "", 0, 0,
upcall_unixctl_enable_ufid, NULL);
unixctl_command_register("upcall/set-flow-limit", "flow-limit-number",
1, 1, upcall_unixctl_set_flow_limit, NULL);
unixctl_command_register("revalidator/wait", "", 0, 0,
upcall_unixctl_dump_wait, NULL);
unixctl_command_register("revalidator/purge", "", 0, 0,
upcall_unixctl_purge, NULL);
unixctl_command_register("revalidator/pause", NULL, 0, 0,
upcall_unixctl_pause, NULL);
unixctl_command_register("revalidator/resume", NULL, 0, 0,
upcall_unixctl_resume, NULL);
unixctl_command_register("ofproto/detrace", "UFID [pmd=PMD-ID]", 1, 2,
upcall_unixctl_ofproto_detrace, NULL);
ovsthread_once_done(&once);
}
}
struct udpif *
udpif_create(struct dpif_backer *backer, struct dpif *dpif)
{
struct udpif *udpif = xzalloc(sizeof *udpif);
udpif->dpif = dpif;
udpif->backer = backer;
atomic_init(&udpif->flow_limit, MIN(ofproto_flow_limit, 10000));
udpif->reval_seq = seq_create();
udpif->dump_seq = seq_create();
latch_init(&udpif->exit_latch);
latch_init(&udpif->pause_latch);
ovs_list_push_back(&all_udpifs, &udpif->list_node);
atomic_init(&udpif->enable_ufid, false);
atomic_init(&udpif->n_flows, 0);
atomic_init(&udpif->n_flows_timestamp, LLONG_MIN);
ovs_mutex_init(&udpif->n_flows_mutex);
udpif->ukeys = xmalloc(N_UMAPS * sizeof *udpif->ukeys);
for (int i = 0; i < N_UMAPS; i++) {
cmap_init(&udpif->ukeys[i].cmap);
ovs_mutex_init(&udpif->ukeys[i].mutex);
}
dpif_register_upcall_cb(dpif, upcall_cb, udpif);
dpif_register_dp_purge_cb(dpif, dp_purge_cb, udpif);
return udpif;
}
void
udpif_run(struct udpif *udpif)
{
if (udpif->conns && udpif->conn_seq != seq_read(udpif->dump_seq)) {
int i;
for (i = 0; i < udpif->n_conns; i++) {
unixctl_command_reply(udpif->conns[i], NULL);
}
free(udpif->conns);
udpif->conns = NULL;
udpif->n_conns = 0;
}
}
void
udpif_destroy(struct udpif *udpif)
{
udpif_stop_threads(udpif, false);
dpif_register_dp_purge_cb(udpif->dpif, NULL, udpif);
dpif_register_upcall_cb(udpif->dpif, NULL, udpif);
for (int i = 0; i < N_UMAPS; i++) {
struct udpif_key *ukey;
CMAP_FOR_EACH (ukey, cmap_node, &udpif->ukeys[i].cmap) {
ukey_delete__(ukey);
}
cmap_destroy(&udpif->ukeys[i].cmap);
ovs_mutex_destroy(&udpif->ukeys[i].mutex);
}
free(udpif->ukeys);
udpif->ukeys = NULL;
ovs_list_remove(&udpif->list_node);
latch_destroy(&udpif->exit_latch);
latch_destroy(&udpif->pause_latch);
seq_destroy(udpif->reval_seq);
seq_destroy(udpif->dump_seq);
ovs_mutex_destroy(&udpif->n_flows_mutex);
free(udpif);
}
/* Stops the handler and revalidator threads.
*
* If 'delete_flows' is true, we delete ukeys and delete all flows from the
* datapath. Otherwise, we end up double-counting stats for flows that remain
* in the datapath. If 'delete_flows' is false, we skip this step. This is
* appropriate if OVS is about to exit anyway and it is desirable to let
* existing network connections continue being forwarded afterward. */
static void
udpif_stop_threads(struct udpif *udpif, bool delete_flows)
{
if (udpif && (udpif->n_handlers != 0 || udpif->n_revalidators != 0)) {
size_t i;
/* Tell the threads to exit. */
latch_set(&udpif->exit_latch);
/* Wait for the threads to exit. Quiesce because this can take a long
* time.. */
ovsrcu_quiesce_start();
for (i = 0; i < udpif->n_handlers; i++) {
xpthread_join(udpif->handlers[i].thread, NULL);
}
for (i = 0; i < udpif->n_revalidators; i++) {
xpthread_join(udpif->revalidators[i].thread, NULL);
}
dpif_disable_upcall(udpif->dpif);
ovsrcu_quiesce_end();
if (delete_flows) {
for (i = 0; i < udpif->n_revalidators; i++) {
revalidator_purge(&udpif->revalidators[i]);
}
}
latch_poll(&udpif->exit_latch);
ovs_barrier_destroy(&udpif->reval_barrier);
ovs_barrier_destroy(&udpif->pause_barrier);
free(udpif->revalidators);
udpif->revalidators = NULL;
udpif->n_revalidators = 0;
free(udpif->handlers);
udpif->handlers = NULL;
udpif->n_handlers = 0;
}
}
/* Starts the handler and revalidator threads. */
static void
udpif_start_threads(struct udpif *udpif, uint32_t n_handlers_,
uint32_t n_revalidators_)
{
if (udpif && n_revalidators_) {
/* Creating a thread can take a significant amount of time on some
* systems, even hundred of milliseconds, so quiesce around it. */
ovsrcu_quiesce_start();
udpif->n_handlers = n_handlers_;
udpif->n_revalidators = n_revalidators_;
if (udpif->n_handlers) {
udpif->handlers = xzalloc(udpif->n_handlers
* sizeof *udpif->handlers);
for (size_t i = 0; i < udpif->n_handlers; i++) {
struct handler *handler = &udpif->handlers[i];
handler->udpif = udpif;
handler->handler_id = i;
handler->thread = ovs_thread_create(
"handler", udpif_upcall_handler, handler);
}
} else {
udpif->handlers = NULL;
}
atomic_init(&udpif->enable_ufid, udpif->backer->rt_support.ufid);
dpif_enable_upcall(udpif->dpif);
ovs_barrier_init(&udpif->reval_barrier, udpif->n_revalidators);
ovs_barrier_init(&udpif->pause_barrier, udpif->n_revalidators + 1);
udpif->reval_exit = false;
udpif->pause = false;
udpif->offload_rebalance_time = time_msec();
udpif->revalidators = xzalloc(udpif->n_revalidators
* sizeof *udpif->revalidators);
for (size_t i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
revalidator->udpif = udpif;
revalidator->thread = ovs_thread_create(
"revalidator", udpif_revalidator, revalidator);
}
ovsrcu_quiesce_end();
}
}
/* Pauses all revalidators. Should only be called by the main thread.
* When function returns, all revalidators are paused and will proceed
* only after udpif_resume_revalidators() is called. */
static void
udpif_pause_revalidators(struct udpif *udpif)
{
if (udpif->backer->recv_set_enable) {
latch_set(&udpif->pause_latch);
ovs_barrier_block(&udpif->pause_barrier);
}
}
/* Resumes the pausing of revalidators. Should only be called by the
* main thread. */
static void
udpif_resume_revalidators(struct udpif *udpif)
{
if (udpif->backer->recv_set_enable) {
latch_poll(&udpif->pause_latch);
ovs_barrier_block(&udpif->pause_barrier);
}
}
/* Tells 'udpif' how many threads it should use to handle upcalls.
* 'n_handlers_' and 'n_revalidators_' can never be zero. 'udpif''s
* datapath handle must have packet reception enabled before starting
* threads. */
void
udpif_set_threads(struct udpif *udpif, uint32_t n_handlers_,
uint32_t n_revalidators_)
{
ovs_assert(udpif);
uint32_t n_handlers_requested;
uint32_t n_revalidators_requested;
bool forced = false;
if (dpif_number_handlers_required(udpif->dpif, &n_handlers_requested)) {
forced = true;
if (!n_revalidators_) {
n_revalidators_requested = (n_handlers_requested
? n_handlers_requested
: MAX(count_cpu_cores(), 2)) / 4 + 1;
} else {
n_revalidators_requested = n_revalidators_;
}
} else {
int threads = MAX(count_cpu_cores(), 2);
n_revalidators_requested = MAX(n_revalidators_, 0);
n_handlers_requested = MAX(n_handlers_, 0);
if (!n_revalidators_requested) {
n_revalidators_requested = n_handlers_requested
? MAX(threads - (int) n_handlers_requested, 1)
: threads / 4 + 1;
}
if (!n_handlers_requested) {
n_handlers_requested = MAX(threads -
(int) n_revalidators_requested, 1);
}
}
if (udpif->n_handlers != n_handlers_requested
|| udpif->n_revalidators != n_revalidators_requested) {
if (forced) {
VLOG_INFO("Overriding n-handler-threads to %u, setting "
"n-revalidator-threads to %u", n_handlers_requested,
n_revalidators_requested);
} else {
VLOG_INFO("Setting n-handler-threads to %u, setting "
"n-revalidator-threads to %u", n_handlers_requested,
n_revalidators_requested);
}
udpif_stop_threads(udpif, true);
}
if (!udpif->handlers && !udpif->revalidators) {
VLOG_INFO("Starting %u threads", n_handlers_requested +
n_revalidators_requested);
int error;
error = dpif_handlers_set(udpif->dpif, n_handlers_requested);
if (error) {
VLOG_ERR("failed to configure handlers in dpif %s: %s",
dpif_name(udpif->dpif), ovs_strerror(error));
return;
}
udpif_start_threads(udpif, n_handlers_requested,
n_revalidators_requested);
}
}
/* Notifies 'udpif' that something changed which may render previous
* xlate_actions() results invalid. */
void
udpif_revalidate(struct udpif *udpif)
{
seq_change(udpif->reval_seq);
}
/* Returns a seq which increments every time 'udpif' pulls stats from the
* datapath. Callers can use this to get a sense of when might be a good time
* to do periodic work which relies on relatively up to date statistics. */
struct seq *
udpif_dump_seq(struct udpif *udpif)
{
return udpif->dump_seq;
}
void
udpif_get_memory_usage(struct udpif *udpif, struct simap *usage)
{
size_t i;
simap_increase(usage, "handlers", udpif->n_handlers);
simap_increase(usage, "revalidators", udpif->n_revalidators);
for (i = 0; i < N_UMAPS; i++) {
simap_increase(usage, "udpif keys", cmap_count(&udpif->ukeys[i].cmap));
}
}
/* Remove flows from a single datapath. */
void
udpif_flush(struct udpif *udpif)
{
uint32_t n_handlers_ = udpif->n_handlers;
uint32_t n_revalidators_ = udpif->n_revalidators;
udpif_stop_threads(udpif, true);
dpif_flow_flush(udpif->dpif);
udpif_start_threads(udpif, n_handlers_, n_revalidators_);
}
/* Removes all flows from all datapaths. */
static void
udpif_flush_all_datapaths(void)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_flush(udpif);
}
}
static bool
udpif_use_ufid(struct udpif *udpif)
{
bool enable;
atomic_read_relaxed(&enable_ufid, &enable);
return enable && udpif->backer->rt_support.ufid;
}
static unsigned long
udpif_get_n_flows(struct udpif *udpif)
{
long long int time, now;
unsigned long flow_count;
now = time_msec();
atomic_read_relaxed(&udpif->n_flows_timestamp, &time);
if (time < now - 100 && !ovs_mutex_trylock(&udpif->n_flows_mutex)) {
struct dpif_dp_stats stats;
atomic_store_relaxed(&udpif->n_flows_timestamp, now);
dpif_get_dp_stats(udpif->dpif, &stats);
flow_count = stats.n_flows;
if (!dpif_synced_dp_layers(udpif->dpif)) {
/* If the dpif layer does not sync the flows, we need to include
* the hardware offloaded flows separately. */
uint64_t hw_flows;
if (!dpif_get_n_offloaded_flows(udpif->dpif, &hw_flows)) {
flow_count += hw_flows;
}
}
atomic_store_relaxed(&udpif->n_flows, flow_count);
ovs_mutex_unlock(&udpif->n_flows_mutex);
} else {
atomic_read_relaxed(&udpif->n_flows, &flow_count);
}
return flow_count;
}
/* The upcall handler thread tries to read a batch of UPCALL_MAX_BATCH
* upcalls from dpif, processes the batch and installs corresponding flows
* in dpif. */
static void *
udpif_upcall_handler(void *arg)
{
struct handler *handler = arg;
struct udpif *udpif = handler->udpif;
while (!latch_is_set(&handler->udpif->exit_latch)) {
if (recv_upcalls(handler)) {
poll_immediate_wake();
} else {
dpif_recv_wait(udpif->dpif, handler->handler_id);
latch_wait(&udpif->exit_latch);
}
poll_block();
}
return NULL;
}
static size_t
recv_upcalls(struct handler *handler)
{
struct udpif *udpif = handler->udpif;
uint64_t recv_stubs[UPCALL_MAX_BATCH][512 / 8];
struct ofpbuf recv_bufs[UPCALL_MAX_BATCH];
struct dpif_upcall dupcalls[UPCALL_MAX_BATCH];
struct upcall upcalls[UPCALL_MAX_BATCH];
struct flow flows[UPCALL_MAX_BATCH];
size_t n_upcalls, i;
n_upcalls = 0;
while (n_upcalls < UPCALL_MAX_BATCH) {
struct ofpbuf *recv_buf = &recv_bufs[n_upcalls];
struct dpif_upcall *dupcall = &dupcalls[n_upcalls];
struct upcall *upcall = &upcalls[n_upcalls];
struct flow *flow = &flows[n_upcalls];
unsigned int mru = 0;
char *errorp = NULL;
uint64_t hash = 0;
int error;
ofpbuf_use_stub(recv_buf, recv_stubs[n_upcalls],
sizeof recv_stubs[n_upcalls]);
if (dpif_recv(udpif->dpif, handler->handler_id, dupcall, recv_buf)) {
ofpbuf_uninit(recv_buf);
break;
}
upcall->fitness = odp_flow_key_to_flow(dupcall->key, dupcall->key_len,
flow, NULL);
if (upcall->fitness == ODP_FIT_ERROR) {
goto free_dupcall;
}
if (dupcall->mru) {
mru = nl_attr_get_u16(dupcall->mru);
}
if (dupcall->hash) {
hash = nl_attr_get_u64(dupcall->hash);
}
error = upcall_receive(upcall, udpif->backer, &dupcall->packet,
dupcall->type, dupcall->userdata, flow, mru,
&dupcall->ufid, PMD_ID_NULL, &errorp);
if (error) {
if (error == ENODEV) {
/* Received packet on datapath port for which we couldn't
* associate an ofproto. This can happen if a port is removed
* while traffic is being received. Print a rate-limited
* message in case it happens frequently. */
dpif_flow_put(udpif->dpif, DPIF_FP_CREATE, dupcall->key,
dupcall->key_len, NULL, 0, NULL, 0,
&dupcall->ufid, PMD_ID_NULL, NULL);
VLOG_INFO_RL(&rl, "received packet on unassociated datapath "
"port %"PRIu32"%s%s%s", flow->in_port.odp_port,
errorp ? " (" : "", errorp ? errorp : "",
errorp ? ")" : "");
}
free(errorp);
goto free_dupcall;
}
upcall->key = dupcall->key;
upcall->key_len = dupcall->key_len;
upcall->ufid = &dupcall->ufid;
upcall->hash = hash;
upcall->out_tun_key = dupcall->out_tun_key;
upcall->actions = dupcall->actions;
pkt_metadata_from_flow(&dupcall->packet.md, flow);
flow_extract(&dupcall->packet, flow);
error = process_upcall(udpif, upcall,
&upcall->odp_actions, &upcall->wc);
if (error) {
goto cleanup;
}
n_upcalls++;
continue;
cleanup:
upcall_uninit(upcall);
free_dupcall:
dp_packet_uninit(&dupcall->packet);
ofpbuf_uninit(recv_buf);
}
if (n_upcalls) {
handle_upcalls(handler->udpif, upcalls, n_upcalls);
for (i = 0; i < n_upcalls; i++) {
dp_packet_uninit(&dupcalls[i].packet);
ofpbuf_uninit(&recv_bufs[i]);
upcall_uninit(&upcalls[i]);
}
}
return n_upcalls;
}
static void
udpif_run_flow_rebalance(struct udpif *udpif)
{
long long int now = 0;
/* Don't rebalance if OFFL_REBAL_INTVL_MSEC have not elapsed */
now = time_msec();
if (now < udpif->offload_rebalance_time + OFFL_REBAL_INTVL_MSEC) {
return;
}
if (!netdev_any_oor()) {
return;
}
VLOG_DBG("Offload rebalance: Found OOR netdevs");
udpif->offload_rebalance_time = now;
udpif_flow_rebalance(udpif);
}
static void *
udpif_revalidator(void *arg)
{
/* Used by all revalidators. */
struct revalidator *revalidator = arg;
struct udpif *udpif = revalidator->udpif;
bool leader = revalidator == &udpif->revalidators[0];
/* Used only by the leader. */
long long int start_time = 0;
uint64_t last_reval_seq = 0;
size_t n_flows = 0;
revalidator->id = ovsthread_id_self();
for (;;) {
if (leader) {
uint64_t reval_seq;
recirc_run(); /* Recirculation cleanup. */
reval_seq = seq_read(udpif->reval_seq);
last_reval_seq = reval_seq;
n_flows = udpif_get_n_flows(udpif);
udpif->max_n_flows = MAX(n_flows, udpif->max_n_flows);
udpif->avg_n_flows = (udpif->avg_n_flows + n_flows) / 2;
/* Only the leader checks the pause latch to prevent a race where
* some threads think it's false and proceed to block on
* reval_barrier and others think it's true and block indefinitely
* on the pause_barrier */
udpif->pause = latch_is_set(&udpif->pause_latch);
/* Only the leader checks the exit latch to prevent a race where
* some threads think it's true and exit and others think it's
* false and block indefinitely on the reval_barrier */
udpif->reval_exit = latch_is_set(&udpif->exit_latch);
start_time = time_msec();
if (!udpif->reval_exit && !udpif->pause) {
bool terse_dump;
terse_dump = udpif_use_ufid(udpif);
udpif->dump = dpif_flow_dump_create(udpif->dpif, terse_dump,
NULL);
OVS_USDT_PROBE(udpif_revalidator, start_dump, udpif, n_flows);
}
}
/* Wait for the leader to reach this point. */
ovs_barrier_block(&udpif->reval_barrier);
if (udpif->pause) {
revalidator_pause(revalidator);
if (!udpif->reval_exit) {
/* The main thread resumed all validators, but the leader
* didn't start the dump, go to next iteration. */
continue;
}
}
if (udpif->reval_exit) {
break;
}
revalidate(revalidator);
/* Wait for all flows to have been dumped before we garbage collect. */
ovs_barrier_block(&udpif->reval_barrier);
revalidator_sweep(revalidator);
/* Wait for all revalidators to finish garbage collection. */
ovs_barrier_block(&udpif->reval_barrier);
if (leader) {
unsigned int flow_limit;
long long int duration;
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
dpif_flow_dump_destroy(udpif->dump);
seq_change(udpif->dump_seq);
if (netdev_is_offload_rebalance_policy_enabled()) {
udpif_run_flow_rebalance(udpif);
}
duration = MAX(time_msec() - start_time, 1);
udpif->dump_duration = duration;
if (duration > 2000) {
flow_limit /= duration / 1000;
COVERAGE_INC(upcall_flow_limit_scaled);
} else if (duration > 1300) {
flow_limit = flow_limit * 3 / 4;
COVERAGE_INC(upcall_flow_limit_reduced);
} else if (duration < 1000 &&
flow_limit < n_flows * 1000 / duration) {
flow_limit += 1000;
COVERAGE_INC(upcall_flow_limit_grew);
}
flow_limit = MIN(ofproto_flow_limit, MAX(flow_limit, 1000));
atomic_store_relaxed(&udpif->flow_limit, flow_limit);
if (duration > 2000) {
VLOG_WARN("Spent an unreasonably long %lldms dumping flows",
duration);
}
OVS_USDT_PROBE(udpif_revalidator, sweep_done, udpif, n_flows,
MIN(ofproto_max_idle, ofproto_max_revalidator));
poll_timer_wait_until(start_time + MIN(ofproto_max_idle,
ofproto_max_revalidator));
seq_wait(udpif->reval_seq, last_reval_seq);
latch_wait(&udpif->exit_latch);
latch_wait(&udpif->pause_latch);
poll_block();
if (!latch_is_set(&udpif->pause_latch) &&
!latch_is_set(&udpif->exit_latch)) {
long long int now = time_msec();
/* Block again if we are woken up within 5ms of the last start
* time. */
start_time += 5;
if (now < start_time) {
poll_timer_wait_until(start_time);
latch_wait(&udpif->exit_latch);
latch_wait(&udpif->pause_latch);
poll_block();
}
}
}
}
return NULL;
}
static enum upcall_type
classify_upcall(enum dpif_upcall_type type, const struct nlattr *userdata,
struct user_action_cookie *cookie)
{
/* First look at the upcall type. */
switch (type) {
case DPIF_UC_ACTION:
break;
case DPIF_UC_MISS:
return MISS_UPCALL;
case DPIF_N_UC_TYPES:
default:
VLOG_WARN_RL(&rl, "upcall has unexpected type %"PRIu32, type);
return BAD_UPCALL;
}
/* "action" upcalls need a closer look. */
if (!userdata) {
VLOG_WARN_RL(&rl, "action upcall missing cookie");
return BAD_UPCALL;
}
size_t userdata_len = nl_attr_get_size(userdata);
if (userdata_len != sizeof *cookie) {
VLOG_WARN_RL(&rl, "action upcall cookie has unexpected size %"PRIuSIZE,
userdata_len);
return BAD_UPCALL;
}
memcpy(cookie, nl_attr_get(userdata), sizeof *cookie);
if (cookie->type == USER_ACTION_COOKIE_SFLOW) {
return SFLOW_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_SLOW_PATH) {
return SLOW_PATH_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_FLOW_SAMPLE) {
return FLOW_SAMPLE_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_IPFIX) {
return IPFIX_UPCALL;
} else if (cookie->type == USER_ACTION_COOKIE_CONTROLLER) {
return CONTROLLER_UPCALL;
} else {
VLOG_WARN_RL(&rl, "invalid user cookie of type %"PRIu16
" and size %"PRIuSIZE, cookie->type, userdata_len);
return BAD_UPCALL;
}
}
/* Calculates slow path actions for 'xout'. 'buf' must statically be
* initialized with at least 128 bytes of space. */
static void
compose_slow_path(struct udpif *udpif, struct xlate_out *xout,
odp_port_t odp_in_port, ofp_port_t ofp_in_port,
struct ofpbuf *buf, uint32_t meter_id,
struct uuid *ofproto_uuid)
{
struct user_action_cookie cookie;
odp_port_t port;
uint32_t pid;
memset(&cookie, 0, sizeof cookie);
cookie.type = USER_ACTION_COOKIE_SLOW_PATH;
cookie.ofp_in_port = ofp_in_port;
cookie.ofproto_uuid = *ofproto_uuid;
cookie.slow_path.reason = xout->slow;
port = xout->slow & (SLOW_CFM | SLOW_BFD | SLOW_LACP | SLOW_STP)
? ODPP_NONE
: odp_in_port;
pid = dpif_port_get_pid(udpif->dpif, port);
size_t offset;
size_t ac_offset;
if (meter_id != UINT32_MAX) {
/* If slowpath meter is configured, generate clone(meter, userspace)
* action. */
offset = nl_msg_start_nested(buf, OVS_ACTION_ATTR_SAMPLE);
nl_msg_put_u32(buf, OVS_SAMPLE_ATTR_PROBABILITY, UINT32_MAX);
ac_offset = nl_msg_start_nested(buf, OVS_SAMPLE_ATTR_ACTIONS);
nl_msg_put_u32(buf, OVS_ACTION_ATTR_METER, meter_id);
}
odp_put_userspace_action(pid, &cookie, sizeof cookie,
ODPP_NONE, false, buf, NULL);
if (meter_id != UINT32_MAX) {
nl_msg_end_nested(buf, ac_offset);
nl_msg_end_nested(buf, offset);
}
}
/* If there is no error, the upcall must be destroyed with upcall_uninit()
* before quiescing, as the referred objects are guaranteed to exist only
* until the calling thread quiesces. Otherwise, do not call upcall_uninit()
* since the 'upcall->put_actions' remains uninitialized. */
static int
upcall_receive(struct upcall *upcall, const struct dpif_backer *backer,
const struct dp_packet *packet, enum dpif_upcall_type type,
const struct nlattr *userdata, const struct flow *flow,
const unsigned int mru,
const ovs_u128 *ufid, const unsigned pmd_id,
char **errorp)
{
int error;
upcall->type = classify_upcall(type, userdata, &upcall->cookie);
if (upcall->type == BAD_UPCALL) {
return EAGAIN;
} else if (upcall->type == MISS_UPCALL) {
error = xlate_lookup(backer, flow, &upcall->ofproto, &upcall->ipfix,
&upcall->sflow, NULL, &upcall->ofp_in_port,
errorp);
if (error) {
return error;
}
} else {
struct ofproto_dpif *ofproto
= ofproto_dpif_lookup_by_uuid(&upcall->cookie.ofproto_uuid);
if (!ofproto) {
if (errorp) {
*errorp = xstrdup("upcall could not find ofproto");
} else {
VLOG_INFO_RL(&rl, "upcall could not find ofproto");
}
return ENODEV;
}
upcall->ofproto = ofproto;
upcall->ipfix = ofproto->ipfix;
upcall->sflow = ofproto->sflow;
upcall->ofp_in_port = upcall->cookie.ofp_in_port;
}
upcall->recirc = NULL;
upcall->have_recirc_ref = false;
upcall->flow = flow;
upcall->packet = packet;
upcall->ufid = ufid;
upcall->pmd_id = pmd_id;
ofpbuf_use_stub(&upcall->odp_actions, upcall->odp_actions_stub,
sizeof upcall->odp_actions_stub);
ofpbuf_init(&upcall->put_actions, 0);
upcall->xout_initialized = false;
upcall->ukey_persists = false;
upcall->ukey = NULL;
upcall->key = NULL;
upcall->key_len = 0;
upcall->mru = mru;
upcall->out_tun_key = NULL;
upcall->actions = NULL;
return 0;
}
static void
upcall_xlate(struct udpif *udpif, struct upcall *upcall,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
struct dpif_flow_stats stats;
enum xlate_error xerr;
struct xlate_in xin;
struct ds output;
stats.n_packets = 1;
stats.n_bytes = dp_packet_size(upcall->packet);
stats.used = time_msec();
stats.tcp_flags = ntohs(upcall->flow->tcp_flags);
xlate_in_init(&xin, upcall->ofproto,
ofproto_dpif_get_tables_version(upcall->ofproto),
upcall->flow, upcall->ofp_in_port, NULL,
stats.tcp_flags, upcall->packet, wc, odp_actions);
if (upcall->type == MISS_UPCALL) {
xin.resubmit_stats = &stats;
if (xin.frozen_state) {
/* We may install a datapath flow only if we get a reference to the
* recirculation context (otherwise we could have recirculation
* upcalls using recirculation ID for which no context can be
* found). We may still execute the flow's actions even if we
* don't install the flow. */
upcall->recirc = recirc_id_node_from_state(xin.frozen_state);
upcall->have_recirc_ref = recirc_id_node_try_ref_rcu(upcall->recirc);
}
} else {
/* For non-miss upcalls, we are either executing actions (one of which
* is an userspace action) for an upcall, in which case the stats have
* already been taken care of, or there's a flow in the datapath which
* this packet was accounted to. Presumably the revalidators will deal
* with pushing its stats eventually. */
}
upcall->reval_seq = seq_read(udpif->reval_seq);
xerr = xlate_actions(&xin, &upcall->xout);
/* Translate again and log the ofproto trace for
* these two error types. */
if (xerr == XLATE_RECURSION_TOO_DEEP ||
xerr == XLATE_TOO_MANY_RESUBMITS) {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 1);
/* This is a huge log, so be conservative. */
if (!VLOG_DROP_WARN(&rll)) {
ds_init(&output);
ofproto_trace(upcall->ofproto, upcall->flow,
upcall->packet, NULL, 0, NULL, &output,
false);
VLOG_WARN("%s", ds_cstr(&output));
ds_destroy(&output);
}
}
if (wc) {
/* Convert the input port wildcard from OFP to ODP format. There's no
* real way to do this for arbitrary bitmasks since the numbering spaces
* aren't the same. However, flow translation always exact matches the
* whole thing, so we can do the same here. */
WC_MASK_FIELD(wc, in_port.odp_port);
}
upcall->xout_initialized = true;
if (upcall->fitness == ODP_FIT_TOO_LITTLE) {
upcall->xout.slow |= SLOW_MATCH;
}
if (!upcall->xout.slow) {
ofpbuf_use_const(&upcall->put_actions,
odp_actions->data, odp_actions->size);
} else {
/* upcall->put_actions already initialized by upcall_receive(). */
compose_slow_path(udpif, &upcall->xout,
upcall->flow->in_port.odp_port, upcall->ofp_in_port,
&upcall->put_actions,
upcall->ofproto->up.slowpath_meter_id,
&upcall->ofproto->uuid);
}
/* This function is also called for slow-pathed flows. As we are only
* going to create new datapath flows for actual datapath misses, there is
* no point in creating a ukey otherwise. */
if (upcall->type == MISS_UPCALL) {
upcall->ukey = ukey_create_from_upcall(upcall, wc);
}
}
static void
upcall_uninit(struct upcall *upcall)
{
if (upcall) {
if (upcall->xout_initialized) {
xlate_out_uninit(&upcall->xout);
}
ofpbuf_uninit(&upcall->odp_actions);
ofpbuf_uninit(&upcall->put_actions);
if (upcall->ukey) {
if (!upcall->ukey_persists) {
ukey_delete__(upcall->ukey);
}
} else if (upcall->have_recirc_ref) {
/* The reference was transferred to the ukey if one was created. */
recirc_id_node_unref(upcall->recirc);
}
}
}
/* If there are less flows than the limit, and this is a miss upcall which
*
* - Has no recirc_id, OR
* - Has a recirc_id and we can get a reference on the recirc ctx,
*
* Then we should install the flow (true). Otherwise, return false. */
static bool
should_install_flow(struct udpif *udpif, struct upcall *upcall)
{
unsigned int flow_limit;
if (upcall->type != MISS_UPCALL) {
return false;
} else if (upcall->recirc && !upcall->have_recirc_ref) {
VLOG_DBG_RL(&rl, "upcall: no reference for recirc flow");
return false;
}
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
if (udpif_get_n_flows(udpif) >= flow_limit) {
COVERAGE_INC(upcall_flow_limit_hit);
VLOG_WARN_RL(&rl,
"upcall: datapath reached the dynamic limit of %u flows.",
flow_limit);
return false;
}
return true;
}
static int
upcall_cb(const struct dp_packet *packet, const struct flow *flow, ovs_u128 *ufid,
unsigned pmd_id, enum dpif_upcall_type type,
const struct nlattr *userdata, struct ofpbuf *actions,
struct flow_wildcards *wc, struct ofpbuf *put_actions, void *aux)
{
struct udpif *udpif = aux;
struct upcall upcall;
bool megaflow;
int error;
atomic_read_relaxed(&enable_megaflows, &megaflow);
error = upcall_receive(&upcall, udpif->backer, packet, type, userdata,
flow, 0, ufid, pmd_id, NULL);
if (error) {
return error;
}
upcall.fitness = ODP_FIT_PERFECT;
error = process_upcall(udpif, &upcall, actions, wc);
if (error) {
goto out;
}
if (upcall.xout.slow && put_actions) {
ofpbuf_put(put_actions, upcall.put_actions.data,
upcall.put_actions.size);
}
if (OVS_UNLIKELY(!megaflow && wc)) {
flow_wildcards_init_for_packet(wc, flow);
}
if (!should_install_flow(udpif, &upcall)) {
error = ENOSPC;
goto out;
}
if (upcall.ukey && !ukey_install(udpif, upcall.ukey)) {
error = ENOSPC;
}
out:
if (!error) {
upcall.ukey_persists = true;
}
upcall_uninit(&upcall);
return error;
}
static size_t
dpif_get_actions(struct udpif *udpif, struct upcall *upcall,
const struct nlattr **actions)
{
size_t actions_len = 0;
if (upcall->actions) {
/* Actions were passed up from datapath. */
*actions = nl_attr_get(upcall->actions);
actions_len = nl_attr_get_size(upcall->actions);
}
if (actions_len == 0) {
/* Lookup actions in userspace cache. */
struct udpif_key *ukey = ukey_lookup(udpif, upcall->ufid,
upcall->pmd_id);
if (ukey) {
ukey_get_actions(ukey, actions, &actions_len);
}
}
return actions_len;
}
static size_t
dpif_read_actions(struct udpif *udpif, struct upcall *upcall,
const struct flow *flow, enum upcall_type type,
void *upcall_data)
{
const struct nlattr *actions = NULL;
size_t actions_len = dpif_get_actions(udpif, upcall, &actions);
if (!actions || !actions_len) {
return 0;
}
switch (type) {
case SFLOW_UPCALL:
dpif_sflow_read_actions(flow, actions, actions_len, upcall_data, true);
break;
case FLOW_SAMPLE_UPCALL:
case IPFIX_UPCALL:
dpif_ipfix_read_actions(flow, actions, actions_len, upcall_data);
break;
case BAD_UPCALL:
case MISS_UPCALL:
case SLOW_PATH_UPCALL:
case CONTROLLER_UPCALL:
default:
break;
}
return actions_len;
}
static int
process_upcall(struct udpif *udpif, struct upcall *upcall,
struct ofpbuf *odp_actions, struct flow_wildcards *wc)
{
const struct dp_packet *packet = upcall->packet;
const struct flow *flow = upcall->flow;
size_t actions_len = 0;
switch (upcall->type) {
case MISS_UPCALL:
case SLOW_PATH_UPCALL:
upcall_xlate(udpif, upcall, odp_actions, wc);
return 0;
case SFLOW_UPCALL:
if (upcall->sflow) {
struct dpif_sflow_actions sflow_actions;
memset(&sflow_actions, 0, sizeof sflow_actions);
actions_len = dpif_read_actions(udpif, upcall, flow,
upcall->type, &sflow_actions);
dpif_sflow_received(upcall->sflow, packet, flow,
flow->in_port.odp_port, &upcall->cookie,
actions_len > 0 ? &sflow_actions : NULL);
}
break;
case IPFIX_UPCALL:
case FLOW_SAMPLE_UPCALL:
if (upcall->ipfix) {
struct flow_tnl output_tunnel_key;
struct dpif_ipfix_actions ipfix_actions;
memset(&ipfix_actions, 0, sizeof ipfix_actions);
if (upcall->out_tun_key) {
odp_tun_key_from_attr(upcall->out_tun_key, &output_tunnel_key,
NULL);
}
actions_len = dpif_read_actions(udpif, upcall, flow,
upcall->type, &ipfix_actions);
if (upcall->type == IPFIX_UPCALL) {
dpif_ipfix_bridge_sample(upcall->ipfix, packet, flow,
flow->in_port.odp_port,
upcall->cookie.ipfix.output_odp_port,
upcall->out_tun_key ?
&output_tunnel_key : NULL,
actions_len > 0 ?
&ipfix_actions: NULL);
} else {
/* The flow reflects exactly the contents of the packet.
* Sample the packet using it. */
dpif_ipfix_flow_sample(upcall->ipfix, packet, flow,
&upcall->cookie, flow->in_port.odp_port,
upcall->out_tun_key ?
&output_tunnel_key : NULL,
actions_len > 0 ? &ipfix_actions: NULL);
}
}
break;
case CONTROLLER_UPCALL:
{
struct user_action_cookie *cookie = &upcall->cookie;
if (cookie->controller.dont_send) {
return 0;
}
uint32_t recirc_id = cookie->controller.recirc_id;
if (!recirc_id) {
break;
}
const struct recirc_id_node *recirc_node
= recirc_id_node_find(recirc_id);
if (!recirc_node) {
break;
}
const struct frozen_state *state = &recirc_node->state;
struct ofproto_async_msg *am = xmalloc(sizeof *am);
*am = (struct ofproto_async_msg) {
.controller_id = cookie->controller.controller_id,
.oam = OAM_PACKET_IN,
.pin = {
.up = {
.base = {
.packet = xmemdup(dp_packet_data(packet),
dp_packet_size(packet)),
.packet_len = dp_packet_size(packet),
.reason = cookie->controller.reason,
.table_id = state->table_id,
.cookie = get_32aligned_be64(
&cookie->controller.rule_cookie),
.userdata = (recirc_node->state.userdata_len
? xmemdup(recirc_node->state.userdata,
recirc_node->state.userdata_len)
: NULL),
.userdata_len = recirc_node->state.userdata_len,
},
},
.max_len = cookie->controller.max_len,
},
};
if (cookie->controller.continuation) {
am->pin.up.stack = (state->stack_size
? xmemdup(state->stack, state->stack_size)
: NULL),
am->pin.up.stack_size = state->stack_size,
am->pin.up.mirrors = state->mirrors,
am->pin.up.conntracked = state->conntracked,
am->pin.up.actions = (state->ofpacts_len
? xmemdup(state->ofpacts,
state->ofpacts_len) : NULL),
am->pin.up.actions_len = state->ofpacts_len,
am->pin.up.action_set = (state->action_set_len
? xmemdup(state->action_set,
state->action_set_len)
: NULL),
am->pin.up.action_set_len = state->action_set_len,
am->pin.up.bridge = upcall->ofproto->uuid;
am->pin.up.odp_port = upcall->packet->md.in_port.odp_port;
}
/* We don't want to use the upcall 'flow', since it may be
* more specific than the point at which the "controller"
* action was specified. */
struct flow frozen_flow;
frozen_flow = *flow;
if (!state->conntracked) {
flow_clear_conntrack(&frozen_flow);
}
frozen_metadata_to_flow(&upcall->ofproto->up, &state->metadata,
&frozen_flow);
flow_get_metadata(&frozen_flow, &am->pin.up.base.flow_metadata);
ofproto_dpif_send_async_msg(upcall->ofproto, am);
}
break;
case BAD_UPCALL:
break;
}
return EAGAIN;
}
static void
handle_upcalls(struct udpif *udpif, struct upcall *upcalls,
size_t n_upcalls)
{
struct dpif_op *opsp[UPCALL_MAX_BATCH * 2];
struct ukey_op ops[UPCALL_MAX_BATCH * 2];
size_t n_ops, n_opsp, i;
/* Handle the packets individually in order of arrival.
*
* - For SLOW_CFM, SLOW_LACP, SLOW_STP, SLOW_BFD, and SLOW_LLDP,
* translation is what processes received packets for these
* protocols.
*
* - For SLOW_ACTION, translation executes the actions directly.
*
* The loop fills 'ops' with an array of operations to execute in the
* datapath. */
n_ops = 0;
for (i = 0; i < n_upcalls; i++) {
struct upcall *upcall = &upcalls[i];
const struct dp_packet *packet = upcall->packet;
struct ukey_op *op;
if (should_install_flow(udpif, upcall)) {
struct udpif_key *ukey = upcall->ukey;
if (ukey_install(udpif, ukey)) {
upcall->ukey_persists = true;
put_op_init(&ops[n_ops++], ukey, DPIF_FP_CREATE);
}
}
if (upcall->odp_actions.size) {
op = &ops[n_ops++];
op->ukey = NULL;
op->dop.type = DPIF_OP_EXECUTE;
op->dop.execute.packet = CONST_CAST(struct dp_packet *, packet);
op->dop.execute.flow = upcall->flow;
odp_key_to_dp_packet(upcall->key, upcall->key_len,
op->dop.execute.packet);
op->dop.execute.actions = upcall->odp_actions.data;
op->dop.execute.actions_len = upcall->odp_actions.size;
op->dop.execute.needs_help = (upcall->xout.slow & SLOW_ACTION) != 0;
op->dop.execute.probe = false;
op->dop.execute.mtu = upcall->mru;
op->dop.execute.hash = upcall->hash;
}
}
/* Execute batch. */
n_opsp = 0;
for (i = 0; i < n_ops; i++) {
opsp[n_opsp++] = &ops[i].dop;
}
dpif_operate(udpif->dpif, opsp, n_opsp, DPIF_OFFLOAD_AUTO);
for (i = 0; i < n_ops; i++) {
struct udpif_key *ukey = ops[i].ukey;
if (ukey) {
ovs_mutex_lock(&ukey->mutex);
if (ops[i].dop.error) {
transition_ukey(ukey, UKEY_EVICTED);
} else if (ukey->state < UKEY_OPERATIONAL) {
transition_ukey(ukey, UKEY_OPERATIONAL);
}
ovs_mutex_unlock(&ukey->mutex);
}
}
}
static uint32_t
get_ukey_hash(const ovs_u128 *ufid, const unsigned pmd_id)
{
return hash_2words(ufid->u32[0], pmd_id);
}
static struct udpif_key *
ukey_lookup(struct udpif *udpif, const ovs_u128 *ufid, const unsigned pmd_id)
{
struct udpif_key *ukey;
int idx = get_ukey_hash(ufid, pmd_id) % N_UMAPS;
struct cmap *cmap = &udpif->ukeys[idx].cmap;
CMAP_FOR_EACH_WITH_HASH (ukey, cmap_node,
get_ukey_hash(ufid, pmd_id), cmap) {
if (ovs_u128_equals(ukey->ufid, *ufid)) {
return ukey;
}
}
return NULL;
}
/* Provides safe lockless access of RCU protected 'ukey->actions'. Callers may
* alternatively access the field directly if they take 'ukey->mutex'. */
static void
ukey_get_actions(struct udpif_key *ukey, const struct nlattr **actions, size_t *size)
{
const struct ofpbuf *buf = ovsrcu_get(struct ofpbuf *, &ukey->actions);
*actions = buf->data;
*size = buf->size;
}
static void
ukey_set_actions(struct udpif_key *ukey, const struct ofpbuf *actions)
{
struct ofpbuf *old_actions = ovsrcu_get_protected(struct ofpbuf *,
&ukey->actions);
if (old_actions) {
ovsrcu_postpone(ofpbuf_delete, old_actions);
}
ovsrcu_set(&ukey->actions, ofpbuf_clone(actions));
}
static struct udpif_key *
ukey_create__(const struct nlattr *key, size_t key_len,
const struct nlattr *mask, size_t mask_len,
bool ufid_present, const ovs_u128 *ufid,
const unsigned pmd_id, const struct ofpbuf *actions,
uint64_t reval_seq, long long int used,
uint32_t key_recirc_id, struct xlate_out *xout)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct udpif_key *ukey = xmalloc(sizeof *ukey);
memcpy(&ukey->keybuf, key, key_len);
ukey->key = &ukey->keybuf.nla;
ukey->key_len = key_len;
memcpy(&ukey->maskbuf, mask, mask_len);
ukey->mask = &ukey->maskbuf.nla;
ukey->mask_len = mask_len;
ukey->ufid_present = ufid_present;
ukey->ufid = *ufid;
ukey->pmd_id = pmd_id;
ukey->hash = get_ukey_hash(&ukey->ufid, pmd_id);
ovsrcu_init(&ukey->actions, NULL);
ukey_set_actions(ukey, actions);
ovs_mutex_init(&ukey->mutex);
ukey->dump_seq = 0; /* Not yet dumped */
ukey->reval_seq = reval_seq;
ukey->state = UKEY_CREATED;
ukey->state_thread = ovsthread_id_self();
ukey->state_where = OVS_SOURCE_LOCATOR;
ukey->created = ukey->flow_time = time_msec();
ukey->missed_dumps = 0;
memset(&ukey->stats, 0, sizeof ukey->stats);
ukey->stats.used = used;
ukey->dp_layer = NULL;
ukey->xcache = NULL;
ukey->offloaded = false;
ukey->in_netdev = NULL;
ukey->flow_packets = ukey->flow_backlog_packets = 0;
ukey->key_recirc_id = key_recirc_id;
recirc_refs_init(&ukey->recircs);
if (xout) {
/* Take ownership of the action recirc id references. */
recirc_refs_swap(&ukey->recircs, &xout->recircs);
}
return ukey;
}
static struct udpif_key *
ukey_create_from_upcall(struct upcall *upcall, struct flow_wildcards *wc)
{
struct odputil_keybuf keystub, maskstub;
struct ofpbuf keybuf, maskbuf;
bool megaflow;
struct odp_flow_key_parms odp_parms = {
.flow = upcall->flow,
.mask = wc ? &wc->masks : NULL,
};
odp_parms.support = upcall->ofproto->backer->rt_support.odp;
if (upcall->key_len) {
ofpbuf_use_const(&keybuf, upcall->key, upcall->key_len);
} else {
/* dpif-netdev doesn't provide a netlink-formatted flow key in the
* upcall, so convert the upcall's flow here. */
ofpbuf_use_stack(&keybuf, &keystub, sizeof keystub);
odp_flow_key_from_flow(&odp_parms, &keybuf);
}
atomic_read_relaxed(&enable_megaflows, &megaflow);
ofpbuf_use_stack(&maskbuf, &maskstub, sizeof maskstub);
if (megaflow && wc) {
odp_parms.key_buf = &keybuf;
odp_flow_key_from_mask(&odp_parms, &maskbuf);
}
return ukey_create__(keybuf.data, keybuf.size, maskbuf.data, maskbuf.size,
true, upcall->ufid, upcall->pmd_id,
&upcall->put_actions, upcall->reval_seq, 0,
upcall->have_recirc_ref ? upcall->recirc->id : 0,
&upcall->xout);
}
static int
ukey_create_from_dpif_flow(const struct udpif *udpif,
const struct dpif_flow *flow,
struct udpif_key **ukey)
{
struct dpif_flow full_flow;
struct ofpbuf actions;
uint64_t reval_seq;
uint64_t stub[DPIF_FLOW_BUFSIZE / 8];
const struct nlattr *a;
unsigned int left;
if (!flow->key_len || !flow->actions_len) {
struct ofpbuf buf;
int err;
/* If the key or actions were not provided by the datapath, fetch the
* full flow. */
ofpbuf_use_stack(&buf, &stub, sizeof stub);
err = dpif_flow_get(udpif->dpif, flow->key, flow->key_len,
flow->ufid_present ? &flow->ufid : NULL,
flow->pmd_id, &buf, &full_flow);
if (err) {
return err;
}
flow = &full_flow;
}
/* Check the flow actions for recirculation action. As recirculation
* relies on OVS userspace internal state, we need to delete all old
* datapath flows with either a non-zero recirc_id in the key, or any
* recirculation actions upon OVS restart. */
NL_ATTR_FOR_EACH (a, left, flow->key, flow->key_len) {
if (nl_attr_type(a) == OVS_KEY_ATTR_RECIRC_ID
&& nl_attr_get_u32(a) != 0) {
return EINVAL;
}
}
NL_ATTR_FOR_EACH (a, left, flow->actions, flow->actions_len) {
if (nl_attr_type(a) == OVS_ACTION_ATTR_RECIRC) {
return EINVAL;
}
}
reval_seq = seq_read(udpif->reval_seq) - 1; /* Ensure revalidation. */
ofpbuf_use_const(&actions, flow->actions, flow->actions_len);
*ukey = ukey_create__(flow->key, flow->key_len,
flow->mask, flow->mask_len, flow->ufid_present,
&flow->ufid, flow->pmd_id, &actions,
reval_seq, flow->stats.used, 0, NULL);
return 0;
}
static bool
try_ukey_replace(struct umap *umap, struct udpif_key *old_ukey,
struct udpif_key *new_ukey)
OVS_REQUIRES(umap->mutex)
OVS_TRY_LOCK(true, new_ukey->mutex)
{
bool replaced = false;
if (!ovs_mutex_trylock(&old_ukey->mutex)) {
if (old_ukey->state == UKEY_EVICTED) {
/* The flow was deleted during the current revalidator dump,
* but its ukey won't be fully cleaned up until the sweep phase.
* In the mean time, we are receiving upcalls for this traffic.
* Expedite the (new) flow install by replacing the ukey. */
ovs_mutex_lock(&new_ukey->mutex);
cmap_replace(&umap->cmap, &old_ukey->cmap_node,
&new_ukey->cmap_node, new_ukey->hash);
new_ukey->dump_seq = old_ukey->dump_seq;
ovsrcu_postpone(ukey_delete__, old_ukey);
transition_ukey(old_ukey, UKEY_DELETED);
transition_ukey(new_ukey, UKEY_VISIBLE);
replaced = true;
COVERAGE_INC(upcall_ukey_replace);
} else {
COVERAGE_INC(handler_duplicate_upcall);
}
ovs_mutex_unlock(&old_ukey->mutex);
} else {
COVERAGE_INC(ukey_replace_contention);
}
return replaced;
}
/* Attempts to insert a ukey into the shared ukey maps.
*
* On success, returns true, installs the ukey and returns it in a locked
* state. Otherwise, returns false. */
static bool
ukey_install__(struct udpif *udpif, struct udpif_key *new_ukey)
OVS_TRY_LOCK(true, new_ukey->mutex)
{
struct umap *umap;
struct udpif_key *old_ukey;
uint32_t idx;
bool locked = false;
idx = new_ukey->hash % N_UMAPS;
umap = &udpif->ukeys[idx];
ovs_mutex_lock(&umap->mutex);
old_ukey = ukey_lookup(udpif, &new_ukey->ufid, new_ukey->pmd_id);
if (old_ukey) {
/* Uncommon case: A ukey is already installed with the same UFID. */
if (old_ukey->key_len == new_ukey->key_len
&& !memcmp(old_ukey->key, new_ukey->key, new_ukey->key_len)) {
locked = try_ukey_replace(umap, old_ukey, new_ukey);
} else {
struct ds ds = DS_EMPTY_INITIALIZER;
odp_format_ufid(&old_ukey->ufid, &ds);
ds_put_cstr(&ds, " ");
odp_flow_key_format(old_ukey->key, old_ukey->key_len, &ds);
ds_put_cstr(&ds, "\n");
odp_format_ufid(&new_ukey->ufid, &ds);
ds_put_cstr(&ds, " ");
odp_flow_key_format(new_ukey->key, new_ukey->key_len, &ds);
VLOG_WARN_RL(&rl, "Conflicting ukey for flows:\n%s", ds_cstr(&ds));
ds_destroy(&ds);
}
} else {
ovs_mutex_lock(&new_ukey->mutex);
cmap_insert(&umap->cmap, &new_ukey->cmap_node, new_ukey->hash);
transition_ukey(new_ukey, UKEY_VISIBLE);
locked = true;
}
ovs_mutex_unlock(&umap->mutex);
return locked;
}
static void
transition_ukey_at(struct udpif_key *ukey, enum ukey_state dst,
const char *where)
OVS_REQUIRES(ukey->mutex)
{
if (dst < ukey->state) {
VLOG_ABORT("Invalid ukey transition %d->%d (last transitioned from "
"thread %u at %s)", ukey->state, dst, ukey->state_thread,
ukey->state_where);
}
if (ukey->state == dst && dst == UKEY_OPERATIONAL) {
return;
}
/* Valid state transitions:
* UKEY_CREATED -> UKEY_VISIBLE
* Ukey is now visible in the umap.
* UKEY_VISIBLE -> UKEY_OPERATIONAL
* A handler has installed the flow, and the flow is in the datapath.
* UKEY_VISIBLE -> UKEY_EVICTING
* A handler installs the flow, then revalidator sweeps the ukey before
* the flow is dumped. Most likely the flow was installed; start trying
* to delete it.
* UKEY_VISIBLE -> UKEY_EVICTED
* A handler attempts to install the flow, but the datapath rejects it.
* Consider that the datapath has already destroyed it.
* UKEY_OPERATIONAL -> UKEY_INCONSISTENT
* A revalidator modifies the flow with error returns.
* UKEY_INCONSISTENT -> UKEY_EVICTING
* A revalidator decides to evict the datapath flow.
* UKEY_OPERATIONAL -> UKEY_EVICTING
* A revalidator decides to evict the datapath flow.
* UKEY_EVICTING -> UKEY_EVICTED
* A revalidator has evicted the datapath flow.
* UKEY_EVICTED -> UKEY_DELETED
* A revalidator has removed the ukey from the umap and is deleting it.
*/
if (ukey->state == dst - 1 ||
(ukey->state == UKEY_VISIBLE && dst < UKEY_DELETED) ||
(ukey->state == UKEY_OPERATIONAL && dst == UKEY_EVICTING)) {
ukey->state = dst;
} else {
struct ds ds = DS_EMPTY_INITIALIZER;
odp_format_ufid(&ukey->ufid, &ds);
VLOG_WARN_RL(&rl, "Invalid state transition for ukey %s: %d -> %d",
ds_cstr(&ds), ukey->state, dst);
ds_destroy(&ds);
}
ukey->state_thread = ovsthread_id_self();
ukey->state_where = where;
}
static bool
ukey_install(struct udpif *udpif, struct udpif_key *ukey)
{
bool installed;
installed = ukey_install__(udpif, ukey);
if (installed) {
ovs_mutex_unlock(&ukey->mutex);
}
return installed;
}
/* Searches for a ukey in 'udpif->ukeys' that matches 'flow' and attempts to
* lock the ukey. If the ukey does not exist, create it.
*
* Returns 0 on success, setting *result to the matching ukey and returning it
* in a locked state. Otherwise, returns an errno and clears *result. EBUSY
* indicates that another thread is handling this flow. Other errors indicate
* an unexpected condition creating a new ukey.
*
* *error is an output parameter provided to appease the threadsafety analyser,
* and its value matches the return value. */
static int
ukey_acquire(struct udpif *udpif, const struct dpif_flow *flow,
struct udpif_key **result, int *error)
OVS_TRY_LOCK(0, (*result)->mutex)
{
struct udpif_key *ukey;
int retval;
ukey = ukey_lookup(udpif, &flow->ufid, flow->pmd_id);
if (ukey) {
retval = ovs_mutex_trylock(&ukey->mutex);
} else {
/* Usually we try to avoid installing flows from revalidator threads,
* because locking on a umap may cause handler threads to block.
* However there are certain cases, like when ovs-vswitchd is
* restarted, where it is desirable to handle flows that exist in the
* datapath gracefully (ie, don't just clear the datapath). */
bool install;
retval = ukey_create_from_dpif_flow(udpif, flow, &ukey);
if (retval) {
goto done;
}
install = ukey_install__(udpif, ukey);
if (install) {
retval = 0;
} else {
ukey_delete__(ukey);
retval = EBUSY;
}
}
done:
*error = retval;
if (retval) {
*result = NULL;
} else {
*result = ukey;
}
return retval;
}
static void
ukey_delete__(struct udpif_key *ukey)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
if (ukey) {
if (ukey->key_recirc_id) {
recirc_free_id(ukey->key_recirc_id);
}
recirc_refs_unref(&ukey->recircs);
xlate_cache_delete(ukey->xcache);
ofpbuf_delete(ovsrcu_get(struct ofpbuf *, &ukey->actions));
ovs_mutex_destroy(&ukey->mutex);
free(ukey);
}
}
static void
ukey_delete(struct umap *umap, struct udpif_key *ukey)
OVS_REQUIRES(umap->mutex)
{
ovs_mutex_lock(&ukey->mutex);
if (ukey->state < UKEY_DELETED) {
cmap_remove(&umap->cmap, &ukey->cmap_node, ukey->hash);
ovsrcu_postpone(ukey_delete__, ukey);
transition_ukey(ukey, UKEY_DELETED);
}
ovs_mutex_unlock(&ukey->mutex);
}
static bool
should_revalidate(const struct udpif *udpif, const struct udpif_key *ukey,
uint64_t packets)
OVS_REQUIRES(ukey->mutex)
{
long long int metric, now, duration;
long long int used = ukey->stats.used;
if (!ofproto_min_revalidate_pps) {
return true;
}
if (!used) {
/* Always revalidate the first time a flow is dumped. */
return true;
}
if (udpif->dump_duration < ofproto_max_revalidator / 2) {
/* We are likely to handle full revalidation for the flows. */
return true;
}
/* Calculate the mean time between seeing these packets. If this
* exceeds the threshold, then delete the flow rather than performing
* costly revalidation for flows that aren't being hit frequently.
*
* This is targeted at situations where the dump_duration is high (~1s),
* and revalidation is triggered by a call to udpif_revalidate(). In
* these situations, revalidation of all flows causes fluctuations in the
* flow_limit due to the interaction with the dump_duration and max_idle.
* This tends to result in deletion of low-throughput flows anyway, so
* skip the revalidation and just delete those flows. */
packets = MAX(packets, 1);
now = MAX(used, time_msec());
duration = now - used;
metric = duration / packets;
if (metric < 1000 / ofproto_min_revalidate_pps ||
(ukey->offloaded && duration < ofproto_offloaded_stats_delay)) {
/* The flow is receiving more than min-revalidate-pps, so keep it.
* Or it's a hardware offloaded flow that might take up to X seconds
* to update its statistics. Until we are sure the statistics had a
* chance to be updated, also keep it. */
return true;
}
return false;
}
struct reval_context {
/* Optional output parameters */
struct flow_wildcards *wc;
struct ofpbuf *odp_actions;
struct netflow **netflow;
struct xlate_cache *xcache;
/* Required output parameters */
struct xlate_out xout;
struct flow flow;
};
/* Translates 'key' into a flow, populating 'ctx' as it goes along.
*
* Returns 0 on success, otherwise a positive errno value.
*
* The caller is responsible for uninitializing ctx->xout on success.
*/
static int
xlate_key(struct udpif *udpif, const struct nlattr *key, unsigned int len,
const struct dpif_flow_stats *push, struct reval_context *ctx)
{
struct ofproto_dpif *ofproto;
ofp_port_t ofp_in_port;
enum odp_key_fitness fitness;
struct xlate_in xin;
int error;
fitness = odp_flow_key_to_flow(key, len, &ctx->flow, NULL);
if (fitness == ODP_FIT_ERROR) {
return EINVAL;
}
error = xlate_lookup(udpif->backer, &ctx->flow, &ofproto, NULL, NULL,
ctx->netflow, &ofp_in_port, NULL);
if (error) {
return error;
}
xlate_in_init(&xin, ofproto, ofproto_dpif_get_tables_version(ofproto),
&ctx->flow, ofp_in_port, NULL, push->tcp_flags,
NULL, ctx->wc, ctx->odp_actions);
if (push->n_packets) {
xin.resubmit_stats = push;
xin.allow_side_effects = true;
}
xin.xcache = ctx->xcache;
xlate_actions(&xin, &ctx->xout);
if (fitness == ODP_FIT_TOO_LITTLE) {
ctx->xout.slow |= SLOW_MATCH;
}
return 0;
}
static int
xlate_ukey(struct udpif *udpif, const struct udpif_key *ukey,
uint16_t tcp_flags, struct reval_context *ctx)
{
struct dpif_flow_stats push = {
.tcp_flags = tcp_flags,
};
return xlate_key(udpif, ukey->key, ukey->key_len, &push, ctx);
}
static int
populate_xcache(struct udpif *udpif, struct udpif_key *ukey,
uint16_t tcp_flags)
OVS_REQUIRES(ukey->mutex)
{
struct reval_context ctx = {
.odp_actions = NULL,
.netflow = NULL,
.wc = NULL,
};
int error;
ovs_assert(!ukey->xcache);
ukey->xcache = ctx.xcache = xlate_cache_new();
error = xlate_ukey(udpif, ukey, tcp_flags, &ctx);
if (error) {
return error;
}
xlate_out_uninit(&ctx.xout);
return 0;
}
static enum reval_result
revalidate_ukey__(struct udpif *udpif, const struct udpif_key *ukey,
uint16_t tcp_flags, struct ofpbuf *odp_actions,
struct recirc_refs *recircs, struct xlate_cache *xcache,
enum flow_del_reason *del_reason)
{
struct xlate_out *xoutp;
struct netflow *netflow;
struct flow_wildcards dp_mask, wc;
enum reval_result result;
struct reval_context ctx = {
.odp_actions = odp_actions,
.netflow = &netflow,
.xcache = xcache,
.wc = &wc,
};
OVS_USDT_PROBE(revalidate_ukey__, entry, udpif, ukey, tcp_flags,
odp_actions, recircs, xcache);
result = UKEY_DELETE;
xoutp = NULL;
netflow = NULL;
if (xlate_ukey(udpif, ukey, tcp_flags, &ctx)) {
*del_reason = FDR_XLATION_ERROR;
goto exit;
}
xoutp = &ctx.xout;
if (xoutp->avoid_caching) {
*del_reason = FDR_AVOID_CACHING;
goto exit;
}
if (xoutp->slow) {
struct ofproto_dpif *ofproto;
ofp_port_t ofp_in_port;
ofproto = xlate_lookup_ofproto(udpif->backer, &ctx.flow, &ofp_in_port,
NULL);
ofpbuf_clear(odp_actions);
if (!ofproto) {
*del_reason = FDR_NO_OFPROTO;
goto exit;
}
compose_slow_path(udpif, xoutp, ctx.flow.in_port.odp_port,
ofp_in_port, odp_actions,
ofproto->up.slowpath_meter_id, &ofproto->uuid);
}
if (odp_flow_key_to_mask(ukey->mask, ukey->mask_len, &dp_mask, &ctx.flow,
NULL)
== ODP_FIT_ERROR) {
*del_reason = FDR_BAD_ODP_FIT;
goto exit;
}
/* Do not modify if any bit is wildcarded by the installed datapath flow,
* but not the newly revalidated wildcard mask (wc), i.e., if revalidation
* tells that the datapath flow is now too generic and must be narrowed
* down. Note that we do not know if the datapath has ignored any of the
* wildcarded bits, so we may be overly conservative here. */
if (flow_wildcards_has_extra(&dp_mask, ctx.wc)) {
*del_reason = FDR_FLOW_WILDCARDED;
goto exit;
}
if (!ofpbuf_equal(odp_actions,
ovsrcu_get(struct ofpbuf *, &ukey->actions))) {
/* The datapath mask was OK, but the actions seem to have changed.
* Let's modify it in place. */
result = UKEY_MODIFY;
/* Transfer recirc action ID references to the caller. */
recirc_refs_swap(recircs, &xoutp->recircs);
goto exit;
}
result = UKEY_KEEP;
exit:
if (netflow && result == UKEY_DELETE) {
netflow_flow_clear(netflow, &ctx.flow);
}
xlate_out_uninit(xoutp);
OVS_USDT_PROBE(revalidate_ukey__, exit, udpif, ukey, result);
return result;
}
static void
log_unexpected_stats_jump(struct udpif_key *ukey,
const struct dpif_flow_stats *stats)
OVS_REQUIRES(ukey->mutex)
{
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
struct ds ds = DS_EMPTY_INITIALIZER;
struct ofpbuf *actions;
odp_format_ufid(&ukey->ufid, &ds);
ds_put_cstr(&ds, ", ");
odp_flow_key_format(ukey->key, ukey->key_len, &ds);
ds_put_cstr(&ds, ", actions:");
actions = ovsrcu_get(struct ofpbuf *, &ukey->actions);
format_odp_actions(&ds, actions->data, actions->size, NULL);
VLOG_WARN_RL(&rll, "Unexpected jump in packet stats from %"PRIu64
" to %"PRIu64" when handling ukey %s",
ukey->stats.n_packets, stats->n_packets, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Verifies that the datapath actions of 'ukey' are still correct, and pushes
* 'stats' for it.
*
* Returns a recommended action for 'ukey', options include:
* UKEY_DELETE The ukey should be deleted.
* UKEY_KEEP The ukey is fine as is.
* UKEY_MODIFY The ukey's actions should be changed but is otherwise
* fine. Callers should change the actions to those found
* in the caller supplied 'odp_actions' buffer. The
* recirculation references can be found in 'recircs' and
* must be handled by the caller.
*
* If the result is UKEY_MODIFY, then references to all recirc_ids used by the
* new flow will be held within 'recircs' (which may be none).
*
* The caller is responsible for both initializing 'recircs' prior this call,
* and ensuring any references are eventually freed.
*/
static enum reval_result
revalidate_ukey(struct udpif *udpif, struct udpif_key *ukey,
const struct dpif_flow_stats *stats,
struct ofpbuf *odp_actions, uint64_t reval_seq,
struct recirc_refs *recircs, enum flow_del_reason *del_reason)
OVS_REQUIRES(ukey->mutex)
{
bool need_revalidate = ukey->reval_seq != reval_seq;
enum reval_result result = UKEY_DELETE;
struct dpif_flow_stats push;
ofpbuf_clear(odp_actions);
push.used = stats->used;
push.tcp_flags = stats->tcp_flags;
push.n_packets = stats->n_packets - ukey->stats.n_packets;
push.n_bytes = stats->n_bytes - ukey->stats.n_bytes;
if (stats->n_packets < ukey->stats.n_packets &&
ukey->stats.n_packets < UINT64_THREE_QUARTERS) {
/* Report cases where the packet counter is lower than the previous
* instance, but exclude the potential wrapping of an uint64_t. */
COVERAGE_INC(ukey_invalid_stat_reset);
log_unexpected_stats_jump(ukey, stats);
}
if (need_revalidate) {
if (should_revalidate(udpif, ukey, push.n_packets)) {
if (!ukey->xcache) {
ukey->xcache = xlate_cache_new();
} else {
xlate_cache_clear(ukey->xcache);
}
result = revalidate_ukey__(udpif, ukey, push.tcp_flags,
odp_actions, recircs, ukey->xcache,
del_reason);
} else {
/* Delete, since it is too expensive to revalidate. */
*del_reason = FDR_TOO_EXPENSIVE;
}
} else if (!push.n_packets || ukey->xcache
|| !populate_xcache(udpif, ukey, push.tcp_flags)) {
result = UKEY_KEEP;
}
/* Stats for deleted flows will be attributed upon flow deletion. Skip. */
if (result != UKEY_DELETE) {
xlate_push_stats(ukey->xcache, &push, ukey->offloaded);
ukey->stats = *stats;
ukey->reval_seq = reval_seq;
}
return result;
}
static void
delete_op_init__(struct udpif *udpif, struct ukey_op *op,
const struct dpif_flow *flow)
{
op->ukey = NULL;
op->dop.type = DPIF_OP_FLOW_DEL;
op->dop.flow_del.key = flow->key;
op->dop.flow_del.key_len = flow->key_len;
op->dop.flow_del.ufid = flow->ufid_present ? &flow->ufid : NULL;
op->dop.flow_del.pmd_id = flow->pmd_id;
op->dop.flow_del.stats = &op->stats;
op->dop.flow_del.terse = udpif_use_ufid(udpif);
}
static void
delete_op_init(struct udpif *udpif, struct ukey_op *op, struct udpif_key *ukey)
{
op->ukey = ukey;
op->dop.type = DPIF_OP_FLOW_DEL;
op->dop.flow_del.key = ukey->key;
op->dop.flow_del.key_len = ukey->key_len;
op->dop.flow_del.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
op->dop.flow_del.pmd_id = ukey->pmd_id;
op->dop.flow_del.stats = &op->stats;
op->dop.flow_del.terse = udpif_use_ufid(udpif);
}
static void
put_op_init(struct ukey_op *op, struct udpif_key *ukey,
enum dpif_flow_put_flags flags)
{
op->ukey = ukey;
op->dop.type = DPIF_OP_FLOW_PUT;
op->dop.flow_put.flags = flags;
op->dop.flow_put.key = ukey->key;
op->dop.flow_put.key_len = ukey->key_len;
op->dop.flow_put.mask = ukey->mask;
op->dop.flow_put.mask_len = ukey->mask_len;
op->dop.flow_put.ufid = ukey->ufid_present ? &ukey->ufid : NULL;
op->dop.flow_put.pmd_id = ukey->pmd_id;
op->dop.flow_put.stats = NULL;
ukey_get_actions(ukey, &op->dop.flow_put.actions,
&op->dop.flow_put.actions_len);
}
/* Executes datapath operations 'ops' and attributes stats retrieved from the
* datapath as part of those operations. */
static void
push_dp_ops(struct udpif *udpif, struct ukey_op *ops, size_t n_ops)
{
struct dpif_op *opsp[REVALIDATE_MAX_BATCH];
size_t i;
ovs_assert(n_ops <= REVALIDATE_MAX_BATCH);
for (i = 0; i < n_ops; i++) {
opsp[i] = &ops[i].dop;
}
dpif_operate(udpif->dpif, opsp, n_ops, DPIF_OFFLOAD_AUTO);
for (i = 0; i < n_ops; i++) {
struct ukey_op *op = &ops[i];
if (op->dop.error) {
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
if (op->dop.type == DPIF_OP_FLOW_DEL) {
transition_ukey(op->ukey, UKEY_EVICTED);
} else {
/* Modification of the flow failed. */
transition_ukey(op->ukey, UKEY_INCONSISTENT);
}
ovs_mutex_unlock(&op->ukey->mutex);
}
continue;
}
if (op->dop.type != DPIF_OP_FLOW_DEL) {
/* Only deleted flows need their stats pushed. */
continue;
}
struct dpif_flow_stats *push, *stats, push_buf;
stats = op->dop.flow_del.stats;
push = &push_buf;
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
transition_ukey(op->ukey, UKEY_EVICTED);
push->used = MAX(stats->used, op->ukey->stats.used);
push->tcp_flags = stats->tcp_flags | op->ukey->stats.tcp_flags;
push->n_packets = stats->n_packets - op->ukey->stats.n_packets;
push->n_bytes = stats->n_bytes - op->ukey->stats.n_bytes;
if (stats->n_packets < op->ukey->stats.n_packets &&
op->ukey->stats.n_packets < UINT64_THREE_QUARTERS) {
/* Report cases where the packet counter is lower than the
* previous instance, but exclude the potential wrapping of an
* uint64_t. */
COVERAGE_INC(ukey_invalid_stat_reset);
}
ovs_mutex_unlock(&op->ukey->mutex);
} else {
push = stats;
}
if (push->n_packets || netflow_exists()) {
const struct nlattr *key = op->dop.flow_del.key;
size_t key_len = op->dop.flow_del.key_len;
struct netflow *netflow;
struct reval_context ctx = {
.netflow = &netflow,
};
int error;
if (op->ukey) {
ovs_mutex_lock(&op->ukey->mutex);
if (op->ukey->xcache) {
xlate_push_stats(op->ukey->xcache, push, false);
ovs_mutex_unlock(&op->ukey->mutex);
continue;
}
ovs_mutex_unlock(&op->ukey->mutex);
key = op->ukey->key;
key_len = op->ukey->key_len;
}
error = xlate_key(udpif, key, key_len, push, &ctx);
if (error) {
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(1, 5);
VLOG_WARN_RL(&rll, "xlate_key failed (%s)!",
ovs_strerror(error));
} else {
xlate_out_uninit(&ctx.xout);
if (netflow) {
netflow_flow_clear(netflow, &ctx.flow);
}
}
}
}
}
/* Executes datapath operations 'ops', attributes stats retrieved from the
* datapath, and deletes ukeys corresponding to deleted flows. */
static void
push_ukey_ops(struct udpif *udpif, struct umap *umap,
struct ukey_op *ops, size_t n_ops)
{
int i;
push_dp_ops(udpif, ops, n_ops);
ovs_mutex_lock(&umap->mutex);
for (i = 0; i < n_ops; i++) {
if (ops[i].dop.type == DPIF_OP_FLOW_DEL) {
ukey_delete(umap, ops[i].ukey);
}
}
ovs_mutex_unlock(&umap->mutex);
}
static void
log_unexpected_flow(const struct dpif_flow *flow, int error)
{
struct ds ds = DS_EMPTY_INITIALIZER;
ds_put_format(&ds, "Failed to acquire udpif_key corresponding to "
"unexpected flow (%s): ", ovs_strerror(error));
odp_format_ufid(&flow->ufid, &ds);
static struct vlog_rate_limit rll = VLOG_RATE_LIMIT_INIT(10, 60);
VLOG_WARN_RL(&rll, "%s", ds_cstr(&ds));
ds_destroy(&ds);
}
static void
reval_op_init(struct ukey_op *op, enum reval_result result,
struct udpif *udpif, struct udpif_key *ukey,
struct recirc_refs *recircs, struct ofpbuf *odp_actions)
OVS_REQUIRES(ukey->mutex)
{
if (result == UKEY_DELETE) {
delete_op_init(udpif, op, ukey);
transition_ukey(ukey, UKEY_EVICTING);
} else if (result == UKEY_MODIFY) {
/* Store the new recircs. */
recirc_refs_swap(&ukey->recircs, recircs);
/* Release old recircs. */
recirc_refs_unref(recircs);
/* ukey->key_recirc_id remains, as the key is the same as before. */
ukey_set_actions(ukey, odp_actions);
put_op_init(op, ukey, DPIF_FP_MODIFY);
}
}
static void
ukey_netdev_unref(struct udpif_key *ukey)
{
if (!ukey->in_netdev) {
return;
}
netdev_close(ukey->in_netdev);
ukey->in_netdev = NULL;
}
/*
* Given a udpif_key, get its input port (netdev) by parsing the flow keys
* and actions. The flow may not contain flow attributes if it is a terse
* dump; read its attributes from the ukey and then parse the flow to get
* the port info. Save them in udpif_key.
*/
static void
ukey_to_flow_netdev(struct udpif *udpif, struct udpif_key *ukey)
{
const char *dpif_type_str = dpif_normalize_type(dpif_type(udpif->dpif));
const struct nlattr *k;
unsigned int left;
/* Remove existing references to netdev */
ukey_netdev_unref(ukey);
/* Find the input port and get a reference to its netdev */
NL_ATTR_FOR_EACH (k, left, ukey->key, ukey->key_len) {
enum ovs_key_attr type = nl_attr_type(k);
if (type == OVS_KEY_ATTR_IN_PORT) {
ukey->in_netdev = netdev_ports_get(nl_attr_get_odp_port(k),
dpif_type_str);
} else if (type == OVS_KEY_ATTR_TUNNEL) {
struct flow_tnl tnl;
enum odp_key_fitness res;
if (ukey->in_netdev) {
netdev_close(ukey->in_netdev);
ukey->in_netdev = NULL;
}
res = odp_tun_key_from_attr(k, &tnl, NULL);
if (res != ODP_FIT_ERROR) {
ukey->in_netdev = flow_get_tunnel_netdev(&tnl);
break;
}
}
}
}
static uint64_t
udpif_flow_packet_delta(struct udpif_key *ukey, const struct dpif_flow *f)
{
return f->stats.n_packets + ukey->flow_backlog_packets -
ukey->flow_packets;
}
static long long int
udpif_flow_time_delta(struct udpif *udpif, struct udpif_key *ukey)
{
return (udpif->dpif->current_ms - ukey->flow_time) / 1000;
}
/*
* Save backlog packet count while switching modes
* between offloaded and kernel datapaths.
*/
static void
udpif_set_ukey_backlog_packets(struct udpif_key *ukey)
{
ukey->flow_backlog_packets = ukey->flow_packets;
}
/* Gather pps-rate for the given dpif_flow and save it in its ukey */
static void
udpif_update_flow_pps(struct udpif *udpif, struct udpif_key *ukey,
const struct dpif_flow *f)
{
uint64_t pps;
/* Update pps-rate only when we are close to rebalance interval */
if (udpif->dpif->current_ms - ukey->flow_time < OFFL_REBAL_INTVL_MSEC) {
return;
}
ukey->offloaded = f->attrs.offloaded;
pps = udpif_flow_packet_delta(ukey, f) /
udpif_flow_time_delta(udpif, ukey);
ukey->flow_pps_rate = pps;
ukey->flow_packets = ukey->flow_backlog_packets + f->stats.n_packets;
ukey->flow_time = udpif->dpif->current_ms;
}
static long long int
udpif_update_used(struct udpif *udpif, struct udpif_key *ukey,
struct dpif_flow_stats *stats)
OVS_REQUIRES(ukey->mutex)
{
if (!udpif->dump->terse) {
return ukey->created;
}
if (stats->n_packets > ukey->stats.n_packets) {
stats->used = udpif->dpif->current_ms;
} else if (ukey->stats.used) {
stats->used = ukey->stats.used;
} else {
stats->used = ukey->created;
}
return stats->used;
}
static void
revalidate(struct revalidator *revalidator)
{
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
struct udpif *udpif = revalidator->udpif;
struct dpif_flow_dump_thread *dump_thread;
uint64_t dump_seq, reval_seq;
bool kill_warn_print = true;
unsigned int flow_limit;
dump_seq = seq_read(udpif->dump_seq);
reval_seq = seq_read(udpif->reval_seq);
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
dump_thread = dpif_flow_dump_thread_create(udpif->dump);
for (;;) {
struct ukey_op ops[REVALIDATE_MAX_BATCH];
int n_ops = 0;
struct dpif_flow flows[REVALIDATE_MAX_BATCH];
const struct dpif_flow *f;
int n_dumped;
long long int max_idle;
long long int now;
size_t kill_all_limit;
size_t n_dp_flows;
bool kill_them_all;
n_dumped = dpif_flow_dump_next(dump_thread, flows, ARRAY_SIZE(flows));
if (!n_dumped) {
break;
}
/* In normal operation we want to keep flows around until they have
* been idle for 'ofproto_max_idle' milliseconds. However:
*
* - If the number of datapath flows climbs above 'flow_limit',
* drop that down to 100 ms to try to bring the flows down to
* the limit.
*
* - If the number of datapath flows climbs above twice
* 'flow_limit', delete all the datapath flows as an emergency
* measure. (We reassess this condition for the next batch of
* datapath flows, so we will recover before all the flows are
* gone.) */
n_dp_flows = udpif_get_n_flows(udpif);
if (n_dp_flows >= flow_limit) {
COVERAGE_INC(upcall_flow_limit_hit);
}
kill_them_all = false;
kill_all_limit = flow_limit * 2;
if (OVS_UNLIKELY(n_dp_flows > kill_all_limit)) {
static struct vlog_rate_limit rlem = VLOG_RATE_LIMIT_INIT(1, 1);
kill_them_all = true;
COVERAGE_INC(upcall_flow_limit_kill);
if (kill_warn_print) {
kill_warn_print = false;
VLOG_WARN_RL(&rlem,
"Number of datapath flows (%"PRIuSIZE") twice as high as "
"current dynamic flow limit (%"PRIuSIZE"). "
"Starting to delete flows unconditionally "
"as an emergency measure.", n_dp_flows, kill_all_limit);
}
}
max_idle = n_dp_flows > flow_limit ? 100 : ofproto_max_idle;
udpif->dpif->current_ms = now = time_msec();
for (f = flows; f < &flows[n_dumped]; f++) {
long long int used = f->stats.used;
struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
enum flow_del_reason del_reason = FDR_NONE;
struct dpif_flow_stats stats = f->stats;
enum reval_result result;
struct udpif_key *ukey;
bool already_dumped;
int error;
if (ukey_acquire(udpif, f, &ukey, &error)) {
if (error == EBUSY) {
/* Another thread is processing this flow, so don't bother
* processing it.*/
COVERAGE_INC(upcall_ukey_contention);
} else {
log_unexpected_flow(f, error);
if (error != ENOENT) {
delete_op_init__(udpif, &ops[n_ops++], f);
}
}
continue;
}
ukey->offloaded = f->attrs.offloaded;
if (!ukey->dp_layer
|| (!dpif_synced_dp_layers(udpif->dpif)
&& strcmp(ukey->dp_layer, f->attrs.dp_layer))) {
if (ukey->dp_layer) {
/* The dp_layer has changed this is probably due to an
* earlier revalidate cycle moving it to/from hw offload.
* In this case we should reset the ukey stored statistics,
* as they are from the deleted DP flow. */
COVERAGE_INC(ukey_dp_change);
memset(&ukey->stats, 0, sizeof ukey->stats);
}
ukey->dp_layer = f->attrs.dp_layer;
}
already_dumped = ukey->dump_seq == dump_seq;
if (already_dumped) {
/* The flow has already been handled during this flow dump
* operation. Skip it. */
if (ukey->xcache) {
COVERAGE_INC(dumped_duplicate_flow);
} else {
COVERAGE_INC(dumped_new_flow);
}
ovs_mutex_unlock(&ukey->mutex);
continue;
}
if (ukey->state == UKEY_INCONSISTENT) {
ukey->dump_seq = dump_seq;
reval_op_init(&ops[n_ops++], UKEY_DELETE, udpif, ukey,
&recircs, &odp_actions);
ovs_mutex_unlock(&ukey->mutex);
COVERAGE_INC(dumped_inconsistent_flow);
continue;
}
if (ukey->state <= UKEY_OPERATIONAL) {
/* The flow is now confirmed to be in the datapath. */
transition_ukey(ukey, UKEY_OPERATIONAL);
} else {
VLOG_INFO("Unexpected ukey transition from state %d "
"(last transitioned from thread %u at %s)",
ukey->state, ukey->state_thread, ukey->state_where);
ovs_mutex_unlock(&ukey->mutex);
continue;
}
if (!used) {
used = udpif_update_used(udpif, ukey, &stats);
}
if (kill_them_all || (used && used < now - max_idle)) {
result = UKEY_DELETE;
del_reason = (kill_them_all) ? FDR_FLOW_LIMIT : FDR_FLOW_IDLE;
} else {
result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
reval_seq, &recircs, &del_reason);
}
ukey->dump_seq = dump_seq;
if (netdev_is_offload_rebalance_policy_enabled() &&
result != UKEY_DELETE) {
udpif_update_flow_pps(udpif, ukey, f);
}
OVS_USDT_PROBE(revalidate, flow_result, udpif, ukey, result,
del_reason);
if (result != UKEY_KEEP) {
/* Takes ownership of 'recircs'. */
reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
&odp_actions);
}
ovs_mutex_unlock(&ukey->mutex);
}
if (n_ops) {
/* Push datapath ops but defer ukey deletion to 'sweep' phase. */
push_dp_ops(udpif, ops, n_ops);
}
ovsrcu_quiesce();
}
dpif_flow_dump_thread_destroy(dump_thread);
ofpbuf_uninit(&odp_actions);
}
/* Pauses the 'revalidator', can only proceed after main thread
* calls udpif_resume_revalidators(). */
static void
revalidator_pause(struct revalidator *revalidator)
{
/* The first block is for sync'ing the pause with main thread. */
ovs_barrier_block(&revalidator->udpif->pause_barrier);
/* The second block is for pausing until main thread resumes. */
ovs_barrier_block(&revalidator->udpif->pause_barrier);
}
static void
revalidator_sweep__(struct revalidator *revalidator, bool purge)
{
struct udpif *udpif;
uint64_t dump_seq, reval_seq;
int slice;
udpif = revalidator->udpif;
dump_seq = seq_read(udpif->dump_seq);
reval_seq = seq_read(udpif->reval_seq);
slice = revalidator - udpif->revalidators;
ovs_assert(slice < udpif->n_revalidators);
for (int i = slice; i < N_UMAPS; i += udpif->n_revalidators) {
uint64_t odp_actions_stub[1024 / 8];
struct ofpbuf odp_actions = OFPBUF_STUB_INITIALIZER(odp_actions_stub);
struct ukey_op ops[REVALIDATE_MAX_BATCH];
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
size_t n_ops = 0;
CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
enum flow_del_reason del_reason = FDR_NONE;
enum ukey_state ukey_state;
/* Handler threads could be holding a ukey lock while it installs a
* new flow, so don't hang around waiting for access to it. */
if (ovs_mutex_trylock(&ukey->mutex)) {
COVERAGE_INC(upcall_ukey_contention);
continue;
}
ukey_state = ukey->state;
if (ukey_state == UKEY_OPERATIONAL
|| (ukey_state == UKEY_INCONSISTENT)
|| (ukey_state == UKEY_VISIBLE && purge)) {
struct recirc_refs recircs = RECIRC_REFS_EMPTY_INITIALIZER;
bool seq_mismatch = (ukey->dump_seq != dump_seq
&& ukey->reval_seq != reval_seq);
enum reval_result result;
if (purge || ukey_state == UKEY_INCONSISTENT) {
result = UKEY_DELETE;
del_reason = purge ? FDR_PURGE : FDR_UPDATE_FAIL;
} else if (!seq_mismatch) {
result = UKEY_KEEP;
} else {
struct dpif_flow_stats stats;
COVERAGE_INC(revalidate_missed_dp_flow);
memcpy(&stats, &ukey->stats, sizeof stats);
result = revalidate_ukey(udpif, ukey, &stats, &odp_actions,
reval_seq, &recircs, &del_reason);
}
if (ukey->dump_seq != dump_seq) {
ukey->missed_dumps++;
if (ukey->missed_dumps >= 4) {
/* If the flow was not dumped for 4 revalidator rounds,
* we can assume the datapath flow no longer exists
* and the ukey should be deleted. */
COVERAGE_INC(revalidate_missing_dp_flow);
del_reason = FDR_FLOW_MISSING_DP;
result = UKEY_DELETE;
}
} else {
ukey->missed_dumps = 0;
}
if (result != UKEY_KEEP) {
/* Clears 'recircs' if filled by revalidate_ukey(). */
reval_op_init(&ops[n_ops++], result, udpif, ukey, &recircs,
&odp_actions);
}
OVS_USDT_PROBE(revalidator_sweep__, flow_sweep_result, udpif,
ukey, result, del_reason);
}
ovs_mutex_unlock(&ukey->mutex);
if (ukey_state == UKEY_EVICTED) {
/* The common flow deletion case involves deletion of the flow
* during the dump phase and ukey deletion here. */
ovs_mutex_lock(&umap->mutex);
ukey_delete(umap, ukey);
ovs_mutex_unlock(&umap->mutex);
}
if (n_ops == REVALIDATE_MAX_BATCH) {
/* Update/delete missed flows and clean up corresponding ukeys
* if necessary. */
push_ukey_ops(udpif, umap, ops, n_ops);
n_ops = 0;
}
}
if (n_ops) {
push_ukey_ops(udpif, umap, ops, n_ops);
}
ofpbuf_uninit(&odp_actions);
ovsrcu_quiesce();
}
}
static void
revalidator_sweep(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, false);
}
static void
revalidator_purge(struct revalidator *revalidator)
{
revalidator_sweep__(revalidator, true);
}
/* In reaction to dpif purge, purges all 'ukey's with same 'pmd_id'. */
static void
dp_purge_cb(void *aux, unsigned pmd_id)
OVS_NO_THREAD_SAFETY_ANALYSIS
{
struct udpif *udpif = aux;
size_t i;
udpif_pause_revalidators(udpif);
for (i = 0; i < N_UMAPS; i++) {
struct ukey_op ops[REVALIDATE_MAX_BATCH];
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
size_t n_ops = 0;
CMAP_FOR_EACH(ukey, cmap_node, &umap->cmap) {
if (ukey->pmd_id == pmd_id) {
delete_op_init(udpif, &ops[n_ops++], ukey);
transition_ukey(ukey, UKEY_EVICTING);
if (n_ops == REVALIDATE_MAX_BATCH) {
push_ukey_ops(udpif, umap, ops, n_ops);
n_ops = 0;
}
}
}
if (n_ops) {
push_ukey_ops(udpif, umap, ops, n_ops);
}
ovsrcu_quiesce();
}
udpif_resume_revalidators(udpif);
}
static void
upcall_unixctl_show(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
uint64_t n_offloaded_flows;
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
unsigned int flow_limit;
bool ufid_enabled;
size_t i;
atomic_read_relaxed(&udpif->flow_limit, &flow_limit);
ufid_enabled = udpif_use_ufid(udpif);
ds_put_format(&ds, "%s:\n", dpif_name(udpif->dpif));
ds_put_format(&ds, " flows : (current %lu)"
" (avg %u) (max %u) (limit %u)\n", udpif_get_n_flows(udpif),
udpif->avg_n_flows, udpif->max_n_flows, flow_limit);
if (!dpif_get_n_offloaded_flows(udpif->dpif, &n_offloaded_flows)) {
ds_put_format(&ds, " offloaded flows : %"PRIu64"\n",
n_offloaded_flows);
}
ds_put_format(&ds, " dump duration : %lldms\n", udpif->dump_duration);
ds_put_format(&ds, " ufid enabled : ");
if (ufid_enabled) {
ds_put_format(&ds, "true\n");
} else {
ds_put_format(&ds, "false\n");
}
ds_put_char(&ds, '\n');
for (i = 0; i < udpif->n_revalidators; i++) {
struct revalidator *revalidator = &udpif->revalidators[i];
int j, elements = 0;
for (j = i; j < N_UMAPS; j += udpif->n_revalidators) {
elements += cmap_count(&udpif->ukeys[j].cmap);
}
ds_put_format(&ds, " %u: (keys %d)\n", revalidator->id, elements);
}
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Disable using the megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_disable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_megaflows, false);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows disabled");
}
/* Re-enable using megaflows.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_enable_megaflows(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_megaflows, true);
udpif_flush_all_datapaths();
unixctl_command_reply(conn, "megaflows enabled");
}
/* Disable skipping flow attributes during flow dump.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_disable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_ufid, false);
unixctl_command_reply(conn, "Datapath dumping tersely using UFID disabled");
}
/* Re-enable skipping flow attributes during flow dump.
*
* This command is only needed for advanced debugging, so it's not documented
* in the man page. */
static void
upcall_unixctl_enable_ufid(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
atomic_store_relaxed(&enable_ufid, true);
unixctl_command_reply(conn, "Datapath dumping tersely using UFID enabled "
"for supported datapaths");
}
/* Set the flow limit.
*
* This command is only needed for advanced debugging, so it's not
* documented in the man page. */
static void
upcall_unixctl_set_flow_limit(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[],
void *aux OVS_UNUSED)
{
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
unsigned int flow_limit = atoi(argv[1]);
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
atomic_store_relaxed(&udpif->flow_limit, flow_limit);
}
ds_put_format(&ds, "set flow_limit to %u\n", flow_limit);
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
static void
upcall_unixctl_dump_wait(struct unixctl_conn *conn,
int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED,
void *aux OVS_UNUSED)
{
if (ovs_list_is_singleton(&all_udpifs)) {
struct udpif *udpif = NULL;
size_t len;
udpif = OBJECT_CONTAINING(ovs_list_front(&all_udpifs), udpif, list_node);
len = (udpif->n_conns + 1) * sizeof *udpif->conns;
udpif->conn_seq = seq_read(udpif->dump_seq);
udpif->conns = xrealloc(udpif->conns, len);
udpif->conns[udpif->n_conns++] = conn;
} else {
unixctl_command_reply_error(conn, "can't wait on multiple udpifs.");
}
}
static void
upcall_unixctl_purge(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
bool wake_up = false;
int n;
if (!latch_is_set(&udpif->pause_latch)) {
udpif_pause_revalidators(udpif);
wake_up = true;
}
for (n = 0; n < udpif->n_revalidators; n++) {
revalidator_purge(&udpif->revalidators[n]);
}
if (wake_up) {
udpif_resume_revalidators(udpif);
}
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_pause(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_pause_revalidators(udpif);
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_resume(struct unixctl_conn *conn, int argc OVS_UNUSED,
const char *argv[] OVS_UNUSED, void *aux OVS_UNUSED)
{
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
udpif_resume_revalidators(udpif);
}
unixctl_command_reply(conn, "");
}
static void
upcall_unixctl_ofproto_detrace(struct unixctl_conn *conn, int argc,
const char *argv[], void *aux OVS_UNUSED)
{
const char *key_s = argv[1];
const char *pmd_str = NULL;
unsigned int pmd_id;
ovs_u128 ufid;
if (odp_ufid_from_string(key_s, &ufid) <= 0) {
unixctl_command_reply_error(conn, "failed to parse ufid");
return;
}
if (argc == 3) {
pmd_str = argv[2];
if (!ovs_scan(pmd_str, "pmd=%d", &pmd_id)) {
unixctl_command_reply_error(conn,
"Invalid pmd argument format. "
"Expecting 'pmd=PMD-ID'");
return;
}
}
struct ds ds = DS_EMPTY_INITIALIZER;
struct udpif *udpif;
LIST_FOR_EACH (udpif, list_node, &all_udpifs) {
if (!pmd_str) {
const char *type = dpif_normalize_type(dpif_type(udpif->dpif));
pmd_id = !strcmp(type, "system") ? PMD_ID_NULL : NON_PMD_CORE_ID;
}
struct udpif_key *ukey = ukey_lookup(udpif, &ufid, pmd_id);
if (!ukey) {
ds_put_format(&ds, "UFID was not found for %s\n",
dpif_name(udpif->dpif));
continue;
}
ovs_mutex_lock(&ukey->mutex);
/* It only makes sense to format rules for ukeys that are (still)
* in use. */
if ((ukey->state == UKEY_VISIBLE || ukey->state == UKEY_OPERATIONAL)
&& ukey->xcache) {
xlate_xcache_format(&ds, ukey->xcache);
} else {
ds_put_format(&ds, "Cache was not found for %s\n",
dpif_name(udpif->dpif));
}
ovs_mutex_unlock(&ukey->mutex);
}
unixctl_command_reply(conn, ds_cstr(&ds));
ds_destroy(&ds);
}
/* Flows are sorted in the following order:
* netdev, flow state (offloaded/kernel path), flow_pps_rate.
*/
static int
flow_compare_rebalance(const void *elem1, const void *elem2)
{
const struct udpif_key *f1 = *(struct udpif_key **)elem1;
const struct udpif_key *f2 = *(struct udpif_key **)elem2;
int64_t diff;
if (f1->in_netdev < f2->in_netdev) {
return -1;
} else if (f1->in_netdev > f2->in_netdev) {
return 1;
}
if (f1->offloaded != f2->offloaded) {
return f2->offloaded - f1->offloaded;
}
diff = (f1->offloaded == true) ?
f1->flow_pps_rate - f2->flow_pps_rate :
f2->flow_pps_rate - f1->flow_pps_rate;
return (diff < 0) ? -1 : 1;
}
/* Insert flows from pending array during rebalancing */
static int
rebalance_insert_pending(struct udpif *udpif, struct udpif_key **pending_flows,
int pending_count, int insert_count,
uint64_t rate_threshold)
{
int count = 0;
for (int i = 0; i < pending_count; i++) {
struct udpif_key *flow = pending_flows[i];
int err;
/* Stop offloading pending flows if the insert count is
* reached and the flow rate is less than the threshold
*/
if (count >= insert_count && flow->flow_pps_rate < rate_threshold) {
break;
}
/* Offload the flow to netdev */
err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_ALWAYS);
if (err == ENOSPC) {
/* Stop if we are out of resources */
break;
}
if (err) {
continue;
}
/* Offload succeeded; delete it from the kernel datapath */
udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
/* Change the state of the flow, adjust dpif counters */
flow->offloaded = true;
udpif_set_ukey_backlog_packets(flow);
count++;
}
return count;
}
/* Remove flows from offloaded array during rebalancing */
static void
rebalance_remove_offloaded(struct udpif *udpif,
struct udpif_key **offloaded_flows,
int offload_count)
{
for (int i = 0; i < offload_count; i++) {
struct udpif_key *flow = offloaded_flows[i];
int err;
/* Install the flow into kernel path first */
err = udpif_flow_program(udpif, flow, DPIF_OFFLOAD_NEVER);
if (err) {
continue;
}
/* Success; now remove offloaded flow from netdev */
err = udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_ALWAYS);
if (err) {
udpif_flow_unprogram(udpif, flow, DPIF_OFFLOAD_NEVER);
continue;
}
udpif_set_ukey_backlog_packets(flow);
flow->offloaded = false;
}
}
/*
* Rebalance offloaded flows on a netdev that's in OOR state.
*
* The rebalancing is done in two phases. In the first phase, we check if
* the pending flows can be offloaded (if some resources became available
* in the meantime) by trying to offload each pending flow. If all pending
* flows get successfully offloaded, the OOR state is cleared on the netdev
* and there's nothing to rebalance.
*
* If some of the pending flows could not be offloaded, i.e, we still see
* the OOR error, then we move to the second phase of rebalancing. In this
* phase, the rebalancer compares pps-rate of an offloaded flow with the
* least pps-rate with that of a pending flow with the highest pps-rate from
* their respective sorted arrays. If pps-rate of the offloaded flow is less
* than the pps-rate of the pending flow, then it deletes the offloaded flow
* from the HW/netdev and adds it to kernel datapath and then offloads pending
* to HW/netdev. This process is repeated for every pair of offloaded and
* pending flows in the ordered list. The process stops when we encounter an
* offloaded flow that has a higher pps-rate than the corresponding pending
* flow. The entire rebalancing process is repeated in the next iteration.
*/
static bool
rebalance_device(struct udpif *udpif, struct udpif_key **offloaded_flows,
int offload_count, struct udpif_key **pending_flows,
int pending_count)
{
/* Phase 1 */
int num_inserted = rebalance_insert_pending(udpif, pending_flows,
pending_count, pending_count,
0);
if (num_inserted) {
VLOG_DBG("Offload rebalance: Phase1: inserted %d pending flows",
num_inserted);
}
/* Adjust pending array */
pending_flows = &pending_flows[num_inserted];
pending_count -= num_inserted;
if (!pending_count) {
/*
* Successfully offloaded all pending flows. The device
* is no longer in OOR state; done rebalancing this device.
*/
return false;
}
/*
* Phase 2; determine how many offloaded flows to churn.
*/
#define OFFL_REBAL_MAX_CHURN 1024
int churn_count = 0;
while (churn_count < OFFL_REBAL_MAX_CHURN && churn_count < offload_count
&& churn_count < pending_count) {
if (pending_flows[churn_count]->flow_pps_rate <=
offloaded_flows[churn_count]->flow_pps_rate)
break;
churn_count++;
}
if (churn_count) {
VLOG_DBG("Offload rebalance: Phase2: removing %d offloaded flows",
churn_count);
}
/* Bail early if nothing to churn */
if (!churn_count) {
return true;
}
/* Remove offloaded flows */
rebalance_remove_offloaded(udpif, offloaded_flows, churn_count);
/* Adjust offloaded array */
offloaded_flows = &offloaded_flows[churn_count];
offload_count -= churn_count;
/* Replace offloaded flows with pending flows */
num_inserted = rebalance_insert_pending(udpif, pending_flows,
pending_count, churn_count,
offload_count ?
offloaded_flows[0]->flow_pps_rate :
0);
if (num_inserted) {
VLOG_DBG("Offload rebalance: Phase2: inserted %d pending flows",
num_inserted);
}
return true;
}
static struct udpif_key **
udpif_add_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
size_t *alloc_flow_count, struct udpif_key *ukey)
{
if (*total_flow_count >= *alloc_flow_count) {
sort_flows = x2nrealloc(sort_flows, alloc_flow_count, sizeof ukey);
}
sort_flows[(*total_flow_count)++] = ukey;
return sort_flows;
}
/*
* Build sort_flows[] initially with flows that
* reference an 'OOR' netdev as their input port.
*/
static struct udpif_key **
udpif_build_oor_flows(struct udpif_key **sort_flows, size_t *total_flow_count,
size_t *alloc_flow_count, struct udpif_key *ukey,
int *oor_netdev_count)
{
struct netdev *netdev;
int count;
/* Input netdev must be available for the flow */
netdev = ukey->in_netdev;
if (!netdev) {
return sort_flows;
}
/* Is the in-netdev for this flow in OOR state ? */
if (!netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR)) {
ukey_netdev_unref(ukey);
return sort_flows;
}
/* Add the flow to sort_flows[] */
sort_flows = udpif_add_oor_flows(sort_flows, total_flow_count,
alloc_flow_count, ukey);
if (ukey->offloaded) {
count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
ovs_assert(count >= 0);
if (count++ == 0) {
(*oor_netdev_count)++;
}
netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, count);
} else {
count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
ovs_assert(count >= 0);
netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, ++count);
}
return sort_flows;
}
/*
* Rebalance offloaded flows on HW netdevs that are in OOR state.
*/
static void
udpif_flow_rebalance(struct udpif *udpif)
{
struct udpif_key **sort_flows = NULL;
size_t alloc_flow_count = 0;
size_t total_flow_count = 0;
int oor_netdev_count = 0;
int offload_index = 0;
int pending_index;
/* Collect flows (offloaded and pending) that reference OOR netdevs */
for (size_t i = 0; i < N_UMAPS; i++) {
struct udpif_key *ukey;
struct umap *umap = &udpif->ukeys[i];
CMAP_FOR_EACH (ukey, cmap_node, &umap->cmap) {
ukey_to_flow_netdev(udpif, ukey);
sort_flows = udpif_build_oor_flows(sort_flows, &total_flow_count,
&alloc_flow_count, ukey,
&oor_netdev_count);
}
}
/* Sort flows by OOR netdevs, state (offloaded/pending) and pps-rate */
qsort(sort_flows, total_flow_count, sizeof(struct udpif_key *),
flow_compare_rebalance);
/*
* We now have flows referencing OOR netdevs, that are sorted. We also
* have a count of offloaded and pending flows on each of the netdevs
* that are in OOR state. Now rebalance each oor-netdev.
*/
while (oor_netdev_count) {
struct netdev *netdev;
int offload_count;
int pending_count;
bool oor;
netdev = sort_flows[offload_index]->in_netdev;
ovs_assert(netdev_get_hw_info(netdev, HW_INFO_TYPE_OOR) == true);
VLOG_DBG("Offload rebalance: netdev: %s is OOR", netdev->name);
offload_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT);
pending_count = netdev_get_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT);
pending_index = offload_index + offload_count;
oor = rebalance_device(udpif,
&sort_flows[offload_index], offload_count,
&sort_flows[pending_index], pending_count);
netdev_set_hw_info(netdev, HW_INFO_TYPE_OOR, oor);
offload_index = pending_index + pending_count;
netdev_set_hw_info(netdev, HW_INFO_TYPE_OFFL_COUNT, 0);
netdev_set_hw_info(netdev, HW_INFO_TYPE_PEND_COUNT, 0);
oor_netdev_count--;
}
for (int i = 0; i < total_flow_count; i++) {
struct udpif_key *ukey = sort_flows[i];
ukey_netdev_unref(ukey);
}
free(sort_flows);
}
static int
udpif_flow_program(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type)
{
struct dpif_op *opsp;
struct ukey_op uop;
opsp = &uop.dop;
put_op_init(&uop, ukey, DPIF_FP_CREATE);
dpif_operate(udpif->dpif, &opsp, 1, offload_type);
return opsp->error;
}
static int
udpif_flow_unprogram(struct udpif *udpif, struct udpif_key *ukey,
enum dpif_offload_type offload_type)
{
struct dpif_op *opsp;
struct ukey_op uop;
opsp = &uop.dop;
delete_op_init(udpif, &uop, ukey);
dpif_operate(udpif->dpif, &opsp, 1, offload_type);
return opsp->error;
}
|