1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
"""Sorted Set
=============
:doc:`Sorted Containers<index>` is an Apache2 licensed Python sorted
collections library, written in pure-Python, and fast as C-extensions. The
:doc:`introduction<introduction>` is the best way to get started.
Sorted set implementations:
.. currentmodule:: sortedcontainers
* :class:`SortedSet`
"""
from itertools import chain
from operator import eq, ne, gt, ge, lt, le
from textwrap import dedent
from .sortedlist import SortedList, recursive_repr
###############################################################################
# BEGIN Python 2/3 Shims
###############################################################################
try:
from collections.abc import MutableSet, Sequence, Set
except ImportError:
from collections import MutableSet, Sequence, Set
###############################################################################
# END Python 2/3 Shims
###############################################################################
class SortedSet(MutableSet, Sequence):
"""Sorted set is a sorted mutable set.
Sorted set values are maintained in sorted order. The design of sorted set
is simple: sorted set uses a set for set-operations and maintains a sorted
list of values.
Sorted set values must be hashable and comparable. The hash and total
ordering of values must not change while they are stored in the sorted set.
Mutable set methods:
* :func:`SortedSet.__contains__`
* :func:`SortedSet.__iter__`
* :func:`SortedSet.__len__`
* :func:`SortedSet.add`
* :func:`SortedSet.discard`
Sequence methods:
* :func:`SortedSet.__getitem__`
* :func:`SortedSet.__delitem__`
* :func:`SortedSet.__reversed__`
Methods for removing values:
* :func:`SortedSet.clear`
* :func:`SortedSet.pop`
* :func:`SortedSet.remove`
Set-operation methods:
* :func:`SortedSet.difference`
* :func:`SortedSet.difference_update`
* :func:`SortedSet.intersection`
* :func:`SortedSet.intersection_update`
* :func:`SortedSet.symmetric_difference`
* :func:`SortedSet.symmetric_difference_update`
* :func:`SortedSet.union`
* :func:`SortedSet.update`
Methods for miscellany:
* :func:`SortedSet.copy`
* :func:`SortedSet.count`
* :func:`SortedSet.__repr__`
* :func:`SortedSet._check`
Sorted list methods available:
* :func:`SortedList.bisect_left`
* :func:`SortedList.bisect_right`
* :func:`SortedList.index`
* :func:`SortedList.irange`
* :func:`SortedList.islice`
* :func:`SortedList._reset`
Additional sorted list methods available, if key-function used:
* :func:`SortedKeyList.bisect_key_left`
* :func:`SortedKeyList.bisect_key_right`
* :func:`SortedKeyList.irange_key`
Sorted set comparisons use subset and superset relations. Two sorted sets
are equal if and only if every element of each sorted set is contained in
the other (each is a subset of the other). A sorted set is less than
another sorted set if and only if the first sorted set is a proper subset
of the second sorted set (is a subset, but is not equal). A sorted set is
greater than another sorted set if and only if the first sorted set is a
proper superset of the second sorted set (is a superset, but is not equal).
"""
def __init__(self, iterable=None, key=None):
"""Initialize sorted set instance.
Optional `iterable` argument provides an initial iterable of values to
initialize the sorted set.
Optional `key` argument defines a callable that, like the `key`
argument to Python's `sorted` function, extracts a comparison key from
each value. The default, none, compares values directly.
Runtime complexity: `O(n*log(n))`
>>> ss = SortedSet([3, 1, 2, 5, 4])
>>> ss
SortedSet([1, 2, 3, 4, 5])
>>> from operator import neg
>>> ss = SortedSet([3, 1, 2, 5, 4], neg)
>>> ss
SortedSet([5, 4, 3, 2, 1], key=<built-in function neg>)
:param iterable: initial values (optional)
:param key: function used to extract comparison key (optional)
"""
self._key = key
# SortedSet._fromset calls SortedSet.__init__ after initializing the
# _set attribute. So only create a new set if the _set attribute is not
# already present.
if not hasattr(self, '_set'):
self._set = set()
self._list = SortedList(self._set, key=key)
# Expose some set methods publicly.
_set = self._set
self.isdisjoint = _set.isdisjoint
self.issubset = _set.issubset
self.issuperset = _set.issuperset
# Expose some sorted list methods publicly.
_list = self._list
self.bisect_left = _list.bisect_left
self.bisect = _list.bisect
self.bisect_right = _list.bisect_right
self.index = _list.index
self.irange = _list.irange
self.islice = _list.islice
self._reset = _list._reset
if key is not None:
self.bisect_key_left = _list.bisect_key_left
self.bisect_key_right = _list.bisect_key_right
self.bisect_key = _list.bisect_key
self.irange_key = _list.irange_key
if iterable is not None:
self._update(iterable)
@classmethod
def _fromset(cls, values, key=None):
"""Initialize sorted set from existing set.
Used internally by set operations that return a new set.
"""
sorted_set = object.__new__(cls)
sorted_set._set = values
sorted_set.__init__(key=key)
return sorted_set
@property
def key(self):
"""Function used to extract comparison key from values.
Sorted set compares values directly when the key function is none.
"""
return self._key
def __contains__(self, value):
"""Return true if `value` is an element of the sorted set.
``ss.__contains__(value)`` <==> ``value in ss``
Runtime complexity: `O(1)`
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> 3 in ss
True
:param value: search for value in sorted set
:return: true if `value` in sorted set
"""
return value in self._set
def __getitem__(self, index):
"""Lookup value at `index` in sorted set.
``ss.__getitem__(index)`` <==> ``ss[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> ss[2]
'c'
>>> ss[-1]
'e'
>>> ss[2:5]
['c', 'd', 'e']
:param index: integer or slice for indexing
:return: value or list of values
:raises IndexError: if index out of range
"""
return self._list[index]
def __delitem__(self, index):
"""Remove value at `index` from sorted set.
``ss.__delitem__(index)`` <==> ``del ss[index]``
Supports slicing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> del ss[2]
>>> ss
SortedSet(['a', 'b', 'd', 'e'])
>>> del ss[:2]
>>> ss
SortedSet(['d', 'e'])
:param index: integer or slice for indexing
:raises IndexError: if index out of range
"""
_set = self._set
_list = self._list
if isinstance(index, slice):
values = _list[index]
_set.difference_update(values)
else:
value = _list[index]
_set.remove(value)
del _list[index]
def __make_cmp(set_op, symbol, doc):
"Make comparator method."
def comparer(self, other):
"Compare method for sorted set and set."
if isinstance(other, SortedSet):
return set_op(self._set, other._set)
elif isinstance(other, Set):
return set_op(self._set, other)
return NotImplemented
set_op_name = set_op.__name__
comparer.__name__ = '__{0}__'.format(set_op_name)
doc_str = """Return true if and only if sorted set is {0} `other`.
``ss.__{1}__(other)`` <==> ``ss {2} other``
Comparisons use subset and superset semantics as with sets.
Runtime complexity: `O(n)`
:param other: `other` set
:return: true if sorted set is {0} `other`
"""
comparer.__doc__ = dedent(doc_str.format(doc, set_op_name, symbol))
return comparer
__eq__ = __make_cmp(eq, '==', 'equal to')
__ne__ = __make_cmp(ne, '!=', 'not equal to')
__lt__ = __make_cmp(lt, '<', 'a proper subset of')
__gt__ = __make_cmp(gt, '>', 'a proper superset of')
__le__ = __make_cmp(le, '<=', 'a subset of')
__ge__ = __make_cmp(ge, '>=', 'a superset of')
__make_cmp = staticmethod(__make_cmp)
def __len__(self):
"""Return the size of the sorted set.
``ss.__len__()`` <==> ``len(ss)``
:return: size of sorted set
"""
return len(self._set)
def __iter__(self):
"""Return an iterator over the sorted set.
``ss.__iter__()`` <==> ``iter(ss)``
Iterating the sorted set while adding or deleting values may raise a
:exc:`RuntimeError` or fail to iterate over all values.
"""
return iter(self._list)
def __reversed__(self):
"""Return a reverse iterator over the sorted set.
``ss.__reversed__()`` <==> ``reversed(ss)``
Iterating the sorted set while adding or deleting values may raise a
:exc:`RuntimeError` or fail to iterate over all values.
"""
return reversed(self._list)
def add(self, value):
"""Add `value` to sorted set.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet()
>>> ss.add(3)
>>> ss.add(1)
>>> ss.add(2)
>>> ss
SortedSet([1, 2, 3])
:param value: value to add to sorted set
"""
_set = self._set
if value not in _set:
_set.add(value)
self._list.add(value)
_add = add
def clear(self):
"""Remove all values from sorted set.
Runtime complexity: `O(n)`
"""
self._set.clear()
self._list.clear()
def copy(self):
"""Return a shallow copy of the sorted set.
Runtime complexity: `O(n)`
:return: new sorted set
"""
return self._fromset(set(self._set), key=self._key)
__copy__ = copy
def count(self, value):
"""Return number of occurrences of `value` in the sorted set.
Runtime complexity: `O(1)`
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.count(3)
1
:param value: value to count in sorted set
:return: count
"""
return 1 if value in self._set else 0
def discard(self, value):
"""Remove `value` from sorted set if it is a member.
If `value` is not a member, do nothing.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.discard(5)
>>> ss.discard(0)
>>> ss == set([1, 2, 3, 4])
True
:param value: `value` to discard from sorted set
"""
_set = self._set
if value in _set:
_set.remove(value)
self._list.remove(value)
_discard = discard
def pop(self, index=-1):
"""Remove and return value at `index` in sorted set.
Raise :exc:`IndexError` if the sorted set is empty or index is out of
range.
Negative indices are supported.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet('abcde')
>>> ss.pop()
'e'
>>> ss.pop(2)
'c'
>>> ss
SortedSet(['a', 'b', 'd'])
:param int index: index of value (default -1)
:return: value
:raises IndexError: if index is out of range
"""
# pylint: disable=arguments-differ
value = self._list.pop(index)
self._set.remove(value)
return value
def remove(self, value):
"""Remove `value` from sorted set; `value` must be a member.
If `value` is not a member, raise :exc:`KeyError`.
Runtime complexity: `O(log(n))` -- approximate.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.remove(5)
>>> ss == set([1, 2, 3, 4])
True
>>> ss.remove(0)
Traceback (most recent call last):
...
KeyError: 0
:param value: `value` to remove from sorted set
:raises KeyError: if `value` is not in sorted set
"""
self._set.remove(value)
self._list.remove(value)
def difference(self, *iterables):
"""Return the difference of two or more sets as a new sorted set.
The `difference` method also corresponds to operator ``-``.
``ss.__sub__(iterable)`` <==> ``ss - iterable``
The difference is all values that are in this sorted set but not the
other `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.difference([4, 5, 6, 7])
SortedSet([1, 2, 3])
:param iterables: iterable arguments
:return: new sorted set
"""
diff = self._set.difference(*iterables)
return self._fromset(diff, key=self._key)
__sub__ = difference
def difference_update(self, *iterables):
"""Remove all values of `iterables` from this sorted set.
The `difference_update` method also corresponds to operator ``-=``.
``ss.__isub__(iterable)`` <==> ``ss -= iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.difference_update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
values = set(chain(*iterables))
if (4 * len(values)) > len(_set):
_set.difference_update(values)
_list.clear()
_list.update(_set)
else:
_discard = self._discard
for value in values:
_discard(value)
return self
__isub__ = difference_update
def intersection(self, *iterables):
"""Return the intersection of two or more sets as a new sorted set.
The `intersection` method also corresponds to operator ``&``.
``ss.__and__(iterable)`` <==> ``ss & iterable``
The intersection is all values that are in this sorted set and each of
the other `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.intersection([4, 5, 6, 7])
SortedSet([4, 5])
:param iterables: iterable arguments
:return: new sorted set
"""
intersect = self._set.intersection(*iterables)
return self._fromset(intersect, key=self._key)
__and__ = intersection
__rand__ = __and__
def intersection_update(self, *iterables):
"""Update the sorted set with the intersection of `iterables`.
The `intersection_update` method also corresponds to operator ``&=``.
``ss.__iand__(iterable)`` <==> ``ss &= iterable``
Keep only values found in itself and all `iterables`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.intersection_update([4, 5, 6, 7])
>>> ss
SortedSet([4, 5])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
_set.intersection_update(*iterables)
_list.clear()
_list.update(_set)
return self
__iand__ = intersection_update
def symmetric_difference(self, other):
"""Return the symmetric difference with `other` as a new sorted set.
The `symmetric_difference` method also corresponds to operator ``^``.
``ss.__xor__(other)`` <==> ``ss ^ other``
The symmetric difference is all values tha are in exactly one of the
sets.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.symmetric_difference([4, 5, 6, 7])
SortedSet([1, 2, 3, 6, 7])
:param other: `other` iterable
:return: new sorted set
"""
diff = self._set.symmetric_difference(other)
return self._fromset(diff, key=self._key)
__xor__ = symmetric_difference
__rxor__ = __xor__
def symmetric_difference_update(self, other):
"""Update the sorted set with the symmetric difference with `other`.
The `symmetric_difference_update` method also corresponds to operator
``^=``.
``ss.__ixor__(other)`` <==> ``ss ^= other``
Keep only values found in exactly one of itself and `other`.
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.symmetric_difference_update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3, 6, 7])
:param other: `other` iterable
:return: itself
"""
_set = self._set
_list = self._list
_set.symmetric_difference_update(other)
_list.clear()
_list.update(_set)
return self
__ixor__ = symmetric_difference_update
def union(self, *iterables):
"""Return new sorted set with values from itself and all `iterables`.
The `union` method also corresponds to operator ``|``.
``ss.__or__(iterable)`` <==> ``ss | iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> ss.union([4, 5, 6, 7])
SortedSet([1, 2, 3, 4, 5, 6, 7])
:param iterables: iterable arguments
:return: new sorted set
"""
return self.__class__(chain(iter(self), *iterables), key=self._key)
__or__ = union
__ror__ = __or__
def update(self, *iterables):
"""Update the sorted set adding values from all `iterables`.
The `update` method also corresponds to operator ``|=``.
``ss.__ior__(iterable)`` <==> ``ss |= iterable``
>>> ss = SortedSet([1, 2, 3, 4, 5])
>>> _ = ss.update([4, 5, 6, 7])
>>> ss
SortedSet([1, 2, 3, 4, 5, 6, 7])
:param iterables: iterable arguments
:return: itself
"""
_set = self._set
_list = self._list
values = set(chain(*iterables))
if (4 * len(values)) > len(_set):
_list = self._list
_set.update(values)
_list.clear()
_list.update(_set)
else:
_add = self._add
for value in values:
_add(value)
return self
__ior__ = update
_update = update
def __reduce__(self):
"""Support for pickle.
The tricks played with exposing methods in :func:`SortedSet.__init__`
confuse pickle so customize the reducer.
"""
return (type(self), (self._set, self._key))
@recursive_repr()
def __repr__(self):
"""Return string representation of sorted set.
``ss.__repr__()`` <==> ``repr(ss)``
:return: string representation
"""
_key = self._key
key = '' if _key is None else ', key={0!r}'.format(_key)
type_name = type(self).__name__
return '{0}({1!r}{2})'.format(type_name, list(self), key)
def _check(self):
"""Check invariants of sorted set.
Runtime complexity: `O(n)`
"""
_set = self._set
_list = self._list
_list._check()
assert len(_set) == len(_list)
assert all(value in _set for value in _list)
|