1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
/*
* Copyright (c) 2009, 2012, 2014, 2015 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#undef NDEBUG
#include "hash.h"
#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "jhash.h"
#include "ovstest.h"
static void
set_bit(uint32_t array[3], int bit)
{
assert(bit >= 0 && bit <= 96);
memset(array, 0, sizeof(uint32_t) * 3);
if (bit < 96) {
array[bit / 32] = UINT32_C(1) << (bit % 32);
}
}
/* When bit == n_bits, the function just 0 sets the 'values'. */
static void
set_bit128(ovs_u128 *values, int bit, int n_bits)
{
assert(bit >= 0 && bit <= 2048);
memset(values, 0, n_bits/8);
if (bit < n_bits) {
int b = bit % 128;
if (b < 64) {
values[bit / 128].u64.lo = UINT64_C(1) << (b % 64);
} else {
values[bit / 128].u64.hi = UINT64_C(1) << (b % 64);
}
}
}
static uint64_t
get_range128(ovs_u128 *value, int ofs, uint64_t mask)
{
if (ofs == 0) {
return value->u64.lo & mask;
}
return ((ofs < 64 ? (value->u64.lo >> ofs) : 0) & mask)
| ((ofs <= 64 ? (value->u64.hi << (64 - ofs)) : (value->u64.hi >> (ofs - 64)) & mask));
}
static uint32_t
hash_words_cb(uint32_t input)
{
return hash_words(&input, 1, 0);
}
static uint32_t
jhash_words_cb(uint32_t input)
{
return jhash_words(&input, 1, 0);
}
static uint32_t
hash_int_cb(uint32_t input)
{
return hash_int(input, 0);
}
static void
check_word_hash(uint32_t (*hash)(uint32_t), const char *name,
int min_unique)
{
int i, j;
for (i = 0; i <= 32; i++) {
uint32_t in1 = i < 32 ? UINT32_C(1) << i : 0;
for (j = i + 1; j <= 32; j++) {
uint32_t in2 = j < 32 ? UINT32_C(1) << j : 0;
uint32_t out1 = hash(in1);
uint32_t out2 = hash(in2);
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
int ofs;
for (ofs = 0; ofs < 32 - min_unique; ofs++) {
uint32_t bits1 = (out1 >> ofs) & unique_mask;
uint32_t bits2 = (out2 >> ofs) & unique_mask;
if (bits1 == bits2) {
printf("Partial collision for '%s':\n", name);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in1, out1);
printf("%s(%08"PRIx32") = %08"PRIx32"\n", name, in2, out2);
printf("%d bits of output starting at bit %d "
"are both 0x%"PRIx32"\n", min_unique, ofs, bits1);
}
}
}
}
}
static void
check_3word_hash(uint32_t (*hash)(const uint32_t[], size_t, uint32_t),
const char *name)
{
int i, j;
for (i = 0; i <= 96; i++) {
for (j = i + 1; j <= 96; j++) {
uint32_t in0[3], in1[3], in2[3];
uint32_t out0,out1, out2;
const int min_unique = 12;
const uint32_t unique_mask = (UINT32_C(1) << min_unique) - 1;
set_bit(in0, i);
set_bit(in1, i);
set_bit(in2, j);
out0 = hash(in0, 3, 0);
out1 = hash(in1, 3, 0);
out2 = hash(in2, 3, 0);
if (out0 != out1) {
printf("%s hash not the same for non-64 aligned data "
"%08"PRIx32" != %08"PRIx32"\n", name, out0, out1);
}
if ((out1 & unique_mask) == (out2 & unique_mask)) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %d) == %08"PRIx32"\n", i, out1);
printf("hash(1 << %d) == %08"PRIx32"\n", j, out2);
printf("The low-order %d bits of output are both "
"0x%"PRIx32"\n", min_unique, out1 & unique_mask);
}
}
}
}
static void
check_hash_bytes128(void (*hash)(const void *, size_t, uint32_t, ovs_u128 *),
const char *name, const int min_unique)
{
const uint64_t unique_mask = (UINT64_C(1) << min_unique) - 1;
const int n_bits = sizeof(ovs_u128) * 8;
int i, j;
for (i = 0; i <= n_bits; i++) {
OVS_PACKED(struct offset_ovs_u128 {
uint32_t a;
ovs_u128 b;
}) in0;
ovs_u128 in1;
ovs_u128 out0, out1;
set_bit128(&in1, i, n_bits);
in0.b = in1;
hash(&in0.b, sizeof(ovs_u128), 0, &out0);
hash(&in1, sizeof(ovs_u128), 0, &out1);
if (!ovs_u128_equals(out0, out1)) {
printf("%s hash not the same for non-64 aligned data "
"%016"PRIx64"%016"PRIx64" != %016"PRIx64"%016"PRIx64"\n",
name, out0.u64.lo, out0.u64.hi, out1.u64.lo, out1.u64.hi);
}
for (j = i + 1; j <= n_bits; j++) {
ovs_u128 in2;
ovs_u128 out2;
int ofs;
set_bit128(&in2, j, n_bits);
hash(&in2, sizeof(ovs_u128), 0, &out2);
for (ofs = 0; ofs < 128 - min_unique; ofs++) {
uint64_t bits1 = get_range128(&out1, ofs, unique_mask);
uint64_t bits2 = get_range128(&out2, ofs, unique_mask);
if (bits1 == bits2) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %d) == %016"PRIx64"%016"PRIx64"\n",
i, out1.u64.hi, out1.u64.lo);
printf("hash(1 << %d) == %016"PRIx64"%016"PRIx64"\n",
j, out2.u64.hi, out2.u64.lo);
printf("%d bits of output starting at bit %d "
"are both 0x%016"PRIx64"\n", min_unique, ofs, bits1);
}
}
}
}
}
static void
check_256byte_hash(void (*hash)(const void *, size_t, uint32_t, ovs_u128 *),
const char *name, const int min_unique)
{
const uint64_t unique_mask = (UINT64_C(1) << min_unique) - 1;
const int n_bits = sizeof(ovs_u128) * 8 * 16;
int i, j;
for (i = 0; i <= n_bits; i++) {
OVS_PACKED(struct offset_ovs_u128 {
uint32_t a;
ovs_u128 b[16];
}) in0;
ovs_u128 in1[16];
ovs_u128 out0, out1;
set_bit128(in1, i, n_bits);
for (j = 0; j < 16; j++) {
in0.b[j] = in1[j];
}
hash(&in0.b, sizeof(ovs_u128) * 16, 0, &out0);
hash(in1, sizeof(ovs_u128) * 16, 0, &out1);
if (!ovs_u128_equals(out0, out1)) {
printf("%s hash not the same for non-64 aligned data "
"%016"PRIx64"%016"PRIx64" != %016"PRIx64"%016"PRIx64"\n",
name, out0.u64.lo, out0.u64.hi, out1.u64.lo, out1.u64.hi);
}
for (j = i + 1; j <= n_bits; j++) {
ovs_u128 in2[16];
ovs_u128 out2;
set_bit128(in2, j, n_bits);
hash(in2, sizeof(ovs_u128) * 16, 0, &out2);
if ((out1.u64.lo & unique_mask) == (out2.u64.lo & unique_mask)) {
printf("%s has a partial collision:\n", name);
printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", i,
out1.u64.hi, out1.u64.lo);
printf("hash(1 << %4d) == %016"PRIx64"%016"PRIx64"\n", j,
out2.u64.hi, out2.u64.lo);
printf("The low-order %d bits of output are both "
"0x%"PRIx64"\n", min_unique, out1.u64.lo & unique_mask);
}
}
}
}
static void
test_hash_main(int argc OVS_UNUSED, char *argv[] OVS_UNUSED)
{
/*
* The following tests check that all hashes computed with hash_function
* with one 1-bit (or no 1-bits) set within a X-bit word have different
* values in all N-bit consecutive comparisons.
*
* test_function(hash_function, test_name, N)
*
* Given a random distribution, the probability of at least one collision
* in any set of N bits is approximately
*
* 1 - (prob of no collisions)
* **(combination of all possible comparisons)
* == 1 - ((2**N - 1)/2**N)**C(X+1,2)
* == p
*
* There are (X-N) ways to pick N consecutive bits in a X-bit word, so if we
* assumed independence then the chance of having no collisions in any of
* those X-bit runs would be (1-p)**(X-N) == q. If this q is very small
* and we can also find a relatively small 'magic number' N such that there
* is no collision in any comparison, then it means we have a pretty good
* hash function.
*
* The values of each parameters mentioned above for the tested hash
* functions are summarized as follow:
*
* hash_function X N p q
* ------------- --- --- ------- -------
*
* hash_words_cb 32 11 0.22 0.0044
* jhash_words_cb 32 11 0.22 0.0044
* hash_int_cb 32 12 0.12 0.0078
* hash_bytes128 128 19 0.0156 0.174
*
*/
check_word_hash(hash_words_cb, "hash_words", 11);
check_word_hash(jhash_words_cb, "jhash_words", 11);
check_word_hash(hash_int_cb, "hash_int", 12);
check_hash_bytes128(hash_bytes128, "hash_bytes128", 19);
/*
* The following tests check that all hashes computed with hash_function
* with one 1-bit (or no 1-bits) set within Y X-bit word have different
* values in their lowest N bits.
*
* test_function(hash_function, test_name, N)
*
* Given a random distribution, the probability of at least one collision
* in any set of N bits is approximately
*
* 1 - (prob of no collisions)
* **(combination of all possible comparisons)
* == 1 - ((2**N - 1)/2**N)**C(Y*X+1,2)
* == p
*
* If this p is not very small and we can also find a relatively small
* 'magic number' N such that there is no collision in any comparison,
* then it means we have a pretty good hash function.
*
* The values of each parameters mentioned above for the tested hash
* functions are summarized as follow:
*
* hash_function Y X N p
* ------------- --- --- --- -------
*
* hash_words 3 32 12 0.68
* jhash_words 3 32 12 0.68
* hash_bytes128 16 128 23 0.22
*
*/
check_3word_hash(hash_words, "hash_words");
check_3word_hash(jhash_words, "jhash_words");
check_256byte_hash(hash_bytes128, "hash_bytes128", 23);
}
OVSTEST_REGISTER("test-hash", test_hash_main);
|