1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
|
/*
* Copyright (c) 2008, 2009, 2010, 2012, 2013, 2014, 2016 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef HASH_H
#define HASH_H 1
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include "util.h"
#ifdef __cplusplus
extern "C" {
#endif
static inline uint32_t
hash_rot(uint32_t x, int k)
{
return (x << k) | (x >> (32 - k));
}
uint32_t hash_bytes(const void *, size_t n_bytes, uint32_t basis);
/* The hash input must be a word larger than 128 bits. */
void hash_bytes128(const void *_, size_t n_bytes, uint32_t basis,
ovs_u128 *out);
static inline uint32_t hash_int(uint32_t x, uint32_t basis);
static inline uint32_t hash_2words(uint32_t, uint32_t);
static inline uint32_t hash_uint64(const uint64_t);
static inline uint32_t hash_uint64_basis(const uint64_t x,
const uint32_t basis);
uint32_t hash_3words(uint32_t, uint32_t, uint32_t);
static inline uint32_t hash_boolean(bool x, uint32_t basis);
uint32_t hash_double(double, uint32_t basis);
static inline uint32_t hash_pointer(const void *, uint32_t basis);
static inline uint32_t hash_string(const char *, uint32_t basis);
/* Murmurhash by Austin Appleby,
* from https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
*
* The upstream license there says:
*
* MurmurHash3 was written by Austin Appleby, and is placed in the public
* domain. The author hereby disclaims copyright to this source code.
*
* See hash_words() for sample usage. */
static inline uint32_t mhash_add__(uint32_t hash, uint32_t data)
{
/* zero-valued 'data' will not change the 'hash' value */
if (!data) {
return hash;
}
data *= 0xcc9e2d51;
data = hash_rot(data, 15);
data *= 0x1b873593;
return hash ^ data;
}
static inline uint32_t mhash_add(uint32_t hash, uint32_t data)
{
hash = mhash_add__(hash, data);
hash = hash_rot(hash, 13);
return hash * 5 + 0xe6546b64;
}
static inline uint32_t mhash_finish(uint32_t hash)
{
hash ^= hash >> 16;
hash *= 0x85ebca6b;
hash ^= hash >> 13;
hash *= 0xc2b2ae35;
hash ^= hash >> 16;
return hash;
}
static inline uint32_t hash_add(uint32_t hash, uint32_t data);
static inline uint32_t hash_add64(uint32_t hash, uint64_t data);
static inline uint32_t hash_add_words(uint32_t, const uint32_t *, size_t);
static inline uint32_t hash_add_words64(uint32_t, const uint64_t *, size_t);
static inline uint32_t hash_add_bytes32(uint32_t, const uint32_t *, size_t);
static inline uint32_t hash_add_bytes64(uint32_t, const uint64_t *, size_t);
#if (defined(__ARM_FEATURE_CRC32) && defined(__aarch64__))
#include "hash-aarch64.h"
#elif !(defined(__SSE4_2__) && defined(__x86_64__))
/* Mhash-based implementation. */
static inline uint32_t hash_add(uint32_t hash, uint32_t data)
{
return mhash_add(hash, data);
}
static inline uint32_t hash_add64(uint32_t hash, uint64_t data)
{
return hash_add(hash_add(hash, data), data >> 32);
}
static inline uint32_t hash_finish(uint32_t hash, uint32_t final)
{
return mhash_finish(hash ^ final);
}
/* Returns the hash of the 'n' 32-bit words at 'p', starting from 'basis'.
* 'p' must be properly aligned.
*
* This is inlined for the compiler to have access to the 'n_words', which
* in many cases is a constant. */
static inline uint32_t
hash_words_inline(const uint32_t *p, size_t n_words, uint32_t basis)
{
return hash_finish(hash_add_words(basis, p, n_words), n_words * 4);
}
static inline uint32_t
hash_words64_inline(const uint64_t *p, size_t n_words, uint32_t basis)
{
return hash_finish(hash_add_words64(basis, p, n_words), n_words * 8);
}
static inline uint32_t hash_pointer(const void *p, uint32_t basis)
{
/* Often pointers are hashed simply by casting to integer type, but that
* has pitfalls since the lower bits of a pointer are often all 0 for
* alignment reasons. It's hard to guess where the entropy really is, so
* we give up here and just use a high-quality hash function.
*
* The double cast suppresses a warning on 64-bit systems about casting to
* an integer to different size. That's OK in this case, since most of the
* entropy in the pointer is almost certainly in the lower 32 bits. */
return hash_int((uint32_t) (uintptr_t) p, basis);
}
static inline uint32_t hash_2words(uint32_t x, uint32_t y)
{
return hash_finish(hash_add(hash_add(x, 0), y), 8);
}
static inline uint32_t hash_uint64_basis(const uint64_t x,
const uint32_t basis)
{
return hash_finish(hash_add64(basis, x), 8);
}
static inline uint32_t hash_uint64(const uint64_t x)
{
return hash_uint64_basis(x, 0);
}
#else /* __SSE4_2__ && __x86_64__ */
#include <smmintrin.h>
static inline uint32_t hash_add(uint32_t hash, uint32_t data)
{
return _mm_crc32_u32(hash, data);
}
/* Add the halves of 'data' in the memory order. */
static inline uint32_t hash_add64(uint32_t hash, uint64_t data)
{
return _mm_crc32_u64(hash, data);
}
static inline uint32_t hash_finish(uint64_t hash, uint64_t final)
{
/* The finishing multiplier 0x805204f3 has been experimentally
* derived to pass the testsuite hash tests. */
hash = _mm_crc32_u64(hash, final) * 0x805204f3;
return hash ^ (uint32_t)hash >> 16; /* Increase entropy in LSBs. */
}
static inline uint32_t
hash_finish32(uint64_t hash, uint32_t final, uint32_t semifinal)
{
/* The finishing multiplier 0x805204f3 has been experimentally
* derived to pass the testsuite hash tests. */
hash = _mm_crc32_u32(hash, semifinal);
hash = _mm_crc32_u32(hash, final) * 0x805204f3ULL;
return hash ^ ((uint32_t) hash >> 16); /* Increase entropy in LSBs. */
}
static inline uint32_t
hash_words_32aligned(const uint32_t *p, size_t n_words, uint32_t basis)
{
uint32_t hash1 = basis;
uint32_t hash2 = 0;
uint32_t hash3 = n_words;
const uint32_t *endp = (const uint32_t *) p + n_words;
const uint32_t *limit = p + n_words - 6;
while (p <= limit) {
hash1 = _mm_crc32_u32(hash1, p[0]);
hash1 = _mm_crc32_u32(hash1, p[1]);
hash2 = _mm_crc32_u32(hash2, p[2]);
hash2 = _mm_crc32_u32(hash2, p[3]);
hash3 = _mm_crc32_u32(hash3, p[4]);
hash3 = _mm_crc32_u32(hash3, p[5]);
p += 6;
}
switch (endp - (const uint32_t *) p) {
case 1:
hash1 = _mm_crc32_u32(hash1, p[0]);
break;
case 2:
hash1 = _mm_crc32_u32(hash1, p[0]);
hash1 = _mm_crc32_u32(hash1, p[1]);
break;
case 3:
hash1 = _mm_crc32_u32(hash1, p[0]);
hash1 = _mm_crc32_u32(hash1, p[1]);
hash2 = _mm_crc32_u32(hash2, p[2]);
break;
case 4:
hash1 = _mm_crc32_u32(hash1, p[0]);
hash1 = _mm_crc32_u32(hash1, p[1]);
hash2 = _mm_crc32_u32(hash2, p[2]);
hash2 = _mm_crc32_u32(hash2, p[3]);
break;
case 5:
hash1 = _mm_crc32_u32(hash1, p[0]);
hash1 = _mm_crc32_u32(hash1, p[1]);
hash2 = _mm_crc32_u32(hash2, p[2]);
hash2 = _mm_crc32_u32(hash2, p[3]);
hash3 = _mm_crc32_u32(hash3, p[4]);
break;
}
return hash_finish32(hash1, hash2, hash3);
}
/* Returns the hash of the 'n' 32-bit words at 'p_', starting from 'basis'.
* We access 'p_' as a uint64_t pointer, which is fine for __SSE_4_2__.
*
* This is inlined for the compiler to have access to the 'n_words', which
* in many cases is a constant. */
static inline uint32_t
hash_words_inline(const uint32_t *p_, size_t n_words, uint32_t basis)
{
const uint64_t *p = ALIGNED_CAST(const uint64_t *, p_);
uint64_t hash1 = basis;
uint64_t hash2 = 0;
uint64_t hash3 = n_words;
const uint32_t *endp = (const uint32_t *)p + n_words;
const uint64_t *limit = p + n_words / 2 - 3;
if (OVS_UNLIKELY(((intptr_t) p & ((sizeof(uint64_t)) - 1)) != 0)) {
return hash_words_32aligned(p_, n_words, basis);
}
while (p <= limit) {
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u64(hash2, p[1]);
hash3 = _mm_crc32_u64(hash3, p[2]);
p += 3;
}
switch (endp - (const uint32_t *)p) {
case 1:
hash1 = _mm_crc32_u32(hash1, *(const uint32_t *)&p[0]);
break;
case 2:
hash1 = _mm_crc32_u64(hash1, p[0]);
break;
case 3:
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u32(hash2, *(const uint32_t *)&p[1]);
break;
case 4:
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u64(hash2, p[1]);
break;
case 5:
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u64(hash2, p[1]);
hash3 = _mm_crc32_u32(hash3, *(const uint32_t *)&p[2]);
break;
}
return hash_finish(hash1, hash2 << 32 | hash3);
}
/* A simpler version for 64-bit data.
* 'n_words' is the count of 64-bit words, basis is 64 bits. */
static inline uint32_t
hash_words64_inline(const uint64_t *p, size_t n_words, uint32_t basis)
{
uint64_t hash1 = basis;
uint64_t hash2 = 0;
uint64_t hash3 = n_words;
const uint64_t *endp = p + n_words;
const uint64_t *limit = endp - 3;
while (p <= limit) {
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u64(hash2, p[1]);
hash3 = _mm_crc32_u64(hash3, p[2]);
p += 3;
}
switch (endp - p) {
case 1:
hash1 = _mm_crc32_u64(hash1, p[0]);
break;
case 2:
hash1 = _mm_crc32_u64(hash1, p[0]);
hash2 = _mm_crc32_u64(hash2, p[1]);
break;
}
return hash_finish(hash1, hash2 << 32 | hash3);
}
static inline uint32_t hash_uint64_basis(const uint64_t x,
const uint32_t basis)
{
/* '23' chosen to mix bits enough for the test-hash to pass. */
return hash_finish(hash_add64(basis, x), 23);
}
static inline uint32_t hash_uint64(const uint64_t x)
{
return hash_uint64_basis(x, 0);
}
static inline uint32_t hash_2words(uint32_t x, uint32_t y)
{
return hash_uint64((uint64_t)y << 32 | x);
}
static inline uint32_t hash_pointer(const void *p, uint32_t basis)
{
return hash_uint64_basis((uint64_t) (uintptr_t) p, basis);
}
#endif
uint32_t hash_words__(const uint32_t *p, size_t n_words, uint32_t basis);
uint32_t hash_words64__(const uint64_t *p, size_t n_words, uint32_t basis);
/* Inline the larger hash functions only when 'n_words' is known to be
* compile-time constant. */
#if __GNUC__ >= 4
static inline uint32_t
hash_words(const uint32_t *p, size_t n_words, uint32_t basis)
{
if (__builtin_constant_p(n_words)) {
return hash_words_inline(p, n_words, basis);
} else {
return hash_words__(p, n_words, basis);
}
}
static inline uint32_t
hash_words64(const uint64_t *p, size_t n_words, uint32_t basis)
{
if (__builtin_constant_p(n_words)) {
return hash_words64_inline(p, n_words, basis);
} else {
return hash_words64__(p, n_words, basis);
}
}
#else
static inline uint32_t
hash_words(const uint32_t *p, size_t n_words, uint32_t basis)
{
return hash_words__(p, n_words, basis);
}
static inline uint32_t
hash_words64(const uint64_t *p, size_t n_words, uint32_t basis)
{
return hash_words64__(p, n_words, basis);
}
#endif
static inline uint32_t
hash_bytes32(const uint32_t *p, size_t n_bytes, uint32_t basis)
{
return hash_words(p, n_bytes / 4, basis);
}
static inline uint32_t
hash_bytes64(const uint64_t *p, size_t n_bytes, uint32_t basis)
{
return hash_words64(p, n_bytes / 8, basis);
}
static inline uint32_t hash_string(const char *s, uint32_t basis)
{
return hash_bytes(s, strlen(s), basis);
}
static inline uint32_t hash_int(uint32_t x, uint32_t basis)
{
return hash_2words(x, basis);
}
/* An attempt at a useful 1-bit hash function. Has not been analyzed for
* quality. */
static inline uint32_t hash_boolean(bool x, uint32_t basis)
{
const uint32_t P0 = 0xc2b73583; /* This is hash_int(1, 0). */
const uint32_t P1 = 0xe90f1258; /* This is hash_int(2, 0). */
return (x ? P0 : P1) ^ hash_rot(basis, 1);
}
/* Helper functions for calling hash_add() for several 32- or 64-bit words in a
* buffer. These are not hash functions by themselves, since they need
* hash_finish() to be called, so if you are looking for a full hash function
* see hash_words(), etc. */
static inline uint32_t
hash_add_words(uint32_t hash, const uint32_t *p, size_t n_words)
{
for (size_t i = 0; i < n_words; i++) {
hash = hash_add(hash, p[i]);
}
return hash;
}
static inline uint32_t
hash_add_words64(uint32_t hash, const uint64_t *p, size_t n_words)
{
for (size_t i = 0; i < n_words; i++) {
hash = hash_add64(hash, p[i]);
}
return hash;
}
static inline uint32_t
hash_add_bytes32(uint32_t hash, const uint32_t *p, size_t n_bytes)
{
return hash_add_words(hash, p, n_bytes / 4);
}
static inline uint32_t
hash_add_bytes64(uint32_t hash, const uint64_t *p, size_t n_bytes)
{
return hash_add_words64(hash, p, n_bytes / 8);
}
#ifdef __cplusplus
}
#endif
#endif /* hash.h */
|