1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880
|
<?xml version="1.0" encoding="utf-8"?>
<fields>
<h1>Introduction</h1>
<p>
This document aims to comprehensively document all of the fields,
both standard and non-standard, supported by OpenFlow or Open
vSwitch, regardless of origin.
</p>
<h2>Fields</h2>
<p>
A <dfn>field</dfn> is a property of a packet. Most familiarly, <dfn>data
fields</dfn> are fields that can be extracted from a packet. Most data
fields are copied directly from protocol headers, e.g. at layer 2, the
Ethernet source and destination addresses, or the VLAN ID; at layer 3, the
IPv4 or IPv6 source and destination; and at layer 4, the TCP or UDP ports.
Other data fields are computed, e.g. <ref field="ip_frag"/> describes
whether a packet is a fragment but it is not copied directly from the IP
header.
</p>
<p>
Data fields that are always present as a consequence of the basic
networking technology in use are called called <dfn>root fields</dfn>.
Open vSwitch 2.7 and earlier considered Ethernet fields to be root fields,
and this remains the default mode of operation for Open vSwitch bridges.
When a packet is received from a non-Ethernet interfaces, such as a layer-3
VXLAN-GPE tunnel, Open vSwitch 2.7 and earlier force-fit the packet to this
Ethernet-centric point of view by pretending that an Ethernet header is
present whose Ethernet type that indicates the packet's actual type (and
whose source and destination addresses are all-zero).
</p>
<p>
Open vSwitch 2.8 and later implement the ``packet type-aware pipeline''
concept introduced in OpenFlow 1.5. Such a pipeline does not have any root
fields. Instead, a new metadata field, <ref field="packet_type"/>,
indicates the basic type of the packet, which can be Ethernet, IPv4, IPv6,
or another type. For backward compatibility, by default Open vSwitch 2.8
imitates the behavior of Open vSwitch 2.7 and earlier. Later versions of
Open vSwitch may change the default, and in the meantime controllers can
turn off this legacy behavior, on a port-by-port basis, by setting
<code>options:packet_type</code> to <code>ptap</code> in the
<code>Interface</code> table. This is significant only for ports that can
handle non-Ethernet packets, which is currently just VXLAN-GPE, and
GRE tunnel ports. See <code>ovs-vwitchd.conf.db</code>(5) for more
information.
</p>
<p>
Non-root data fields are not always present. A packet contains ARP
fields, for example, only when its packet type is ARP or when it is an
Ethernet packet whose Ethernet header indicates the Ethertype for ARP,
0x0806. In this documentation, we say that a field is
<dfn>applicable</dfn> when it is present in a packet, and
<dfn>inapplicable</dfn> when it is not. (These are not standard terms.)
We refer to the conditions that determine whether a field is applicable as
<dfn>prerequisites</dfn>. Some VLAN-related fields are a special case:
these fields are always applicable for Ethernet packets, but have a
designated value or bit that indicates whether a VLAN header is present,
with the remaining values or bits indicating the VLAN header's content
(if it is present). <!-- XXX also ethertype -->
</p>
<p>
An inapplicable field does not have a value, not even a nominal
``value'' such as all-zero-bits. In many circumstances, OpenFlow
and Open vSwitch allow references only to applicable fields. For
example, one may match (see <cite>Matching</cite>, below) a given
field only if the match includes the field's prerequisite,
e.g. matching an ARP field is only allowed if one also matches on
Ethertype 0x0806 or the <ref field="packet_type"/> for ARP in a packet
type-aware bridge.
</p>
<p>
Sometimes a packet may contain multiple instances of a header.
For example, a packet may contain multiple VLAN or MPLS headers,
and tunnels can cause any data field to recur. OpenFlow and Open
vSwitch do not address these cases uniformly. For VLAN and MPLS
headers, only the outermost header is accessible, so that inner
headers may be accessed only by ``popping'' (removing) the outer
header. (Open vSwitch supports only a single VLAN header in any
case.) For tunnels, e.g. GRE or VXLAN, the outer header and inner
headers are treated as different data fields.
</p>
<p>
Many network protocols are built in layers as a stack of concatenated
headers. Each header typically contains a ``next type'' field that
indicates the type of the protocol header that follows, e.g. Ethernet
contains an Ethertype and IPv4 contains a IP protocol type. The
exceptional cases, where protocols are layered but an outer layer does not
indicate the protocol type for the inner layer, or gives only an ambiguous
indication, are troublesome. An MPLS header, for example, only indicates
whether another MPLS header or some other protocol follows, and in the
latter case the inner protocol must be known from the context. In these
exceptional cases, OpenFlow and Open vSwitch cannot provide insight into
the inner protocol data fields without additional context, and thus they
treat all later data fields as inapplicable until an OpenFlow action
explicitly specifies what protocol follows. In the case of MPLS, the
OpenFlow ``pop MPLS'' action that removes the last MPLS header from a
packet provides this context, as the Ethertype of the payload. See
<cite>Layer 2.5: MPLS</cite> for more information.
</p>
<p>
OpenFlow and Open vSwitch support some fields other than data
fields. <dfn>Metadata fields</dfn> relate to the origin or
treatment of a packet, but they are not extracted from the packet
data itself. One example is the physical port on which a packet
arrived at the switch. <dfn>Register fields</dfn> act like
variables: they give an OpenFlow switch space for temporary
storage while processing a packet. Existing metadata and register
fields have no prerequisites.
</p>
<p>
A field's value consists of an integral number of bytes. For data
fields, sometimes those bytes are taken directly from the packet.
Other data fields are copied from a packet with padding (usually
with zeros and in the most significant positions). The remaining
data fields are transformed in other ways as they are copied from
the packets, to make them more useful for matching.
</p>
<h2>Matching</h2>
<p>
The most important use of fields in OpenFlow is
<dfn>matching</dfn>, to determine whether particular field values
agree with a set of constraints called a <dfn>match</dfn>. A
match consists of zero or more constraints on individual fields,
all of which must be met to satisfy the match. (A match that
contains no constraints is always satisfied.) OpenFlow and Open
vSwitch support a number of forms of matching on individual
fields:
</p>
<dl>
<dt><dfn>Exact match</dfn>, e.g. <code>nw_src=10.1.2.3</code></dt>
<dd>
<p>
Only a particular value of the field is matched; for example, only one
particular source IP address. Exact matches are written as
<code><var>field</var>=<var>value</var></code>. The forms accepted for
<var>value</var> depend on the field.
</p>
<p>
All fields support exact matches.
</p>
</dd>
<dt>
<dfn>Bitwise match</dfn>, e.g. <code>nw_src=10.1.0.0/255.255.0.0</code>
</dt>
<dd>
<p>
Specific bits in the field must have specified values; for example,
only source IP addresses in a particular subnet. Bitwise matches are
written as
<code><var>field</var>=<var>value</var>/<var>mask</var></code>, where
<var>value</var> and <var>mask</var> take one of the forms accepted for
an exact match on <var>field</var>. Some fields accept other forms for
bitwise matches; for example, <code>nw_src=10.1.0.0/255.255.0.0</code>
may also be written <code>nw_src=10.1.0.0/16</code>.
</p>
<p>
Most OpenFlow switches do not allow every bitwise matching on every
field (and before OpenFlow 1.2, the protocol did not even provide for
the possibility for most fields). Even switches that do allow bitwise
matching on a given field may restrict the masks that are allowed, e.g.
by allowing matches only on contiguous sets of bits starting from the
most significant bit, that is, ``CIDR'' masks [RFC 4632]. Open vSwitch
does not allows bitwise matching on every field, but it allows
arbitrary bitwise masks on any field that does support bitwise
matching. (Older versions had some restrictions, as documented in the
descriptions of individual fields.)
</p>
</dd>
<dt><dfn>Wildcard</dfn>, e.g. ``any <code>nw_src</code>''</dt>
<dd>
<p>
The value of the field is not constrained. Wildcarded fields may be
written as <code><var>field</var>=*</code>, although it is unusual to
mention them at all. (When specifying a wildcard explicitly in a
command invocation, be sure to using quoting to protect against shell
expansion.)
</p>
<p>
There is a tiny difference between wildcarding a field and not
specifying any match on a field: wildcarding a field requires
satisfying the field's prerequisites.
</p>
</dd>
</dl>
<p>
Some types of matches on individual fields cannot be expressed directly
with OpenFlow and Open vSwitch. These can be expressed indirectly:
</p>
<dl>
<dt><dfn>Set match</dfn>, e.g. ``<code>tcp_dst</code> ∈ {80, 443,
8080}''</dt>
<dd>
<p>
The value of a field is one of a specified set of values; for
example, the TCP destination port is 80, 443, or 8080.
</p>
<p>
For matches used in flows (see <cite>Flows</cite>, below), multiple
flows can simulate set matches.
</p>
</dd>
<dt><dfn>Range match</dfn>, e.g. ``1000 ≤ <code>tcp_dst</code> ≤
1999''</dt>
<dd>
<p>
The value of the field must lie within a numerical range, for
example, TCP destination ports between 1000 and 1999.
</p>
<p>
Range matches can be expressed as a collection of bitwise matches. For
example, suppose that the goal is to match TCP source ports 1000 to
1999, inclusive. The binary representations of 1000 and 1999 are:
</p>
<pre fixed="yes">
01111101000
11111001111
</pre>
<p>
The following series of bitwise matches will match 1000 and
1999 and all the values in between:
</p>
<pre fixed="yes">
01111101xxx
0111111xxxx
10xxxxxxxxx
110xxxxxxxx
1110xxxxxxx
11110xxxxxx
1111100xxxx
</pre>
<p>
which can be written as the following matches:
</p>
<pre>
tcp,tp_src=0x03e8/0xfff8
tcp,tp_src=0x03f0/0xfff0
tcp,tp_src=0x0400/0xfe00
tcp,tp_src=0x0600/0xff00
tcp,tp_src=0x0700/0xff80
tcp,tp_src=0x0780/0xffc0
tcp,tp_src=0x07c0/0xfff0
</pre>
</dd>
<dt><dfn>Inequality match</dfn>, e.g. ``<code>tcp_dst</code> ≠80''</dt>
<dd>
<p>
The value of the field differs from a specified value, for
example, all TCP destination ports except 80.
</p>
<p>
An inequality match on an <var>n</var>-bit field can be expressed as a
disjunction of <var>n</var> 1-bit matches. For example, the inequality
match ``<code>vlan_pcp</code> ≠5'' can be expressed as
``<code>vlan_pcp</code> = 0/4 or <code>vlan_pcp</code> = 2/2 or
<code>vlan_pcp</code> = 0/1.'' For matches used in flows (see
<cite>Flows</cite>, below), sometimes one can more compactly express
inequality as a higher-priority flow that matches the exceptional case
paired with a lower-priority flow that matches the general case.
</p>
<p>
Alternatively, an inequality match may be converted to a pair of range
matches, e.g. <code>tcp_src ≠80</code> may be expressed as ``0 ≤
<code>tcp_src</code> < 80 or 80 < <code>tcp_src</code> ≤ 65535'',
and then each range match may in turn be converted to a bitwise match.
</p>
</dd>
<dt><dfn>Conjunctive match</dfn>, e.g. ``<code>tcp_src</code> ∈ {80, 443, 8080} and <code>tcp_dst</code> ∈ {80, 443, 8080}''</dt>
<dd>
As an OpenFlow extension, Open vSwitch supports matching on conditions on
conjunctions of the previously mentioned forms of matching. See the
documentation for <ref field="conj_id"/> for more information.
</dd>
</dl>
<p>
All of these supported forms of matching are special cases of bitwise
matching. In some cases this influences the design of field values. <ref
field="ip_frag"/> is the most prominent example: it is designed to make all
of the practically useful checks for IP fragmentation possible as a single
bitwise match.
</p>
<h3>Shorthands</h3>
<p>
Some matches are very commonly used, so Open vSwitch accepts shorthand
notations. In some cases, Open vSwitch also uses shorthand notations when
it displays matches. The following shorthands are defined, with their long
forms shown on the right side:
</p>
<dl>
<dt><code>eth</code></dt>
<dd><code>packet_type=(0,0)</code> (Open vSwitch 2.8 and later)</dd>
<dt><code>ip</code></dt> <dd><code>eth_type=0x0800</code></dd>
<dt><code>ipv6</code></dt> <dd><code>eth_type=0x86dd</code></dd>
<dt><code>icmp</code></dt> <dd><code>eth_type=0x0800,ip_proto=1</code></dd>
<dt><code>icmp6</code></dt> <dd><code>eth_type=0x86dd,ip_proto=58</code></dd>
<dt><code>tcp</code></dt> <dd><code>eth_type=0x0800,ip_proto=6</code></dd>
<dt><code>tcp6</code></dt> <dd><code>eth_type=0x86dd,ip_proto=6</code></dd>
<dt><code>udp</code></dt> <dd><code>eth_type=0x0800,ip_proto=17</code></dd>
<dt><code>udp6</code></dt> <dd><code>eth_type=0x86dd,ip_proto=17</code></dd>
<dt><code>sctp</code></dt> <dd><code>eth_type=0x0800,ip_proto=132</code></dd>
<dt><code>sctp6</code></dt> <dd><code>eth_type=0x86dd,ip_proto=132</code></dd>
<dt><code>arp</code></dt> <dd><code>eth_type=0x0806</code></dd>
<dt><code>rarp</code></dt> <dd><code>eth_type=0x8035</code></dd>
<dt><code>mpls</code></dt> <dd><code>eth_type=0x8847</code></dd>
<dt><code>mplsm</code></dt> <dd><code>eth_type=0x8848</code></dd>
</dl>
<h2>Evolution of OpenFlow Fields</h2>
<p>
The discussion so far applies to all OpenFlow and Open vSwitch
versions. This section starts to draw in specific information by
explaining, in broad terms, the treatment of fields and matches in
each OpenFlow version.
</p>
<h3>OpenFlow 1.0</h3>
<p>
OpenFlow 1.0 defined the OpenFlow protocol format of a match as a
fixed-length data structure that could match on the following
fields:
</p>
<ul>
<li>Ingress port.</li>
<li>Ethernet source and destination MAC.</li>
<li>Ethertype (with a special value to match frames that lack an
Ethertype).</li>
<li>VLAN ID and priority.</li>
<li>IPv4 source, destination, protocol, and DSCP.</li>
<li>TCP source and destination port.</li>
<li>UDP source and destination port.</li>
<li>ICMPv4 type and code.</li>
<li>ARP IPv4 addresses (SPA and TPA) and opcode.</li>
</ul>
<p>
Each supported field corresponded to some member of the data
structure. Some members represented multiple fields, in the case
of the TCP, UDP, ICMPv4, and ARP fields whose presence is mutually
exclusive. This also meant that some members were poor fits for
their fields: only the low 8 bits of the 16-bit ARP opcode could
be represented, and the ICMPv4 type and code were padded with 8 bits
of zeros to fit in the 16-bit members primarily meant for TCP and
UDP ports. An additional bitmap member indicated, for each
member, whether its field should be an ``exact'' or ``wildcarded''
match (see <cite>Matching</cite>), with additional support for
CIDR prefix matching on the IPv4 source and destination fields.
</p>
<p>
Simplicity was recognized early on as the main virtue of this
approach. Obviously, any fixed-length data structure cannot
support matching new protocols that do not fit. There was no
room, for example, for matching IPv6 fields, which was not a
priority at the time. Lack of room to support matching the
Ethernet addresses inside ARP packets actually caused more of a
design problem later, leading to an Open vSwitch extension action
specialized for dropping ``spoofed'' ARP packets in which the
frame and ARP Ethernet source addressed differed. (This extension
was never standardized. Open vSwitch dropped support for it a few
releases after it added support for full ARP matching.)
</p>
<p>
The design of the OpenFlow fixed-length matches also illustrates
compromises, in both directions, between the strengths and
weaknesses of software and hardware that have always influenced
the design of OpenFlow. Support for matching ARP fields that do
fit in the data structure was only added late in the design
process (and remained optional in OpenFlow 1.0), for example,
because common switch ASICs did not support matching these fields.
</p>
<p>
The compromises in favor of software occurred for more complicated
reasons. The OpenFlow designers did not know how to implement
matching in software that was fast, dynamic, and general. (A way
was later found [Srinivasan].) Thus, the designers sought to
support dynamic, general matching that would be fast in realistic
special cases, in particular when all of the matches were
<dfn>microflows</dfn>, that is, matches that specify every field
present in a packet, because such matches can be implemented as a
single hash table lookup. Contemporary research supported the
feasibility of this approach: the number of microflows in a campus
network had been measured to peak at about 10,000 [Casado, section
3.2]. (Calculations show that this can only be true in a lightly
loaded network [Pepelnjak].)
</p>
<p>
As a result, OpenFlow 1.0 required switches to treat microflow
matches as the highest possible priority. This let software
switches perform the microflow hash table lookup first. Only on
failure to match a microflow did the switch need to fall back to
checking the more general and presumed slower matches. Also, the
OpenFlow 1.0 flow match was minimally flexible, with no support
for general bitwise matching, partly on the basis that this seemed
more likely amenable to relatively efficient software
implementation. (CIDR masking for IPv4 addresses was added
relatively late in the OpenFlow 1.0 design process.)
</p>
<p>
Microflow matching was later discovered to aid some hardware
implementations. The TCAM chips used for matching in hardware do
not support priority in the same way as OpenFlow but instead tie
priority to ordering [Pagiamtzis]. Thus, adding a new match with
a priority between the priorities of existing matches can require
reordering an arbitrary number of TCAM entries. On the other
hand, when microflows are highest priority, they can be managed as
a set-aside portion of the TCAM entries.
</p>
<p>
The emphasis on matching microflows also led designers to
carefully consider the bandwidth requirements between switch and
controller: to maximize the number of microflow setups per second,
one must minimize the size of each flow's description. This
favored the fixed-length format in use, because it expressed
common TCP and UDP microflows in fewer bytes than more flexible
``type-length-value'' (TLV) formats. (Early versions of OpenFlow
also avoided TLVs in general to head off protocol fragmentation.)
</p>
<h4>Inapplicable Fields</h4>
<p>
OpenFlow 1.0 does not clearly specify how to treat inapplicable
fields. The members for inapplicable fields are always present in
the match data structure, as are the bits that indicate whether
the fields are matched, and the ``correct'' member and bit values
for inapplicable fields is unclear. OpenFlow 1.0 implementations
changed their behavior over time as priorities shifted. The early
OpenFlow reference implementation, motivated to make every flow a
microflow to enable hashing, treated inapplicable fields as exact
matches on a value of 0. Initially, this behavior was implemented
in the reference controller only.
</p>
<p>
Later, the reference switch was also changed to actually force any
wildcarded inapplicable fields into exact matches on 0. The
latter behavior sometimes caused problems, because the modified
flow was the one reported back to the controller later when it
queried the flow table, and the modifications sometimes meant that
the controller could not properly recognize the flow that it had
added. In retrospect, perhaps this problem should have alerted
the designers to a design error, but the ability to use a single
hash table was held to be more important than almost every other
consideration at the time.
</p>
<p>
When more flexible match formats were introduced much later, they
disallowed any mention of inapplicable fields as part of a match.
This raised the question of how to translate between this new
format and the OpenFlow 1.0 fixed format. It seemed somewhat
inconsistent and backward to treat fields as exact-match in one
format and forbid matching them in the other, so instead the
treatment of inapplicable fields in the fixed-length format was
changed from exact match on 0 to wildcarding. (A better
classifier had by now eliminated software performance problems
with wildcards.)
</p>
<p>
The OpenFlow 1.0.1 errata (released only in 2012) added some
additional explanation [OpenFlow 1.0.1, section 3.4], but it did
not mandate specific behavior because of variation among
implementations.
</p>
<h3>OpenFlow 1.1</h3>
<p>
The OpenFlow 1.1 protocol match format was designed as a type/length/value
(TLV) format to allow for future flexibility. The specification
standardized only a single type <code>OFPMT_STANDARD</code> (0) with a
fixed-size payload, described here. The additional fields and bitwise
masks in OpenFlow 1.1 cause this match structure to be over twice as large
as in OpenFlow 1.0, 88 bytes versus 40.
</p>
<p>
OpenFlow 1.1 added support for the following fields:
</p>
<ul>
<li>SCTP source and destination port.</li>
<li>MPLS label and traffic control (TC) fields.</li>
<li>One 64-bit register (named ``metadata'').</li>
</ul>
<p>
OpenFlow 1.1 increased the width of the ingress port number field (and all
other port numbers in the protocol) from 16 bits to 32 bits.
</p>
<p>
OpenFlow 1.1 increased matching flexibility by introducing
arbitrary bitwise matching on Ethernet and IPv4 address fields and
on the new ``metadata'' register field. Switches were not
required to support all possible masks [OpenFlow 1.1, section
4.3].
</p>
<p>
By a strict reading of the specification, OpenFlow 1.1 removed
support for matching ICMPv4 type and code [OpenFlow 1.1, section
A.2.3], but this is likely an editing error because ICMP
matching is described elsewhere [OpenFlow 1.1, Table 3, Table 4,
Figure 4]. Open vSwitch does support ICMPv4 type and code
matching with OpenFlow 1.1.
</p>
<p>
OpenFlow 1.1 avoided the pitfalls of inapplicable fields that
OpenFlow 1.0 encountered, by requiring the switch to ignore the
specified field values [OpenFlow 1.1, section A.2.3]. It also
implied that the switch should ignore the bits that indicate
whether to match inapplicable fields.
</p>
<h4>Physical Ingress Port</h4>
<p>
OpenFlow 1.1 introduced a new pseudo-field, the physical ingress port. The
physical ingress port is only a pseudo-field because it cannot be used for
matching. It appears only one place in the protocol, in the ``packet-in''
message that passes a packet received at the switch to an OpenFlow
controller.
</p>
<p>
A packet's ingress port and physical ingress port are identical except for
packets processed by a switch feature such as bonding or tunneling that
makes a packet appear to arrive on a ``virtual'' port associated with the
bond or the tunnel. For such packets, the ingress port is the virtual port
and the physical ingress port is, naturally, the physical port. Open
vSwitch implements both bonding and tunneling, but its bonding
implementation does not use virtual ports and its tunnels are typically not
on the same OpenFlow switch as their physical ingress ports (which need not
be part of any switch), so the ingress port and physical ingress port are
always the same in Open vSwitch.
</p>
<h3>OpenFlow 1.2</h3>
<p>
OpenFlow 1.2 abandoned the fixed-length approach to matching. One reason
was size, since adding support for IPv6 address matching (now seen as
important), with bitwise masks, would have added 64 bytes to the match
length, increasing it from 88 bytes in OpenFlow 1.1 to over 150 bytes.
Extensibility had also become important as controller writers increasingly
wanted support for new fields without having to change messages throughout
the OpenFlow protocol. The challenges of carefully defining fixed-length
matches to avoid problems with inapplicable fields had also become clear
over time.
</p>
<p>
Therefore, OpenFlow 1.2 adopted a flow format using a flexible
type-length-value (TLV) representation, in which each TLV expresses a match
on one field. These TLVs were in turn encapsulated inside the outer TLV
wrapper introduced in OpenFlow 1.1 with the new identifier
<code>OFPMT_OXM</code> (1). (This wrapper fulfilled its intended purpose
of reducing the amount of churn in the protocol when changing match
formats; some messages that included matches remained unchanged from
OpenFlow 1.1 to 1.2 and later versions.)
</p>
<p>
OpenFlow 1.2 added support for the following fields:
</p>
<ul>
<li>ARP hardware addresses (SHA and THA).</li>
<li>IPv4 ECN.</li>
<li>IPv6 source and destination addresses, flow label, DSCP, ECN,
and protocol.</li>
<li>TCP, UDP, and SCTP port numbers when encapsulated inside IPv6.</li>
<li>ICMPv6 type and code.</li>
<li>ICMPv6 Neighbor Discovery target address and source and target
Ethernet addresses.</li>
</ul>
<!-- mention tun_id_from_cookie extension? -->
<p>
The OpenFlow 1.2 format, called <dfn>OXM</dfn> (<dfn>OpenFlow Extensible
Match</dfn>), was modeled closely on an extension to OpenFlow 1.0
introduced in Open vSwitch 1.1 called <dfn>NXM</dfn> (<dfn>Nicira Extended
Match</dfn>). Each OXM or NXM TLV has the following format:
</p>
<diagram>
<header name="type">
<bits name="vendor/class" above="16" width=".75"/>
<bits name="field" above="7" width=".4"/>
</header>
<nospace/>
<header name="">
<bits name="HM" above="1" width=".25"/>
<bits name="length" above="8" width=".4"/>
</header>
<header name="">
<bits name="body" above="length bytes" width="1.7"/>
</header>
</diagram>
<p>
The most significant 16 bits of the NXM or OXM header, called
<code>vendor</code> by NXM and <code>class</code> by OXM, identify
an organization permitted to allocate identifiers for fields. NXM
allocates only two vendors, 0x0000 for fields supported by
OpenFlow 1.0 and 0x0001 for fields implemented as an Open vSwitch
extension. OXM assigns classes as follows:
</p>
<dl>
<dt>0x0000 (<code>OFPXMC_NXM_0</code>).</dt>
<dt>0x0001 (<code>OFPXMC_NXM_1</code>).</dt>
<dd>Reserved for NXM compatibility.</dd>
<dt>0x0002 to 0x7fff</dt>
<dd>
Reserved for allocation to ONF members, but none yet assigned.
</dd>
<dt>0x8000 (<code>OFPXMC_OPENFLOW_BASIC</code>)</dt>
<dd>
Used for most standard OpenFlow fields.
</dd>
<dt>0x8001 (<code>OFPXMC_PACKET_REGS</code>)</dt>
<dd>
Used for packet register fields in OpenFlow 1.5 and later.
</dd>
<dt>0x8002 to 0xfffe</dt>
<dd>
Reserved for the OpenFlow specification.
</dd>
<dt>0xffff (<code>OFPXMC_EXPERIMENTER</code>)</dt>
<dd>Experimental use.</dd>
</dl>
<p>
When <code>class</code> is 0xffff, the OXM header is extended to 64 bits by
using the first 32 bits of the body as an <code>experimenter</code> field
whose most significant byte is zero and whose remaining bytes are an
Organizationally Unique Identifier (OUI) assigned by the IEEE [IEEE OUI],
as shown below.
</p>
<diagram>
<header name="type">
<bits name="class" above="16" below="0xffff" width=".75"/>
<bits name="field" above="7" width=".4"/>
</header>
<nospace/>
<header name="">
<bits name="HM" above="1" width=".25"/>
<bits name="length" above="8" width=".4"/>
</header>
<header name="experimenter">
<bits name="zero" above="8" below="0x00" width=".4"/>
<bits name="OUI" above="24" width="1"/>
</header>
<header name="">
<bits name="body" above="(length - 4) bytes" width="1.7"/>
</header>
</diagram>
<p>
OpenFlow says that support for experimenter fields is optional. Open
vSwitch 2.4 and later does support them, so that it can support the
following experimenter classes:
</p>
<dl>
<dt>0x4f4e4600 (<code>ONFOXM_ET</code>)</dt>
<dd>
Used by official Open Networking Foundation extensions in OpenFlow 1.3
and later.
e.g. [TCP Flags Match Field Extension].
</dd>
<dt>0x005ad650 (<code>NXOXM_NSH</code>)</dt>
<dd>
Used by Open vSwitch for NSH extensions, in the absence of an official
ONF-assigned class. (This OUI is randomly generated.)
</dd>
</dl>
<p>
Taken as a unit, <code>class</code> (or <code>vendor</code>),
<code>field</code>, and <code>experimenter</code> (when present) uniquely
identify a particular field.
</p>
<p>
When <code>hasmask</code> (abbreviated <code>HM</code> above) is 0, the OXM
is an exact match on an entire field. In this case, the body (excluding
the experimenter field, if present) is a single value to be matched.
</p>
<p>
When <code>hasmask</code> is 1, the OXM is a bitwise match. The body
(excluding the experimenter field) consists of a value to match, followed
by the bitwise mask to apply. A 1-bit in the mask indicates that the
corresponding bit in the value should be matched and a 0-bit that it should
be ignored. For example, for an IP address field, a value of 192.168.0.0
followed by a mask of 255.255.0.0 would match addresses in the
196.168.0.0/16 subnet.
</p>
<ul>
<li>
Some fields might not support masking at all, and some fields that do
support masking might restrict it to certain patterns. For example,
fields that have IP address values might be restricted to CIDR masks.
The descriptions of individual fields note these restrictions.
</li>
<li>
An OXM TLV with a mask that is all zeros is not useful (although it is
not forbidden), because it is has the same effect as omitting the TLV
entirely.
</li>
<li>
It is not meaningful to pair a 0-bit in an OXM mask with a 1-bit in its
value, and Open vSwitch rejects such an OXM with the error
<code>OFPBMC_BAD_WILDCARDS</code>, as required by OpenFlow 1.3 and later.
</li>
</ul>
<p>
The <code>length</code> identifies the number of bytes in the body,
including the 4-byte <code>experimenter</code> header, if it is present.
Each OXM TLV has a fixed length; that is, given <code>class</code>,
<code>field</code>, <code>experimenter</code> (if present), and
<code>hasmask</code>, <code>length</code> is a constant. The
<code>length</code> is included explicitly to allow software to minimally
parse OXM TLVs of unknown types.
</p>
<p>
OXM TLVs must be ordered so that a field's prerequisites are satisfied
before it is parsed. For example, an OXM TLV that matches on the IPv4
source address field is only allowed following an OXM TLV that matches on
the Ethertype for IPv4. Similarly, an OXM TLV that matches on the TCP
source port must follow a TLV that matches an Ethertype of IPv4 or IPv6 and
one that matches an IP protocol of TCP (in that order). The order of OXM
TLVs is not otherwise restricted; no canonical ordering is defined.
</p>
<p>
A given field may be matched only once in a series of OXM TLVs.
</p>
<!-- EXT-482? -->
<h3>OpenFlow 1.3</h3>
<p>
OpenFlow 1.3 showed OXM to be largely successful, by adding new fields
without making any changes to how flow matches otherwise worked. It added
OXMs for the following fields supported by Open vSwitch:
</p>
<ul>
<li>Tunnel ID for ports associated with e.g. VXLAN or keyed GRE.</li>
<li>MPLS ``bottom of stack'' (BOS) bit.</li>
</ul>
<p>
OpenFlow 1.3 also added OXMs for the following fields not documented here
and not yet implemented by Open vSwitch:
</p>
<ul>
<li>IPv6 extension header handling.</li>
<li>PBB I-SID.</li>
</ul>
<h3>OpenFlow 1.4</h3>
<p>
OpenFlow 1.4 added OXMs for the following fields not documented here and
not yet implemented by Open vSwitch:
</p>
<ul>
<li>PBB UCA.</li>
</ul>
<h3>OpenFlow 1.5</h3>
<p>
OpenFlow 1.5 added OXMs for the following fields supported by Open vSwitch:
</p>
<ul>
<li>Packet type.</li>
<li>TCP flags.</li>
<li>Packet registers.</li>
<li>The output port in the OpenFlow action set.</li>
</ul>
<h1>Fields Reference</h1>
<p>
The following sections document the fields that Open vSwitch supports.
Each section provides introductory material on a group of related fields,
followed by information on each individual field. In addition to
field-specific information, each field begins with a table with entries for
the following important properties:
</p>
<dl>
<dt>Name</dt>
<dd>
The field's name, used for parsing and formatting the field, e.g. in
<code>ovs-ofctl</code> commands. For historical reasons, some fields
have an additional name that is accepted as an alternative in parsing.
This name, when there is one, is listed as well, e.g. ``<code>tun</code>
(aka <code>tunnel_id</code>).''
</dd>
<dt>Width</dt>
<dd>
The field's width, always a multiple of 8 bits. Some fields don't use
all of the bits, so this may be accompanied by an explanation. For
example, OpenFlow embeds the 2-bit IP ECN field as as the low bits in an
8-bit byte, and so its width is expressed as ``8 bits (only the
least-significant 2 bits may be nonzero).''
</dd>
<dt>Format</dt>
<dd>
<p>
How a value for the field is formatted or parsed by, e.g.,
<code>ovs-ofctl</code>. Some possibilities are generic:
</p>
<dl>
<dt>decimal</dt>
<dd>
Formats as a decimal number. On input, accepts decimal numbers or
hexadecimal numbers prefixed by <code>0x</code>.
</dd>
<dt>hexadecimal</dt>
<dd>
Formats as a hexadecimal number prefixed by <code>0x</code>. On
input, accepts decimal numbers or hexadecimal numbers prefixed by
<code>0x</code>. (The default for parsing is <em>not</em>
hexadecimal: only a <code>0x</code> prefix causes input to be treated
as hexadecimal.)
</dd>
<dt>Ethernet</dt>
<dd>
Formats and accepts the common Ethernet address format
<code><var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var>:<var>xx</var></code>.
</dd>
<dt>IPv4</dt>
<dd>
Formats and accepts the dotted-quad format
<code><var>a</var>.<var>b</var>.<var>c</var>.<var>d</var></code>.
For bitwise matches, formats and accepts
<code><var>address</var>/<var>length</var></code> CIDR notation in
addition to <code><var>address</var>/<var>mask</var></code>.
</dd>
<dt>IPv6</dt>
<dd>
Formats and accepts the common IPv6 address formats, plus CIDR
notation for bitwise matches.
</dd>
<dt>OpenFlow 1.0 port</dt>
<dd>
Accepts 16-bit port numbers in decimal, plus OpenFlow well-known port
names (e.g. <code>IN_PORT</code>) in uppercase or lowercase.
</dd>
<dt>OpenFlow 1.1+ port</dt>
<dd>
Same syntax as OpenFlow 1.0 ports but for 32-bit OpenFlow 1.1+ port
number fields.
</dd>
</dl>
<p>
Other, field-specific formats are explained along with their fields.
</p>
</dd>
<dt>Masking</dt>
<dd>
For most fields, this says ``arbitrary bitwise masks,'' meaning that a
flow may match any combination of bits in the field. Some fields
instead say ``exact match only,'' which means that a flow that matches
on this field must match on the whole field instead of just certain
bits. Either way, this reports masking support for the latest version
of Open vSwitch using OXM or NXM (that is, either OpenFlow 1.2+ or
OpenFlow 1.0 plus Open vSwitch NXM extensions). In particular,
OpenFlow 1.0 (without NXM) and 1.1 don't always support masking even if
Open vSwitch itself does; refer to the <em>OpenFlow 1.0</em> and
<em>OpenFlow 1.1</em> rows to learn about masking with these protocol
versions.
</dd>
<dt>Prerequisites</dt>
<dd>
<p>
Requirements that must be met to match on this field. For example,
<ref field="ip_src"/> has IPv4 as a prerequisite, meaning that a match
must include <code>eth_type=0x0800</code> to match on the IPv4 source
address. The following prerequisites, with their requirements, are
currently in use:
</p>
<dl>
<dt>none</dt>
<dd>(no requirements)</dd>
<dt>VLAN VID</dt>
<dd><code>vlan_tci=0x1000/0x1000</code> (i.e. a VLAN header is
present)</dd>
<dt>ARP</dt>
<dd><code>eth_type=0x0806</code> (ARP) or <code>eth_type=0x8035</code> (RARP)</dd>
<dt>IPv4</dt>
<dd><code>eth_type=0x0800</code></dd>
<dt>IPv6</dt>
<dd><code>eth_type=0x86dd</code></dd>
<dt>IPv4/IPv6</dt>
<dd>IPv4 or IPv6</dd>
<dt>MPLS</dt>
<dd><code>eth_type=0x8847</code> or <code>eth_type=0x8848</code></dd>
<dt>TCP</dt>
<dd>IPv4/IPv6 and <code>ip_proto=6</code></dd>
<dt>UDP</dt>
<dd>IPv4/IPv6 and <code>ip_proto=17</code></dd>
<dt>SCTP</dt>
<dd>IPv4/IPv6 and <code>ip_proto=132</code></dd>
<dt>ICMPv4</dt>
<dd>IPv4 and <code>ip_proto=1</code></dd>
<dt>ICMPv6</dt>
<dd>IPv6 and <code>ip_proto=58</code></dd>
<dt>ND solicit</dt>
<dd>ICMPv6 and <code>icmp_type=135</code> and <code>icmp_code=0</code></dd>
<dt>ND advert</dt>
<dd>ICMPv6 and <code>icmp_type=136</code> and <code>icmp_code=0</code></dd>
<dt>ND</dt>
<dd>ND solicit or ND advert</dd>
</dl>
<p>
The TCP, UDP, and SCTP prerequisites also have the special requirement
that <code>nw_frag</code> is not being used to select ``later
fragments.'' This is because only the first fragment of a fragmented
IPv4 or IPv6 datagram contains the TCP or UDP header.
</p>
</dd>
<dt>Access</dt>
<dd>
Most fields are ``read/write,'' which means that common OpenFlow actions
like <code>set_field</code> can modify them. Fields that are
``read-only'' cannot be modified in these general-purpose ways, although
there may be other ways that actions can modify them.
</dd>
<dt>OpenFlow 1.0</dt>
<dt>OpenFlow 1.1</dt>
<dd>
These rows report the level of support that OpenFlow 1.0 or OpenFlow 1.1,
respectively, has for a field. For OpenFlow 1.0, supported fields are
reported as either ``yes (exact match only)'' for fields that do not
support any bitwise masking or ``yes (CIDR match only)'' for fields that
support CIDR masking. OpenFlow 1.1 supported fields report either ``yes
(exact match only)'' or simply ``yes'' for fields that do support
arbitrary masks. These OpenFlow versions supported a fixed collection of
fields that cannot be extended, so many more fields are reported as ``not
supported.''
</dd>
<dt>OXM</dt>
<dt>NXM</dt>
<dd>
<p>
These rows report the OXM and NXM code points that correspond to a
given field. Either or both may be ``none.''
</p>
<p>
A field that has only an OXM code point is usually one that was
standardized before it was added to Open vSwitch. A field that has
only an NXM code point is usually one that is not yet standardized.
When a field has both OXM and NXM code points, it usually indicates
that it was introduced as an Open vSwitch extension under the NXM code
point, then later standardized under the OXM code point. A field can
have more than one OXM code point if it was standardized in OpenFlow
1.4 or later and additionally introduced as an official ONF extension
for OpenFlow 1.3. (A field that has neither OXM nor NXM code point is
typically an obsolete field that is supported in some other form using
OXM or NXM.)
</p>
<p>
Each code point in these rows is described in the form
``<code>NAME</code> (<var>number</var>) since OpenFlow <var>spec</var>
and Open vSwitch <var>version</var>,''
e.g. ``<code>OXM_OF_ETH_TYPE</code> (5) since OpenFlow 1.2 and Open
vSwitch 1.7.'' First, <code>NAME</code>, which specifies a name for
the code point, starts with a prefix that designates a class and, in
some cases, a vendor, as listed in the following table:
</p>
<oxm_classes/>
<p>
For more information on OXM/NXM classes and vendors, refer back to
<em>OpenFlow 1.2</em> under <em>Evolution of OpenFlow Fields</em>. The
<var>number</var> is the field number within the class and vendor. The
OpenFlow <var>spec</var> is the version of OpenFlow that standardized
the code point. It is omitted for NXM code points because they are
nonstandard. The <var>version</var> is the version of Open vSwitch
that first supported the code point.
</p>
</dd>
</dl>
<group title="Conjunctive Match">
<p>
An individual OpenFlow flow can match only a single value for each field.
However, situations often arise where one wants to match one of a set of
values within a field or fields. For matching a single field against a
set, it is straightforward and efficient to add multiple flows to the
flow table, one for each value in the set. For example, one might use
the following flows to send packets with IP source address <var>a</var>,
<var>b</var>, <var>c</var>, or <var>d</var> to the OpenFlow controller:
</p>
<pre>
ip,ip_src=<var>a</var> actions=controller
ip,ip_src=<var>b</var> actions=controller
ip,ip_src=<var>c</var> actions=controller
ip,ip_src=<var>d</var> actions=controller
</pre>
<p>
Similarly, these flows send packets with IP destination address
<var>e</var>, <var>f</var>, <var>g</var>, or <var>h</var> to the OpenFlow
controller:
</p>
<pre>
ip,ip_dst=<var>e</var> actions=controller
ip,ip_dst=<var>f</var> actions=controller
ip,ip_dst=<var>g</var> actions=controller
ip,ip_dst=<var>h</var> actions=controller
</pre>
<p>
Installing all of the above flows in a single flow table yields a
disjunctive effect: a packet is sent to the controller if
<code>ip_src</code> ∈ {<var>a</var>,<var>b</var>,<var>c</var>,<var>d</var>}
or <code>ip_dst</code> ∈
{<var>e</var>,<var>f</var>,<var>g</var>,<var>h</var>} (or both).
(Pedantically, if both of the above sets of flows are present in the flow
table, they should have different priorities, because OpenFlow says that
the results are undefined when two flows with same priority can both match
a single packet.)
</p>
<p>
Suppose, on the other hand, one wishes to match conjunctively, that is, to
send a packet to the controller only if both <code>ip_src</code> ∈
{<var>a</var>,<var>b</var>,<var>c</var>,<var>d</var>} and
<code>ip_dst</code> ∈
{<var>e</var>,<var>f</var>,<var>g</var>,<var>h</var>}. This requires 4 × 4
= 16 flows, one for each possible pairing of <code>ip_src</code> and
<code>ip_dst</code>. That is acceptable for our small example, but it does
not gracefully extend to larger sets or greater numbers of dimensions.
</p>
<p>
The <code>conjunction</code> action is a solution for conjunctive matches
that is built into Open vSwitch. A <code>conjunction</code> action ties groups of
individual OpenFlow flows into higher-level ``conjunctive flows''. Each
group corresponds to one dimension, and each flow within the group matches
one possible value for the dimension. A packet that matches one flow from
each group matches the conjunctive flow.
</p>
<p>
To implement a conjunctive flow with <code>conjunction</code>, assign the
conjunctive flow a 32-bit <var>id</var>, which must be unique within an
OpenFlow table. Assign each of the <var>n</var> ≥ 2 dimensions a unique
number from 1 to <var>n</var>; the ordering is unimportant. Add one flow
to the OpenFlow flow table for each possible value of each dimension with
<code>conjunction(<var>id</var>, <var>k</var>/<var>n</var>)</code> as the
flow's actions, where <var>k</var> is the number assigned to the flow's
dimension. Together, these flows specify the conjunctive flow's match
condition. When the conjunctive match condition is met, Open vSwitch looks
up one more flow that specifies the conjunctive flow's actions and receives
its statistics. This flow is found by setting <code>conj_id</code> to the
specified <var>id</var> and then again searching the flow table.
</p>
<p>
The following flows provide an example. Whenever the IP source is one of
the values in the flows that match on the IP source (dimension 1 of 2),
<em>and</em> the IP destination is one of the values in the flows that
match on IP destination (dimension 2 of 2), Open vSwitch searches for a
flow that matches <code>conj_id</code> against the conjunction ID (1234),
finding the first flow listed below.
</p>
<pre>
conj_id=1234 actions=controller
ip,ip_src=10.0.0.1 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.4 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.6 actions=conjunction(1234, 1/2)
ip,ip_src=10.0.0.7 actions=conjunction(1234, 1/2)
ip,ip_dst=10.0.0.2 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.5 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.7 actions=conjunction(1234, 2/2)
ip,ip_dst=10.0.0.8 actions=conjunction(1234, 2/2)
</pre>
<p>
Many subtleties exist:
</p>
<ul>
<li>
In the example above, every flow in a single dimension has the same form,
that is, dimension 1 matches on <code>ip_src</code> and dimension 2 on
<code>ip_dst</code>, but this is not a requirement. Different flows
within a dimension may match on different bits within a field (e.g. IP
network prefixes of different lengths, or TCP/UDP port ranges as bitwise
matches), or even on entirely different fields (e.g. to match packets for
TCP source port 80 or TCP destination port 80).
</li>
<li>
The flows within a dimension can vary their matches across more than
one field, e.g. to match only specific pairs of IP source and
destination addresses or L4 port numbers.
</li>
<li>
A flow may have multiple <code>conjunction</code> actions, with different
<code>id</code> values. This is useful for multiple conjunctive flows with
overlapping sets. If one conjunctive flow matches packets with both
<code>ip_src</code> ∈ {<var>a</var>,<var>b</var>} and <code>ip_dst</code> ∈
{<var>d</var>,<var>e</var>} and a second conjunctive flow matches <code>ip_src</code>
∈ {<var>b</var>,<var>c</var>} and <code>ip_dst</code> ∈ {<var>f</var>,<var>g</var>}, for
example, then the flow that matches <code>ip_src=</code><var>b</var> would have two
<code>conjunction</code> actions, one for each conjunctive flow. The order
of <code>conjunction</code> actions within a list of actions is not
significant.
</li>
<li>
A flow with <code>conjunction</code> actions may also include <code>note</code>
actions for annotations, but not any other kind of actions. (They
would not be useful because they would never be executed.)
</li>
<li>
All of the flows that constitute a conjunctive flow with a given
<var>id</var> must have the same priority. (Flows with the same <var>id</var>
but different priorities are currently treated as different
conjunctive flows, that is, currently <var>id</var> values need only be
unique within an OpenFlow table at a given priority. This behavior
isn't guaranteed to stay the same in later releases, so please use
<var>id</var> values unique within an OpenFlow table.)
</li>
<li>
Conjunctive flows must not overlap with each other, at a given
priority, that is, any given packet must be able to match at most one
conjunctive flow at a given priority. Overlapping conjunctive flows
yield unpredictable results.
(The flows that constitute a conjunctive flow may overlap with those
that constitute the same or another conjunctive flow.)
</li>
<li>
Following a conjunctive flow match, the search for the flow with
<code>conj_id=</code><var>id</var> is done in the same general-purpose way as
other flow table searches, so one can use flows with
<code>conj_id=</code><var>id</var> to act differently depending on
circumstances. (One exception is that the search for the
<code>conj_id=</code><var>id</var> flow itself ignores conjunctive flows, to
avoid recursion.) If the search with <code>conj_id=</code><var>id</var> fails,
Open vSwitch acts as if the conjunctive flow had not matched at all, and
continues searching the flow table for other matching flows.
</li>
<li>
<p>
OpenFlow prerequisite checking occurs for the flow with
<code>conj_id=</code><var>id</var> in the same way as any other flow, e.g. in
an OpenFlow 1.1+ context, putting a <code>mod_nw_src</code> action into the example
above would require adding an <code>ip</code> match, like this:
</p>
<pre>
conj_id=1234,ip actions=mod_nw_src:1.2.3.4,controller
</pre>
</li>
<li>
OpenFlow prerequisite checking also occurs for the individual flows
that comprise a conjunctive match in the same way as any other flow.
</li>
<li>
The flows that constitute a conjunctive flow do not have useful
statistics. They are never updated with byte or packet counts, and so
on. (For such a flow, therefore, the idle and hard timeouts work much
the same way.)
</li>
<li>
<p>
Sometimes there is a choice of which flows include a particular match.
For example, suppose that we added an extra constraint to our example,
to match on <code>ip_src</code> ∈
{<var>a</var>,<var>b</var>,<var>c</var>,<var>d</var>} and
<code>ip_dst</code> ∈
{<var>e</var>,<var>f</var>,<var>g</var>,<var>h</var>} and
<code>tcp_dst</code> = <var>i</var>. One way to implement this is to
add the new constraint to the <code>conj_id</code> flow, like this:
</p>
<pre>
conj_id=1234,tcp,tcp_dst=<var>i</var> actions=mod_nw_src:1.2.3.4,controller
</pre>
<p>
but <em>this is not recommended</em> because of the cost of the extra
flow table lookup. Instead, add the constraint to the individual
flows, either in one of the dimensions or (slightly better) all of
them.
</p>
</li>
<li>
A conjunctive match must have <var>n</var> ≥ 2 dimensions (otherwise a
conjunctive match is not necessary). Open vSwitch enforces this.
</li>
<li>
Each dimension within a conjunctive match should ordinarily have more
than one flow. Open vSwitch does not enforce this.
</li>
</ul>
<field id="MFF_CONJ_ID" title="Conjunction ID">
Used for conjunctive matching. See above for more information.
</field>
</group>
<group title="Tunnel">
<p>
The fields in this group relate to tunnels, which Open vSwitch
supports in several forms (GRE, VXLAN, and so on). Most of
these fields do appear in the wire format of a packet, so they
are data fields from that point of view, but they are metadata
from an OpenFlow flow table point of view because they do not
appear in packets that are forwarded to the controller or to
ordinary (non-tunnel) output ports.
</p>
<p>
Open vSwitch supports a spectrum of usage models for mapping
tunnels to OpenFlow ports:
</p>
<dl>
<dt>``Port-based'' tunnels</dt>
<dd>
<p>
In this model, an OpenFlow port represents one tunnel: it matches a
particular type of tunnel traffic between two IP endpoints, with a
particular tunnel key (if keys are in use). In this situation, <ref
field="in_port"/> suffices to distinguish one tunnel from another, so
the tunnel header fields have little importance for OpenFlow
processing. (They are still populated and may be used if it is
convenient.) The tunnel header fields play no role in sending
packets out such an OpenFlow port, either, because the OpenFlow port
itself fully specifies the tunnel headers.
</p>
<p>
The following Open vSwitch commands create a bridge
<code>br-int</code>, add port <code>tap0</code> to the bridge as
OpenFlow port 1, establish a port-based GRE tunnel between the local
host and remote IP 192.168.1.1 using GRE key 5001 as OpenFlow port 2,
and arranges to forward all traffic from <code>tap0</code> to the
tunnel and vice versa:
</p>
<pre>
ovs-vsctl add-br br-int
ovs-vsctl add-port br-int tap0 -- set interface tap0 ofport_request=1
ovs-vsctl add-port br-int gre0 -- \
set interface gre0 ofport_request=2 type=gre \
options:remote_ip=192.168.1.1 options:key=5001
ovs-ofctl add-flow br-int in_port=1,actions=2
ovs-ofctl add-flow br-int in_port=2,actions=1
</pre>
</dd>
<dt>``Flow-based'' tunnels</dt>
<dd>
<p>
In this model, one OpenFlow port represents all possible tunnels of a
given type with an endpoint on the current host, for example, all GRE
tunnels. In this situation, <ref field="in_port"/> only indicates
that traffic was received on the particular kind of tunnel. This is
where the tunnel header fields are most important: they allow the
OpenFlow tables to discriminate among tunnels based on their IP
endpoints or keys. Tunnel header fields also determine the IP
endpoints and keys of packets sent out such a tunnel port.
</p>
<p>
The following Open vSwitch commands create a bridge
<code>br-int</code>, add port <code>tap0</code> to the
bridge as OpenFlow port 1, establish a flow-based GRE tunnel
port 3, and arranges to forward all traffic from
<code>tap0</code> to remote IP 192.168.1.1 over a GRE tunnel
with key 5001 and vice versa:
</p>
<pre>
ovs-vsctl add-br br-int
ovs-vsctl add-port br-int tap0 -- set interface tap0 ofport_request=1
ovs-vsctl add-port br-int allgre -- \
set interface allgre ofport_request=3 type=gre \
options:remote_ip=flow options:key=flow
ovs-ofctl add-flow br-int \
'in_port=1 actions=set_tunnel:5001,set_field:192.168.1.1->tun_dst,3'
ovs-ofctl add-flow br-int 'in_port=3,tun_src=192.168.1.1,tun_id=5001 actions=1'
</pre>
</dd>
<dt>Mixed models.</dt>
<dd>
<p>
One may define both flow-based and port-based tunnels at the
same time. For example, it is valid and possibly useful to
create and configure both <code>gre0</code> and
<code>allgre</code> tunnel ports described above.
</p>
<p>
Traffic is attributed on ingress to the most specific
matching tunnel. For example, <code>gre0</code> is more
specific than <code>allgre</code>. Therefore, if both
exist, then <code>gre0</code> will be the ingress port for any
GRE traffic received from 192.168.1.1 with key 5001.
</p>
<p>
On egress, traffic may be directed to any appropriate tunnel
port. If both <code>gre0</code> and <code>allgre</code> are
configured as already described, then the actions
<code>2</code> and
<code>set_tunnel:5001,set_field:192.168.1.1->tun_dst,3</code>
send the same tunnel traffic.
</p>
</dd>
<dt>Intermediate models.</dt>
<dd>
Ports may be configured as partially flow-based. For example,
one may define an OpenFlow port that represents tunnels
between a pair of endpoints but leaves the flow table to
discriminate on the flow key.
</dd>
</dl>
<p>
<code>ovs-vswitchd.conf.db</code>(5) describes all the details of tunnel
configuration.
</p>
<p>
These fields do not have any prerequisites, which means that a
flow may match on any or all of them, in any combination.
</p>
<p>
These fields are zeros for packets that did not arrive on a tunnel.
</p>
<field id="MFF_TUN_ID" title="Tunnel ID">
<p>
Many kinds of tunnels support a tunnel ID:
</p>
<ul>
<li>
VXLAN and Geneve have a 24-bit virtual network identifier (VNI).
</li>
<li>GRE has an optional 32-bit key.</li>
<li>ERSPAN has a 10-bit key (Session ID).</li>
<li>GTPU has a 32-bit key (Tunnel Endpoint ID).</li>
</ul>
<p>
When a packet is received from a tunnel, this field holds the
tunnel ID in its least significant bits, zero-extended to fit.
This field is zero if the tunnel does not support an ID, or if
no ID is in use for a tunnel type that has an optional ID, or
if an ID of zero received, or if the packet was not received
over a tunnel.
</p>
<p>
When a packet is output to a tunnel port, the tunnel
configuration determines whether the tunnel ID is taken from
this field or bound to a fixed value. See the earlier
description of ``port-based'' and ``flow-based'' tunnels for
more information.
</p>
<p>
The following diagram shows the origin of this field in a
typical keyed GRE tunnel:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="47" width="0.4"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="GRE">
<bits name="..." above="16" width="0.4"/>
<bits name="type" above="16" below="0x6558" width="0.4"/>
<bits name="key" above="32" width=".4" fill="yes"/>
</header>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
</field>
<field id="MFF_TUN_SRC" title="Tunnel IPv4 Source">
<p>
When a packet is received from a tunnel, this field is the
source address in the outer IP header of the tunneled packet.
This field is zero if the packet was not received over a
tunnel.
</p>
<p>
When a packet is output to a flow-based tunnel port, this
field influences the IPv4 source address used to send the
packet. If it is zero, then the kernel chooses an appropriate
IP address based using the routing table.
</p>
<p>
The following diagram shows the origin of this field in a
typical keyed GRE tunnel:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="47" width="0.4"/>
<bits name="src" above="32" width="0.4" fill="yes"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="GRE">
<bits name="..." above="16" width="0.4"/>
<bits name="type" above="16" below="0x6558" width="0.4"/>
<bits name="key" above="32" width=".4"/>
</header>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
</field>
<field id="MFF_TUN_DST" title="Tunnel IPv4 Destination">
<p>
When a packet is received from a tunnel, this field is the
destination address in the outer IP header of the tunneled
packet. This field is zero if the packet was not received
over a tunnel.
</p>
<p>
When a packet is output to a flow-based tunnel port, this
field specifies the destination to which the tunnel packet is
sent.
</p>
<p>
The following diagram shows the origin of this field in a
typical keyed GRE tunnel:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="47" width="0.4"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4" fill="yes"/>
</header>
<header name="GRE">
<bits name="..." above="16" width="0.4"/>
<bits name="type" above="16" below="0x6558" width="0.4"/>
<bits name="key" above="32" width=".4"/>
</header>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
</field>
<field id="MFF_TUN_IPV6_SRC" title="Tunnel IPv6 Source">
Similar to <ref field="tun_src"/>, but for tunnels over IPv6.
</field>
<field id="MFF_TUN_IPV6_DST" title="Tunnel IPv6 Destination">
Similar to <ref field="tun_dst"/>, but for tunnels over IPv6.
</field>
<h2>VXLAN Group-Based Policy Fields</h2>
<p>
The VXLAN header is defined as follows [RFC 7348], where the
<code>I</code> bit must be set to 1, unlabeled bits or those labeled
<code>reserved</code> must be set to 0, and Open vSwitch makes the VNI
available via <ref field="tun_id"/>:
</p>
<diagram>
<header name="VXLAN flags">
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="I" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
</header>
<nospace/>
<header>
<bits name="reserved" above="24" width="1.2"/>
<bits name="VNI" above="24" width="1.2"/>
<bits name="reserved" above="8" width=".5"/>
</header>
</diagram>
<p>
VXLAN Group-Based Policy [VXLAN Group Policy Option] adds new
interpretations to existing bits in the VXLAN header, reinterpreting it
as follows, with changes highlighted:
</p>
<diagram>
<header name="GBP flags">
<bits name="" above="1" width="0.15"/>
<bits name="D" above="1" width="0.15" fill="yes"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="A" above="1" width="0.15" fill="yes"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
</header>
<nospace/>
<header>
<bits name="group policy ID" above="24" width="1.2" fill="yes"/>
<bits name="VNI" above="24" width="1.2"/>
<bits name="reserved" above="8" width=".5"/>
</header>
</diagram>
<p>
Open vSwitch makes GBP fields and flags available through the following
fields. Only packets that arrive over a VXLAN tunnel with the GBP
extension enabled have these fields set. In other packets they are zero
on receive and ignored on transmit.
</p>
<field id="MFF_TUN_GBP_ID" title="VXLAN Group-Based Policy ID">
<p>
For a packet tunneled over VXLAN with the Group-Based Policy (GBP)
extension, this field represents the GBP policy ID, as shown above.
</p>
</field>
<field id="MFF_TUN_GBP_FLAGS" title="VXLAN Group-Based Policy Flags">
<p>
For a packet tunneled over VXLAN with the Group-Based Policy (GBP)
extension, this field represents the GBP policy flags, as shown above.
</p>
<p>
The field has the format shown below:
</p>
<diagram>
<header name="GBP Flags">
<bits name="" above="1" width="0.15"/>
<bits name="D" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="A" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
<bits name="" above="1" width="0.15"/>
</header>
</diagram>
<p>
Unlabeled bits are reserved and must be transmitted as 0. The VXLAN
GBP draft defines the other bits' meanings as:
</p>
<dl>
<dt><code>D</code> (Don't Learn)</dt>
<dd>
When set, this bit indicates that the egress tunnel endpoint must not
learn the source address of the encapsulated frame.
</dd>
<dt><code>A</code> (Applied)</dt>
<dd>
When set, indicates that the group policy has already been applied to
this packet. Devices must not apply policies when the A bit is set.
</dd>
</dl>
</field>
<h2>ERSPAN Metadata Fields</h2>
<p>
These fields provide access to features in the ERSPAN tunneling protocol
[ERSPAN], which has two major versions: version 1 (aka type II) and
version 2 (aka type III).
</p>
<p>
Regardless of version, ERSPAN is encapsulated within a fixed 8-byte GRE
header that consists of a 4-byte GRE base header and a 4-byte sequence
number. The ERSPAN version 1 header format is:
</p>
<diagram>
<header name="GRE">
<bits name="..." above="16" width="0.4"/>
<bits name="type" above="16" below="0x88be" width="0.4"/>
<bits name="seq" above="32" width=".4"/>
</header>
<header name="ERSPAN v1">
<bits name="ver" above="4" below="1" width="0.4"/>
<bits name="..." above="18" width="0.4"/>
<bits name="session" above="10" below="tun_id" width="0.5"/>
<bits name="..." above="12" width="0.4"/>
<bits name="idx" above="20" width="0.6"/>
</header>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
<p>
The ERSPAN version 2 header format is:
</p>
<diagram>
<header name="GRE">
<bits name="..." above="16" width="0.4"/>
<bits name="type" above="16" below="0x22eb" width="0.4"/>
<bits name="seq" above="32" width=".4"/>
</header>
<header name="ERSPAN v2">
<bits name="ver" above="4" below="2" width="0.4"/>
<bits name="..." above="18" width="0.4"/>
<bits name="session" above="10" below="tun_id" width="0.5"/>
<bits name="timestamp" above="32" width=".7"/>
<bits name="..." above="22" width="0.4"/>
<bits name="hwid" above="6" width="0.4"/>
<bits name="dir" above="1" below="0/1" width="0.4"/>
<bits name="..." above="3" width="0.4"/>
</header>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
<field id="MFF_TUN_ERSPAN_VER" title="ERSPAN Version">
ERSPAN version number: 1 for version 1, or 2 for version 2.
</field>
<field id="MFF_TUN_ERSPAN_IDX" title="ERSPAN Index">
This field is a 20-bit index/port number associated with the ERSPAN
traffic's source port and direction (ingress/egress). This field is
platform dependent.
</field>
<field id="MFF_TUN_ERSPAN_DIR" title="ERSPAN Direction">
For ERSPAN v2, the mirrored traffic's direction: 0 for ingress traffic, 1
for egress traffic.
</field>
<field id="MFF_TUN_ERSPAN_HWID" title="ERSPAN Hardware ID">
A 6-bit unique identifier of an ERSPAN v2 engine within a system.
</field>
<h2>GTP-U Metadata Fields</h2>
<p>
These fields provide access to set-up GPRS Tunnelling Protocol
for User Plane (GTPv1-U), based on 3GPP TS 29.281. A GTP-U
header has the following format:
</p>
<diagram>
<header>
<bits name="flags" above="8" width="0.6"/>
<bits name="msg type" above="8" width="0.6"/>
<bits name="length" above="16" width="0.9"/>
<bits name="TEID" above="32" width="1.3"/>
</header>
<dots/>
</diagram>
<p>
The flags and message type have the Open vSwitch GTP-U specific fields
described below. Open vSwitch makes the TEID (Tunnel Endpoint
Identifier), which identifies a tunnel endpoint in the receiving GTP-U
protocol entity, available via <ref field="tun_id"/>.
</p>
<field id="MFF_TUN_GTPU_FLAGS" title="GTP-U Flags">
<p>
This field holds the 8-bit GTP-U flags, encoded as:
</p>
<diagram>
<header name="GTP-U Tunnel Flags">
<bits name="version" above="3" below="1" width="0.5"/>
<bits name="PT" above="1" width="0.3"/>
<bits name="rsv" above="1" below="0" width="0.3"/>
<bits name="E" above="1" width="0.3"/>
<bits name="S" above="1" width="0.3"/>
<bits name="PN" above="1" width="0.3"/>
</header>
</diagram>
<p>
The flags are:
</p>
<dl>
<dt>version</dt>
<dd>Used to determine the version of the GTP-U protocol, which should
be set to 1.</dd>
<dt>PT</dt>
<dd>Protocol type, used as a protocol discriminator
between GTP (1) and GTP' (0).</dd>
<dt>rsv</dt>
<dd>Reserved. Must be zero.</dd>
<dt>E</dt>
<dd>If 1, indicates the presence of a meaningful value of the Next
Extension Header field.</dd>
<dt>S</dt>
<dd>If 1, indicates the presence of a meaningful value of the Sequence
Number field.</dd>
<dt>PN</dt>
<dd>If 1, indicates the presence of a meaningful value of the N-PDU
Number field.</dd>
</dl>
</field>
<field id="MFF_TUN_GTPU_MSGTYPE" title="GTP-U Message Type">
This field indicates whether it's a signalling message used for path
management, or a user plane message which carries the original packet.
The complete range of message types can be referred to [3GPP TS 29.281].
</field>
<h2>Geneve Fields</h2>
<p>
These fields provide access to additional features in the Geneve
tunneling protocol [Geneve]. Their names are somewhat generic in the
hope that the same fields could be reused for other protocols in the
future; for example, the NSH protocol [NSH] supports TLV options whose
form is identical to that for Geneve options.
</p>
<field id="MFF_TUN_METADATA0" title="Generic Tunnel Option 0">
<p>
The above information specifically covers generic tunnel option 0, but
Open vSwitch supports 64 options, numbered 0 through 63, whose
NXM field numbers are 40 through 103.
</p>
<p>
These fields provide OpenFlow access to the generic type-length-value
options defined by the Geneve tunneling protocol or other protocols
with options in the same TLV format as Geneve options. Each of these
options has the following wire format:
</p>
<diagram>
<header name="header">
<bits name="class" above="16" width="0.6"/>
<bits name="type" above="8" width="0.5"/>
<bits name="res" above="3" below="0" width="0.25"/>
<bits name="length" above="5" width="0.4"/>
</header>
<nospace/>
<header name="body">
<bits name="value" above="4×(length - 1) bytes" width="1.7"/>
</header>
</diagram>
<p>
Taken together, the <code>class</code> and <code>type</code> in the
option format mean that there are about 16 million distinct kinds of
TLV options, too many to give individual OXM code points. Thus, Open
vSwitch requires the user to define the TLV options of interest, by
binding up to 64 TLV options to generic tunnel option NXM code points.
Each option may have up to 124 bytes in its body, the maximum allowed
by the TLV format, but bound options may total at most 252 bytes of
body.
</p>
<p>
Open vSwitch extensions to the OpenFlow protocol bind TLV options to
NXM code points. The <code>ovs-ofctl</code>(8) program offers one way
to use these extensions, e.g. to configure a mapping from a TLV option
with <code>class</code> <code>0xffff</code>, <code>type</code>
<code>0</code>, and a body length of 4 bytes:
</p>
<pre>
ovs-ofctl add-tlv-map br0 "{class=0xffff,type=0,len=4}->tun_metadata0"
</pre>
<p>
Once a TLV option is properly bound, it can be accessed and modified
like any other field, e.g. to send packets that have value 1234 for the
option described above to the controller:
</p>
<pre>
ovs-ofctl add-flow br0 tun_metadata0=1234,actions=controller
</pre>
<p>
An option not received or not bound is matched as all zeros.
</p>
</field>
<!--- XXX need a way to define a range of OXMs -->
<field id="MFF_TUN_METADATA1" title="Generic Tunnel Option 1" hidden="yes"/>
<field id="MFF_TUN_METADATA2" title="Generic Tunnel Option 2" hidden="yes"/>
<field id="MFF_TUN_METADATA3" title="Generic Tunnel Option 3" hidden="yes"/>
<field id="MFF_TUN_METADATA4" title="Generic Tunnel Option 4" hidden="yes"/>
<field id="MFF_TUN_METADATA5" title="Generic Tunnel Option 5" hidden="yes"/>
<field id="MFF_TUN_METADATA6" title="Generic Tunnel Option 6" hidden="yes"/>
<field id="MFF_TUN_METADATA7" title="Generic Tunnel Option 7" hidden="yes"/>
<field id="MFF_TUN_METADATA8" title="Generic Tunnel Option 8" hidden="yes"/>
<field id="MFF_TUN_METADATA9" title="Generic Tunnel Option 9" hidden="yes"/>
<field id="MFF_TUN_METADATA10" title="Generic Tunnel Option 10" hidden="yes"/>
<field id="MFF_TUN_METADATA11" title="Generic Tunnel Option 11" hidden="yes"/>
<field id="MFF_TUN_METADATA12" title="Generic Tunnel Option 12" hidden="yes"/>
<field id="MFF_TUN_METADATA13" title="Generic Tunnel Option 13" hidden="yes"/>
<field id="MFF_TUN_METADATA14" title="Generic Tunnel Option 14" hidden="yes"/>
<field id="MFF_TUN_METADATA15" title="Generic Tunnel Option 15" hidden="yes"/>
<field id="MFF_TUN_METADATA16" title="Generic Tunnel Option 16" hidden="yes"/>
<field id="MFF_TUN_METADATA17" title="Generic Tunnel Option 17" hidden="yes"/>
<field id="MFF_TUN_METADATA18" title="Generic Tunnel Option 18" hidden="yes"/>
<field id="MFF_TUN_METADATA19" title="Generic Tunnel Option 19" hidden="yes"/>
<field id="MFF_TUN_METADATA20" title="Generic Tunnel Option 20" hidden="yes"/>
<field id="MFF_TUN_METADATA21" title="Generic Tunnel Option 21" hidden="yes"/>
<field id="MFF_TUN_METADATA22" title="Generic Tunnel Option 22" hidden="yes"/>
<field id="MFF_TUN_METADATA23" title="Generic Tunnel Option 23" hidden="yes"/>
<field id="MFF_TUN_METADATA24" title="Generic Tunnel Option 24" hidden="yes"/>
<field id="MFF_TUN_METADATA25" title="Generic Tunnel Option 25" hidden="yes"/>
<field id="MFF_TUN_METADATA26" title="Generic Tunnel Option 26" hidden="yes"/>
<field id="MFF_TUN_METADATA27" title="Generic Tunnel Option 27" hidden="yes"/>
<field id="MFF_TUN_METADATA28" title="Generic Tunnel Option 28" hidden="yes"/>
<field id="MFF_TUN_METADATA29" title="Generic Tunnel Option 29" hidden="yes"/>
<field id="MFF_TUN_METADATA30" title="Generic Tunnel Option 30" hidden="yes"/>
<field id="MFF_TUN_METADATA31" title="Generic Tunnel Option 31" hidden="yes"/>
<field id="MFF_TUN_METADATA32" title="Generic Tunnel Option 32" hidden="yes"/>
<field id="MFF_TUN_METADATA33" title="Generic Tunnel Option 33" hidden="yes"/>
<field id="MFF_TUN_METADATA34" title="Generic Tunnel Option 34" hidden="yes"/>
<field id="MFF_TUN_METADATA35" title="Generic Tunnel Option 35" hidden="yes"/>
<field id="MFF_TUN_METADATA36" title="Generic Tunnel Option 36" hidden="yes"/>
<field id="MFF_TUN_METADATA37" title="Generic Tunnel Option 37" hidden="yes"/>
<field id="MFF_TUN_METADATA38" title="Generic Tunnel Option 38" hidden="yes"/>
<field id="MFF_TUN_METADATA39" title="Generic Tunnel Option 39" hidden="yes"/>
<field id="MFF_TUN_METADATA40" title="Generic Tunnel Option 40" hidden="yes"/>
<field id="MFF_TUN_METADATA41" title="Generic Tunnel Option 41" hidden="yes"/>
<field id="MFF_TUN_METADATA42" title="Generic Tunnel Option 42" hidden="yes"/>
<field id="MFF_TUN_METADATA43" title="Generic Tunnel Option 43" hidden="yes"/>
<field id="MFF_TUN_METADATA44" title="Generic Tunnel Option 44" hidden="yes"/>
<field id="MFF_TUN_METADATA45" title="Generic Tunnel Option 45" hidden="yes"/>
<field id="MFF_TUN_METADATA46" title="Generic Tunnel Option 46" hidden="yes"/>
<field id="MFF_TUN_METADATA47" title="Generic Tunnel Option 47" hidden="yes"/>
<field id="MFF_TUN_METADATA48" title="Generic Tunnel Option 48" hidden="yes"/>
<field id="MFF_TUN_METADATA49" title="Generic Tunnel Option 49" hidden="yes"/>
<field id="MFF_TUN_METADATA50" title="Generic Tunnel Option 50" hidden="yes"/>
<field id="MFF_TUN_METADATA51" title="Generic Tunnel Option 51" hidden="yes"/>
<field id="MFF_TUN_METADATA52" title="Generic Tunnel Option 52" hidden="yes"/>
<field id="MFF_TUN_METADATA53" title="Generic Tunnel Option 53" hidden="yes"/>
<field id="MFF_TUN_METADATA54" title="Generic Tunnel Option 54" hidden="yes"/>
<field id="MFF_TUN_METADATA55" title="Generic Tunnel Option 55" hidden="yes"/>
<field id="MFF_TUN_METADATA56" title="Generic Tunnel Option 56" hidden="yes"/>
<field id="MFF_TUN_METADATA57" title="Generic Tunnel Option 57" hidden="yes"/>
<field id="MFF_TUN_METADATA58" title="Generic Tunnel Option 58" hidden="yes"/>
<field id="MFF_TUN_METADATA59" title="Generic Tunnel Option 59" hidden="yes"/>
<field id="MFF_TUN_METADATA60" title="Generic Tunnel Option 60" hidden="yes"/>
<field id="MFF_TUN_METADATA61" title="Generic Tunnel Option 61" hidden="yes"/>
<field id="MFF_TUN_METADATA62" title="Generic Tunnel Option 62" hidden="yes"/>
<field id="MFF_TUN_METADATA63" title="Generic Tunnel Option 63" hidden="yes"/>
<field id="MFF_TUN_FLAGS" title="Tunnel Flags">
<p>
Flags indicating various aspects of the tunnel encapsulation.
</p>
<p>
Matches on this field are most conveniently written in terms of
symbolic names (given in the diagram below), each preceded by either
<code>+</code> for a flag that must be set, or <code>-</code> for a
flag that must be unset, without any other delimiters between the
flags. Flags not mentioned are wildcarded. For example,
<code>tun_flags=+oam</code> matches only OAM packets. Matches can also
be written as <code><var>flags</var>/<var>mask</var></code>, where
<var>flags</var> and <var>mask</var> are 16-bit numbers in decimal or
in hexadecimal prefixed by <code>0x</code>.
</p>
<p>
Currently, only one flag is defined:
</p>
<dl>
<dt><code>oam</code></dt>
<dd>
The tunnel protocol indicated that this is an OAM (Operations and
Management) control packet.
</dd>
</dl>
<p>
The switch may reject matches against unknown flags.
</p>
<p>
Newer versions of Open vSwitch may introduce additional flags with new
meanings. It is therefore not recommended to use an exact match on
this field since the behavior of these new flags is unknown and should
be ignored.
</p>
<p>
For non-tunneled packets, the value is 0.
</p>
</field>
<!-- Open vSwitch uses the following fields internally, but it
does not expose them to the user via OpenFlow, so we do not
document them. -->
<field id="MFF_TUN_TTL" title="Tunnel IPv4 Time-to-Live" internal="yes"/>
<field id="MFF_TUN_TOS" title="Tunnel IPv4 Type of Service" internal="yes"/>
</group>
<group title="Metadata">
<p>
These fields relate to the origin or treatment of a packet, but
they are not extracted from the packet data itself.
</p>
<field id="MFF_IN_PORT" title="Ingress Port">
<p>
The OpenFlow port on which the packet being processed arrived.
This is a 16-bit field that holds an OpenFlow 1.0 port number.
For receiving a packet, the only values that appear in this
field are:
</p>
<dl>
<dt>1 through <code>0xfeff</code> (65,279), inclusive.</dt>
<dd>
Conventional OpenFlow port numbers.
</dd>
<dt><code>OFPP_LOCAL</code> (<code>0xfffe</code> or 65,534).</dt>
<dd>
<p>
The ``local'' port, which in Open vSwitch is always named
the same as the bridge itself. This represents a
connection between the switch and the local TCP/IP stack.
This port is where an IP address is most commonly
configured on an Open vSwitch switch.
</p>
<p>
OpenFlow does not require a switch to have a local port,
but all existing versions of Open vSwitch have always
included a local port. <b>Future Directions:</b> Future
versions of Open vSwitch might be able to optionally omit
the local port, if someone submits code to implement such
a feature.
</p>
</dd>
<dt><code>OFPP_NONE</code> (OpenFlow 1.0) or <code>OFPP_ANY</code> (OpenFlow 1.1+) (<code>0xffff</code> or 65,535).</dt>
<dt><code>OFPP_CONTROLLER</code> (<code>0xfffd</code> or 65,533).</dt>
<dd>
<p>
When a controller injects a packet into an OpenFlow switch
with a ``packet-out'' request, it can specify one of these
ingress ports to indicate that the packet was generated
internally rather than having been received on some port.
</p>
<p>
OpenFlow 1.0 specified <code>OFPP_NONE</code> for this
purpose. Despite that, some controllers used
<code>OFPP_CONTROLLER</code>, and some switches only
accepted <code>OFPP_CONTROLLER</code>, so OpenFlow 1.0.2
required support for both ports. OpenFlow 1.1 and later
were more clearly drafted to allow only
<code>OFPP_CONTROLLER</code>. For maximum compatibility,
Open vSwitch allows both ports with all OpenFlow versions.
</p>
</dd>
</dl>
<p>
Values not mentioned above will never appear when receiving a
packet, including the following notable values:
</p>
<dl>
<dt>0</dt>
<dd>
Zero is not a valid OpenFlow port number.
</dd>
<dt><code>OFPP_MAX</code> (<code>0xff00</code> or 65,280).</dt>
<dd>
This value has only been clearly specified as a valid port
number as of OpenFlow 1.3.3. Before that, its status was
unclear, and so Open vSwitch has never allowed
<code>OFPP_MAX</code> to be used as a port number, so
packets will never be received on this port. (Other
OpenFlow switches, of course, might use it.)
</dd>
<dt><code>OFPP_UNSET</code> (<code>0xfff7</code> or 65,527)</dt>
<dt><code>OFPP_IN_PORT</code> (<code>0xfff8</code> or 65,528)</dt>
<dt><code>OFPP_TABLE</code> (<code>0xfff9</code> or 65,529)</dt>
<dt><code>OFPP_NORMAL</code> (<code>0xfffa</code> or 65,530)</dt>
<dt><code>OFPP_FLOOD</code> (<code>0xfffb</code> or 65,531)</dt>
<dt><code>OFPP_ALL</code> (<code>0xfffc</code> or 65,532)</dt>
<dd>
<p>
These port numbers are used only in output actions and never
appear as ingress ports.
</p>
<p>
Most of these port numbers were defined in OpenFlow 1.0, but
<code>OFPP_UNSET</code> was only introduced in OpenFlow 1.5.
</p>
</dd>
</dl>
<p>
Values that will never appear when receiving a packet may
still be matched against in the flow table. There are still
circumstances in which those flows can be matched:
</p>
<ul>
<li>
The <code>resubmit</code> Open vSwitch extension action allows a
flow table lookup with an arbitrary ingress port.
</li>
<li>
An action that modifies the ingress port field (see below),
such as e.g. <code>load</code> or <code>set_field</code>,
followed by an action or instruction that performs another
flow table lookup, such as <code>resubmit</code> or
<code>goto_table</code>.
</li>
</ul>
<p>
This field is heavily used for matching in OpenFlow tables,
but for packet egress, it has only very limited roles:
</p>
<ul>
<li>
<p>
OpenFlow requires suppressing output actions to <ref
field="in_port"/>. That is, the following two flows both drop all
packets that arrive on port 1:
</p>
<pre>
in_port=1,actions=1
in_port=1,actions=drop
</pre>
<p>
(This behavior is occasionally useful for flooding to a
subset of ports. Specifying <code>actions=1,2,3,4</code>,
for example, outputs to ports 1, 2, 3, and 4, omitting the
ingress port.)
</p>
</li>
<li>
OpenFlow has a special port <code>OFPP_IN_PORT</code> (with
value 0xfff8) that outputs to the ingress port. For example,
in a switch that has four ports numbered 1 through 4,
<code>actions=1,2,3,4,in_port</code> outputs to ports 1, 2,
3, and 4, including the ingress port.
</li>
</ul>
<p>
Because the ingress port field has so little influence on packet
processing, it does not ordinarily make sense to modify the
ingress port field. The field is writable only to support the
occasional use case where the ingress port's roles in packet
egress, described above, become troublesome. For example,
<code>actions=load:0->NXM_OF_IN_PORT[],output:123</code>
will output to port 123 regardless of whether it is in the
ingress port. If the ingress port is important, then one may save
and restore it on the stack:
</p>
<pre>
actions=push:NXM_OF_IN_PORT[],load:0->NXM_OF_IN_PORT[],output:123,pop:NXM_OF_IN_PORT[]
</pre>
<p>
or, in Open vSwitch 2.7 or later, use the <code>clone</code> action to
save and restore it:
</p>
<pre>
actions=clone(load:0->NXM_OF_IN_PORT[],output:123)
</pre>
<p>
The ability to modify the ingress port is an Open vSwitch
extension to OpenFlow.
</p>
</field>
<field id="MFF_IN_PORT_OXM" title="OXM Ingress Port">
<p>
OpenFlow 1.1 and later use a 32-bit port number, so this field
supplies a 32-bit view of the ingress port. Current versions of
Open vSwitch support only a 16-bit range of ports:
</p>
<ul>
<li>
OpenFlow 1.0 ports <code>0x0000</code> to
<code>0xfeff</code>, inclusive, map to OpenFlow 1.1
port numbers with the same values.
</li>
<li>
OpenFlow 1.0 ports <code>0xff00</code> to
<code>0xffff</code>, inclusive, map to OpenFlow 1.1 port
numbers <code>0xffffff00</code> to <code>0xffffffff</code>.
</li>
<li>
OpenFlow 1.1 ports <code>0x0000ff00</code> to
<code>0xfffffeff</code> are not mapped and not supported.
</li>
</ul>
<p>
<ref field="in_port"/> and <ref field="in_port_oxm"/> are two views of
the same information, so all of the comments on <ref field="in_port"/>
apply to <ref field="in_port_oxm"/> too. Modifying <ref
field="in_port"/> changes <ref field="in_port_oxm"/>, and vice versa.
</p>
<p>
Setting <ref field="in_port_oxm"/> to an unsupported value yields
unspecified behavior.
</p>
</field>
<field id="MFF_SKB_PRIORITY" title="Output Queue">
<p>
<b>Future Directions:</b> Open vSwitch implements the output queue as a
field, but does not currently expose it through OXM or NXM for matching
purposes. If this turns out to be a useful feature, it could be
implemented in future versions. Only the <code>set_queue</code>,
<code>enqueue</code>, and <code>pop_queue</code> actions currently
influence the output queue.
</p>
<p>
This field influences how packets in the flow will be queued,
for quality of service (QoS) purposes, when they egress the
switch. Its range of meaningful values, and their meanings,
varies greatly from one OpenFlow implementation to another.
Even within a single implementation, there is no guarantee
that all OpenFlow ports have the same queues configured or
that all OpenFlow ports in an implementation can be configured
the same way queue-wise.
</p>
<p>
Configuring queues on OpenFlow is not well standardized. On
Linux, Open vSwitch supports queue configuration via OVSDB,
specifically the <code>QoS</code> and <code>Queue</code>
tables (see <code>ovs-vswitchd.conf.db(5)</code> for details).
Ports of Open vSwitch to other platforms might require queue
configuration through some separate protocol (such as a CLI).
Even on Linux, Open vSwitch exposes only a fraction of the
kernel's queuing features through OVSDB, so advanced or
unusual uses might require use of separate utilities
(e.g. <code>tc</code>). OpenFlow switches other than Open
vSwitch might use OF-CONFIG or any of the configuration
methods mentioned above. Finally, some OpenFlow switches have
a fixed number of fixed-function queues (e.g. eight queues
with strictly defined priorities) and others do not support
any control over queuing.
</p>
<p>
The only output queue that all OpenFlow implementations must
support is zero, to identify a default queue, whose properties
are implementation-defined. Outputting a packet to a queue
that does not exist on the output port yields unpredictable
behavior: among the possibilities are that the packet might be
dropped or transmitted with a very high or very low priority.
</p>
<p>
OpenFlow 1.0 only allowed output queues to be specified as part of an
<code>enqueue</code> action that specified both a queue and an output
port. That is, OpenFlow 1.0 treats the queue as an argument to an
action, not as a field.
</p>
<p>
To increase flexibility, OpenFlow 1.1 added an action to set the output
queue. This model was carried forward, without change, through
OpenFlow 1.5.
</p>
<p>
Open vSwitch implements the native queuing model of each
OpenFlow version it supports. Open vSwitch also includes an
extension for setting the output queue as an action in
OpenFlow 1.0.
</p>
<p>
When a packet ingresses into an OpenFlow switch, the output
queue is ordinarily set to 0, indicating the default queue.
However, Open vSwitch supports various ways to forward a
packet from one OpenFlow switch to another within a single
host. In these cases, Open vSwitch maintains the output queue
across the forwarding step. For example:
</p>
<ul>
<li>
A hop across an Open vSwitch ``patch port'' (which does not
actually involve queuing) preserves the output queue.
</li>
<li>
<p>
When a flow sets the output queue then outputs to an
OpenFlow tunnel port, the encapsulation preserves the
output queue. If the kernel TCP/IP stack routes the
encapsulated packet directly to a physical interface, then
that output honors the output queue. Alternatively, if
the kernel routes the encapsulated packet to another Open
vSwitch bridge, then the output queue set previously
becomes the initial output queue on ingress to the second
bridge and will thus be used for further output actions
(unless overridden by a new ``set queue'' action).
</p>
<p>
(This description reflects the current behavior of Open
vSwitch on Linux. This behavior relies on details of the
Linux TCP/IP stack. It could be difficult to make ports
to other operating systems behave the same way.)
</p>
</li>
</ul>
</field>
<field id="MFF_PKT_MARK" title="Packet Mark">
<p>
Packet mark comes to Open vSwitch from the Linux kernel, in
which the <code>sk_buff</code> data structure that represents
a packet contains a 32-bit member named <code>skb_mark</code>.
The value of <code>skb_mark</code> propagates along with the
packet it accompanies wherever the packet goes in the kernel.
It has no predefined semantics but various kernel-user
interfaces can set and match on it, which makes it suitable
for ``marking'' packets at one point in their handling and
then acting on the mark later. With <code>iptables</code>,
for example, one can mark some traffic specially at ingress
and then handle that traffic differently at egress based on
the marked value.
</p>
<p>
Packet mark is an attempt at a generalization of the
<code>skb_mark</code> concept beyond Linux, at least through more
generic naming. Like <ref field="skb_priority"/>, packet mark is
preserved across forwarding steps within a machine. Unlike <ref
field="skb_priority"/>, packet mark has no direct effect on packet
forwarding: the value set in packet mark does not matter unless some
later OpenFlow table or switch matches on packet mark, or unless the
packet passes through some other kernel subsystem that has been
configured to interpret packet mark in specific ways, e.g. through
<code>iptables</code> configuration mentioned above.
</p>
<p>
Preserving packet mark across kernel forwarding steps relies
heavily on kernel support, which ports to non-Linux operating
systems may not have. Regardless of operating system support,
Open vSwitch supports packet mark within a single bridge and
across patch ports.
</p>
<p>
The value of packet mark when a packet ingresses into the
first Open vSwich bridge is typically zero, but it could be
nonzero if its value was previously set by some kernel
subsystem.
</p>
</field>
<field id="MFF_ACTSET_OUTPUT" title="Action Set Output Port">
<p>
Holds the output port currently in the OpenFlow action set (i.e. from
an <code>output</code> action within a <code>write_actions</code>
instruction). Its value is an OpenFlow port number. If there is no
output port in the OpenFlow action set, or if the output port will be
ignored (e.g. because there is an output group in the OpenFlow action
set), then the value will be <code>OFPP_UNSET</code>.
</p>
<p>
Open vSwitch allows any table to match this field. OpenFlow, however,
only requires this field to be matchable from within an OpenFlow egress
table (a feature that Open vSwitch does not yet implement).
</p>
</field>
<field id="MFF_DP_HASH" title="Datapath Hash" internal="yes"/>
<field id="MFF_RECIRC_ID" title="Datapath Recirculation ID" internal="yes"/>
<field id="MFF_PACKET_TYPE" title="Packet Type">
<p>
The type of the packet in the format specified in OpenFlow 1.5:
</p>
<diagram>
<header name="Packet type">
<bits name="ns" above="16" width=".75"/>
<bits name="ns_type" above="16" width=".75"/>
</header>
<dots/>
</diagram>
<p>
The upper 16 bits, <var>ns</var>, are a namespace. The meaning of
<var>ns_type</var> depends on the namespace. The packet type field is
specified and displayed in the format
<code>(<var>ns</var>,<var>ns_type</var>)</code>.
</p>
<p>
Open vSwitch currently supports the following classes of packet types
for matching:
<dl>
<dt><code>(0,0)</code></dt>
<dd>Ethernet.</dd>
<dt><code>(1,<var>ethertype</var>)</code></dt>
<dd>
<p>
The specified <var>ethertype</var>. Open vSwitch can forward
packets with any <var>ethertype</var>, but it can only match on
and process data fields for the following supported packet types:
</p>
<dl>
<dt><code>(1,0x800)</code></dt> <dd>IPv4</dd>
<dt><code>(1,0x806)</code></dt> <dd>ARP</dd>
<dt><code>(1,0x86dd)</code></dt> <dd>IPv6</dd>
<dt><code>(1,0x8847)</code></dt> <dd>MPLS</dd>
<dt><code>(1,0x8848)</code></dt> <dd>MPLS multicast</dd>
<dt><code>(1,0x8035)</code></dt> <dd>RARP</dd>
<dt><code>(1,0x894f)</code></dt> <dd>NSH</dd>
</dl>
</dd>
</dl>
</p>
<p>
Consider the distinction between a packet with <code>packet_type=(0,0),
dl_type=0x800</code> and one with <code>packet_type=(1,0x800)</code>.
The former is an Ethernet frame that contains an IPv4 packet, like
this:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" width="0.4"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<dots/>
</diagram>
<p>
The latter is an IPv4 packet not encapsulated inside any outer frame,
like this:
</p>
<diagram>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" width="0.4"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<dots/>
</diagram>
<p>
Matching on <ref field="packet_type"/> is a pre-requisite for matching
on any data field, but for backward compatibility, when a match on a
data field is present without a <ref field="packet_type"/> match, Open
vSwitch acts as though a match on <code>(0,0)</code> (Ethernet) had
been supplied. Similarly, when Open vSwitch sends flow match
information to a controller, e.g. in a reply to a request to dump the
flow table, Open vSwitch omits a match on packet type (0,0) if it would
be implied by a data field match.
</p>
</field>
</group>
<group title="Connection Tracking">
<p>
Open vSwitch supports ``connection tracking,'' which allows
bidirectional streams of packets to be statefully grouped into
connections. Open vSwitch connection tracking, for example, identifies
the patterns of TCP packets that indicates a successfully initiated
connection, as well as those that indicate that a connection has been
torn down. Open vSwitch connection tracking can also identify related
connections, such as FTP data connections spawned from FTP control
connections.
</p>
<p>
An individual packet passing through the pipeline may be in one of two
states, ``untracked'' or ``tracked,'' which may be distinguished via the
``trk'' flag in <ref field="ct_state"/>. A packet is
<dfn>untracked</dfn> at the beginning of the Open vSwitch pipeline and
continues to be untracked until the pipeline invokes the <code>ct</code>
action. The connection tracking fields are all zeroes in an untracked
packet. When a flow in the Open vSwitch pipeline invokes the
<code>ct</code> action, the action initializes the connection tracking
fields and the packet becomes <dfn>tracked</dfn> for the remainder of its
processing.
</p>
<p>
The connection tracker stores connection state in an internal table, but
it only adds a new entry to this table when a <code>ct</code> action for
a new connection invokes <code>ct</code> with the <code>commit</code>
parameter. For a given connection, when a pipeline has executed
<code>ct</code>, but not yet with <code>commit</code>, the connection is
said to be <dfn>uncommitted</dfn>. State for an uncommitted connection
is ephemeral and does not persist past the end of the pipeline, so some
features are only available to committed connections. A connection would
typically be left uncommitted as a way to drop its packets.
</p>
<p>
Connection tracking is an Open vSwitch extension to OpenFlow. Open
vSwitch 2.5 added the initial support for connection tracking.
Subsequent versions of Open vSwitch added many refinements and extensions
to the initial support. Many of these capabilities depend on the Open
vSwitch datapath rather than simply the userspace version. The
<code>capabilities</code> column in the <code>Datapath</code> table (see
<code>ovs-vswitchd.conf.db</code>(5)) reports the detailed capabilities
of a particular Open vSwitch datapath.
</p>
<field id="MFF_CT_STATE" title="Connection Tracking State">
<p>
This field holds several flags that can be used to determine the state
of the connection to which the packet belongs.
</p>
<p>
Matches on this field are most conveniently written in terms of
symbolic names (listed below), each preceded by either <code>+</code>
for a flag that must be set, or <code>-</code> for a flag that must be
unset, without any other delimiters between the flags. Flags not
mentioned are wildcarded. For example,
<code>tcp,ct_state=+trk-new</code> matches TCP packets that have been
run through the connection tracker and do not establish a new
connection. Matches can also be written as
<code><var>flags</var>/<var>mask</var></code>, where <var>flags</var>
and <var>mask</var> are 32-bit numbers in decimal or in hexadecimal
prefixed by <code>0x</code>.
</p>
<p>
The following flags are defined:
</p>
<dl>
<dt><code>new</code> (0x01)</dt>
<dd>
A new connection. Set to 1 if this is an uncommitted connection.
</dd>
<dt><code>est</code> (0x02)</dt>
<dd>
Part of an existing connection. Set to 1 if packets of a committed
connection have been seen by conntrack from both directions.
</dd>
<dt><code>rel</code> (0x04)</dt>
<dd>
<p>
Related to an existing connection, e.g. an ICMP ``destination
unreachable'' message or an FTP data connections. This flag will
only be 1 if the connection to which this one is related is
committed.
</p>
<p>
Connections identified as <code>rel</code> are separate from the
originating connection and must be committed separately. All
packets for a related connection will have the <code>rel</code>
flag set, not just the initial packet.
</p>
</dd>
<dt><code>rpl</code> (0x08)</dt>
<dd>
This packet is in the reply direction, meaning that it is in the
opposite direction from the packet that initiated the connection.
This flag will only be 1 if the connection is committed.
</dd>
<dt><code>inv</code> (0x10)</dt>
<dd>
<p>
The state is invalid, meaning that the connection tracker couldn't
identify the connection. This flag is a catch-all for problems
in the connection or the connection tracker, such as:
</p>
<ul>
<li>
L3/L4 protocol handler is not loaded/unavailable. With the Linux
kernel datapath, this may mean that the
<code>nf_conntrack_ipv4</code> or <code>nf_conntrack_ipv6</code>
modules are not loaded.
</li>
<li>
L3/L4 protocol handler determines that the packet is malformed.
</li>
<li>
Packets are unexpected length for protocol.
</li>
</ul>
</dd>
<dt><code>trk</code> (0x20)</dt>
<dd>
This packet is tracked, meaning that it has previously traversed the
connection tracker. If this flag is not set, then no other flags
will be set. If this flag is set, then the packet is tracked and
other flags may also be set.
</dd>
<dt><code>snat</code> (0x40)</dt>
<dd>
This packet was transformed by source address/port translation by a
preceding <code>ct</code> action. Open vSwitch 2.6 added this flag.
</dd>
<dt><code>dnat</code> (0x80)</dt>
<dd>
This packet was transformed by destination address/port translation
by a preceding <code>ct</code> action. Open vSwitch 2.6 added this
flag.
</dd>
</dl>
<p>
There are additional constraints on these flags, listed in decreasing
order of precedence below:
</p>
<ol>
<li>
If <code>trk</code> is unset, no other flags are set.
</li>
<li>
If <code>trk</code> is set, one or more other flags may be set.
</li>
<li>
If <code>inv</code> is set, only the <code>trk</code> flag is also
set.
</li>
<li>
<code>new</code> and <code>est</code> are mutually exclusive.
</li>
<li>
<code>new</code> and <code>rpl</code> are mutually exclusive.
</li>
<li>
<code>rel</code> may be set in conjunction with any other flags.
</li>
</ol>
<p>
Future versions of Open vSwitch may define new flags.
</p>
</field>
<field id="MFF_CT_ZONE" title="Connection Tracking Zone">
A connection tracking zone, the zone value passed to the most recent
<code>ct</code> action. Each zone is an independent connection tracking
context, so tracking the same packet in multiple contexts requires using
the <code>ct</code> action multiple times.
</field>
<field id="MFF_CT_MARK" title="Connection Tracking Mark">
The metadata committed, by an action within the <code>exec</code>
parameter to the <code>ct</code> action, to the connection to which the
current packet belongs.
</field>
<field id="MFF_CT_LABEL" title="Connection Tracking Label">
The label committed, by an action within the <code>exec</code>
parameter to the <code>ct</code> action, to the connection to which the
current packet belongs.
</field>
<p>
Open vSwitch 2.8 introduced the matching support for connection
tracker original direction 5-tuple fields.
</p>
<p>
For non-committed non-related connections the conntrack original
direction tuple fields always have the same values as the
corresponding headers in the packet itself. For any other packets of
a committed connection the conntrack original direction tuple fields
reflect the values from that initial non-committed non-related packet,
and thus may be different from the actual packet headers, as the
actual packet headers may be in reverse direction (for reply packets),
transformed by NAT (when <code>nat</code> option was applied to the
connection), or be of different protocol (i.e., when an ICMP response
is sent to an UDP packet). In case of related connections, e.g., an
FTP data connection, the original direction tuple contains the
original direction headers from the parent connection, e.g., an FTP
control connection.
</p>
<p>
The following fields are populated by the <code>ct</code>
action, and require a
match to a valid connection tracking state as a prerequisite, in
addition to the IP or IPv6 ethertype match. Examples of valid
connection tracking state matches include <code>ct_state=+new</code>,
<code>ct_state=+est</code>, <code>ct_state=+rel</code>, and
<code>ct_state=+trk-inv</code>.
</p>
<field id="MFF_CT_NW_SRC" title="Connection Tracking Original Direction IPv4 Source Address">
Matches IPv4 conntrack original direction tuple source address.
See the paragraphs above for general description to the
conntrack original direction tuple. Introduced in Open vSwitch
2.8.
</field>
<field id="MFF_CT_NW_DST" title="Connection Tracking Original Direction IPv4 Destination Address">
Matches IPv4 conntrack original direction tuple destination address.
See the paragraphs above for general description to the
conntrack original direction tuple. Introduced in Open vSwitch
2.8.
</field>
<field id="MFF_CT_IPV6_SRC" title="Connection Tracking Original Direction IPv6 Source Address">
Matches IPv6 conntrack original direction tuple source address.
See the paragraphs above for general description to the
conntrack original direction tuple. Introduced in Open vSwitch
2.8.
</field>
<field id="MFF_CT_IPV6_DST" title="Connection Tracking Original Direction IPv6 Destination Address">
Matches IPv6 conntrack original direction tuple destination address.
See the paragraphs above for general description to the
conntrack original direction tuple. Introduced in Open vSwitch
2.8.
</field>
<field id="MFF_CT_NW_PROTO" title="Connection Tracking Original Direction IP Protocol">
Matches conntrack original direction tuple IP protocol type,
which is specified as a decimal number between 0 and 255,
inclusive (e.g. 1 to match ICMP packets or 6 to match TCP
packets). In case of, for example, an ICMP response to an UDP
packet, this may be different from the IP protocol type of the
packet itself. See the paragraphs above for general description
to the conntrack original direction tuple. Introduced in Open
vSwitch 2.8.
</field>
<field id="MFF_CT_TP_SRC" title="Connection Tracking Original Direction Transport Layer Source Port">
Bitwise match on the conntrack original direction tuple
transport source, when
<code>MFF_CT_NW_PROTO</code> has value 6 for TCP, 17 for UDP, or
132 for SCTP. When <code>MFF_CT_NW_PROTO</code> has value 1 for
ICMP, or 58 for ICMPv6, the lower 8 bits of
<code>MFF_CT_TP_SRC</code> matches the conntrack original
direction ICMP type. See the paragraphs above for general
description to the conntrack original direction
tuple. Introduced in Open vSwitch 2.8.
</field>
<field id="MFF_CT_TP_DST" title="Connection Tracking Original Direction Transport Layer Source Port">
Bitwise match on the conntrack original direction tuple
transport destination port, when
<code>MFF_CT_NW_PROTO</code> has value 6 for TCP, 17 for UDP, or
132 for SCTP. When <code>MFF_CT_NW_PROTO</code> has value 1 for
ICMP, or 58 for ICMPv6, the lower 8 bits of
<code>MFF_CT_TP_DST</code> matches the conntrack original
direction ICMP code. See the paragraphs above for general
description to the conntrack original direction
tuple. Introduced in Open vSwitch 2.8.
</field>
</group>
<group title="Register">
<p>
These fields give an OpenFlow switch space for temporary storage while
the pipeline is running. Whereas metadata fields can have a meaningful
initial value and can persist across some hops across OpenFlow switches,
registers are always initially 0 and their values never persist across
inter-switch hops (not even across patch ports).
</p>
<field id="MFF_METADATA" title="OpenFlow Metadata">
<p>
This field is the oldest standardized OpenFlow register field,
introduced in OpenFlow 1.1. It was introduced to model the limited
number of user-defined bits that some ASIC-based switches can carry
through their pipelines. Because of hardware limitations, OpenFlow
allows switches to support writing and masking only an
implementation-defined subset of bits, even no bits at all. The Open
vSwitch software switch always supports all 64 bits, but of course an
Open vSwitch port to an ASIC would have the same restriction as the
ASIC itself.
</p>
<p>
This field has an OXM code point, but OpenFlow 1.4 and earlier allow it
to be modified only with a specialized instruction, not with a
``set-field'' action. OpenFlow 1.5 removes this restriction. Open
vSwitch does not enforce this restriction, regardless of OpenFlow
version.
</p>
</field>
<field id="MFF_REG0" title="Register 0">
This is the first of several Open vSwitch registers, all of which have
the same properties. Open vSwitch 1.1 introduced registers 0, 1, 2, and
3, version 1.3 added register 4, version 1.7 added registers 5, 6, and 7,
and version 2.6 added registers 8 through 15.
</field>
<!-- XXX series -->
<field id="MFF_REG1" title="Register 1" hidden="yes"/>
<field id="MFF_REG2" title="Register 2" hidden="yes"/>
<field id="MFF_REG3" title="Register 3" hidden="yes"/>
<field id="MFF_REG4" title="Register 4" hidden="yes"/>
<field id="MFF_REG5" title="Register 5" hidden="yes"/>
<field id="MFF_REG6" title="Register 6" hidden="yes"/>
<field id="MFF_REG7" title="Register 7" hidden="yes"/>
<field id="MFF_REG8" title="Register 8" hidden="yes"/>
<field id="MFF_REG9" title="Register 9" hidden="yes"/>
<field id="MFF_REG10" title="Register 10" hidden="yes"/>
<field id="MFF_REG11" title="Register 11" hidden="yes"/>
<field id="MFF_REG12" title="Register 12" hidden="yes"/>
<field id="MFF_REG13" title="Register 13" hidden="yes"/>
<field id="MFF_REG14" title="Register 14" hidden="yes"/>
<field id="MFF_REG15" title="Register 15" hidden="yes"/>
<field id="MFF_XREG0" title="Extended Register 0">
<p>
This is the first of the registers introduced in OpenFlow 1.5.
OpenFlow 1.5 calls these fields just the ``packet registers,'' but Open
vSwitch already had 32-bit registers by that name, so Open vSwitch uses
the name ``extended registers'' in an attempt to reduce confusion. The
standard allows for up to 128 registers, each 64 bits wide, but Open
vSwitch only implements 4 (in versions 2.4 and 2.5) or 8 (in version
2.6 and later).
</p>
<p>
Each of the 64-bit extended registers overlays two of the 32-bit
registers: <code>xreg0</code> overlays <code>reg0</code> and
<code>reg1</code>, with <code>reg0</code> supplying the
most-significant bits of <code>xreg0</code> and <code>reg1</code> the
least-significant. Similarly, <code>xreg1</code> overlays
<code>reg2</code> and <code>reg3</code>, and so on.
</p>
<p>
The OpenFlow specification says, ``In most cases, the packet registers
can not be matched in tables, i.e. they usually can not be used in the
flow entry match structure'' [OpenFlow 1.5, section 7.2.3.10], but
there is no reason for a software switch to impose such a restriction,
and Open vSwitch does not.
</p>
</field>
<!-- XXX series -->
<field id="MFF_XREG1" title="Extended Register 1" hidden="yes"/>
<field id="MFF_XREG2" title="Extended Register 2" hidden="yes"/>
<field id="MFF_XREG3" title="Extended Register 3" hidden="yes"/>
<field id="MFF_XREG4" title="Extended Register 4" hidden="yes"/>
<field id="MFF_XREG5" title="Extended Register 5" hidden="yes"/>
<field id="MFF_XREG6" title="Extended Register 6" hidden="yes"/>
<field id="MFF_XREG7" title="Extended Register 7" hidden="yes"/>
<field id="MFF_XXREG0" title="Double-Extended Register 0">
<p>
This is the first of the double-extended registers introduce in Open
vSwitch 2.6. Each of the 128-bit extended registers overlays four of
the 32-bit registers: <code>xxreg0</code> overlays <code>reg0</code>
through <code>reg3</code>, with <code>reg0</code> supplying the
most-significant bits of <code>xxreg0</code> and <code>reg3</code> the
least-significant. <code>xxreg1</code> similarly overlays
<code>reg4</code> through <code>reg7</code>, and so on.
</p>
</field>
<!-- XXX series -->
<field id="MFF_XXREG1" title="Double-Extended Register 1" hidden="yes"/>
<field id="MFF_XXREG2" title="Double-Extended Register 2" hidden="yes"/>
<field id="MFF_XXREG3" title="Double-Extended Register 3" hidden="yes"/>
</group>
<group title="Layer 2 (Ethernet)">
<p>
Ethernet is the only layer-2 protocol that Open vSwitch
supports. As with most software, Open vSwitch and OpenFlow
regard an Ethernet frame to begin with the 14-byte header and
end with the final byte of the payload; that is, the frame check
sequence is not considered part of the frame.
</p>
<field id="MFF_ETH_SRC" title="Ethernet Source">
<p>
The Ethernet source address:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75" fill="yes"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
</field>
<field id="MFF_ETH_DST" title="Ethernet Destination">
<p>
The Ethernet destination address:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75" fill="yes"/>
<bits name="src" above="48" width=".75"/>
<bits name="type" above="16" width="0.4"/>
</header>
<dots/>
</diagram>
<p>
Open vSwitch 1.8 and later support arbitrary masks for source and/or
destination. Earlier versions only support masking the destination
with the following masks:
</p>
<dl>
<dt><code>01:00:00:00:00:00</code></dt>
<dd>
Match only the multicast bit. Thus,
<code>dl_dst=01:00:00:00:00:00/01:00:00:00:00:00</code> matches all
multicast (including broadcast) Ethernet packets, and
<code>dl_dst=00:00:00:00:00:00/01:00:00:00:00:00</code> matches all
unicast Ethernet packets.
</dd>
<dt><code>fe:ff:ff:ff:ff:ff</code></dt>
<dd>
Match all bits except the multicast bit. This is probably not
useful.
</dd>
<dt><code>ff:ff:ff:ff:ff:ff</code></dt>
<dd>
Exact match (equivalent to omitting the mask).
</dd>
<dt><code>00:00:00:00:00:00</code></dt>
<dd>
Wildcard all bits (equivalent to <code>dl_dst=*</code>).
</dd>
</dl>
</field>
<field id="MFF_ETH_TYPE" title="Ethernet Type">
<p>
The most commonly seen Ethernet frames today use a format
called ``Ethernet II,'' in which the last two bytes of the
Ethernet header specify the Ethertype. For such a frame, this
field is copied from those bytes of the header, like so:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75"/>
<bits name="type" above="16" below="\[>=]0x600" width="0.4" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
Every Ethernet type has a value 0x600 (1,536) or greater.
When the last two bytes of the Ethernet header have a value
too small to be an Ethernet type, then the value found there
is the total length of the frame in bytes, excluding the
Ethernet header. An 802.2 LLC header typically follows the
Ethernet header. OpenFlow and Open vSwitch only support LLC
headers with DSAP and SSAP <code>0xaa</code> and control byte
<code>0x03</code>, which indicate that a SNAP header follows
the LLC header. In turn, OpenFlow and Open vSwitch only
support a SNAP header with organization <code>0x000000</code>.
In such a case, this field is copied from the type field in
the SNAP header, like this:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75"/>
<bits name="type" above="16" below="<0x600" width="0.4"/>
</header>
<header name="LLC">
<bits name="DSAP" above="8" below="0xaa" width=".4"/>
<bits name="SSAP" above="8" below="0xaa" width=".4"/>
<bits name="cntl" above="8" below="0x03" width=".4"/>
</header>
<header name="SNAP">
<bits name="org" above="24" below="0x000000" width=".75"/>
<bits name="type" above="16" below="\[>=]0x600" width=".4" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
When an 802.1Q header is inserted after the Ethernet source
and destination, this field is populated with the encapsulated
Ethertype, not the 802.1Q Ethertype. With an Ethernet II
inner frame, the result looks like this:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75"/>
</header>
<header name="802.1Q">
<bits name="TPID" above="16" below="0x8100" width=".4"/>
<bits name="TCI" above="16" width=".4"/>
</header>
<header name="Ethertype">
<bits name="type" above="16" below="\[>=]0x600" width=".4" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
LLC and SNAP encapsulation look like this with an 802.1Q header:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75"/>
</header>
<header name="802.1Q">
<bits name="TPID" above="16" below="0x8100" width=".4"/>
<bits name="TCI" above="16" width=".4"/>
</header>
<header name="Ethertype">
<bits name="type" above="16" below="<0x600" width="0.4"/>
</header>
<header name="LLC">
<bits name="DSAP" above="8" below="0xaa" width=".4"/>
<bits name="SSAP" above="8" below="0xaa" width=".4"/>
<bits name="cntl" above="8" below="0x03" width=".4"/>
</header>
<header name="SNAP">
<bits name="org" above="24" below="0x000000" width=".75"/>
<bits name="type" above="16" below="\[>=]0x600" width=".4" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
When a packet doesn't match any of the header formats described
above, Open vSwitch and OpenFlow set this field to
<code>0x5ff</code> (<code>OFP_DL_TYPE_NOT_ETH_TYPE</code>).
</p>
</field>
</group>
<group title="VLAN">
<p>
The 802.1Q VLAN header causes more trouble than any other 4
bytes in networking. OpenFlow 1.0, 1.1, and 1.2+ all treat VLANs
differently. Open vSwitch extensions add another variant to the mix.
Open vSwitch reconciles all four treatments as best it can.
</p>
<h2>VLAN Header Format</h2>
<p>
An 802.1Q VLAN header consists of two 16-bit fields:
</p>
<diagram>
<header name="TPID">
<bits name="Ethertype" above="16" below="0x8100" width="1.8"/>
</header>
<nospace/>
<header name="TCI">
<bits name="PCP" above="3" width=".6"/>
<bits name="CFI" above="1" below="0" width=".3"/>
<bits name="VID" above="12" width=".9"/>
</header>
</diagram>
<p>
The first 16 bits of the VLAN header, the <dfn>TPID</dfn> (Tag Protocol
IDentifier), is an Ethertype. When the VLAN header is inserted just
after the source and destination MAC addresses in a Ethertype frame, the
TPID serves to identify the presence of the VLAN. The standard TPID, the
only one that Open vSwitch supports, is <code>0x8100</code>. OpenFlow
1.0 explicitly supports only TPID <code>0x8100</code>. OpenFlow 1.1, but
not earlier or later versions, also requires support for TPID
<code>0x88a8</code> (Open vSwitch does not support this). OpenFlow 1.2
through 1.5 do not require support for specific TPIDs (the ``push vlan
header'' action does say that only <code>0x8100</code> and
<code>0x88a8</code> should be pushed). No version of OpenFlow provides a
way to distinguish or match on the TPID.
</p>
<p>
The remaining 16 bits of the VLAN header, the <dfn>TCI</dfn>
(Tag Control Information), is subdivided into three subfields:
</p>
<ul>
<li>
<dfn>PCP</dfn> (Priority Control Point), is a 3-bit 802.1p
<dfn>priority</dfn>. The lowest priority is value 1, the
second-lowest is value 0, and priority increases from 2 up to
highest priority 7.
</li>
<li>
<p>
<dfn>CFI</dfn> (Canonical Format Indicator), is a 1-bit field. On an
Ethernet network, its value is always 0. This led to it later being
repurposed under the name <dfn>DEI</dfn> (Drop Eligibility
Indicator). By either name, OpenFlow and Open vSwitch don't provide
any way to match or set this bit.
</p>
</li>
<li>
<dfn>VID</dfn> (VLAN IDentifier), is a 12-bit VLAN. If the
VID is 0, then the frame is not part of a VLAN. In that case,
the VLAN header is called a <dfn>priority tag</dfn> because it
is only meaningful for assigning the frame a priority. VID
<code>0xfff</code> (4,095) is reserved.
</li>
</ul>
<p>
See <ref field="eth_type"/> for illustrations of a complete Ethernet
frame with 802.1Q tag included.
</p>
<h2>Multiple VLANs</h2>
<p>
Open vSwitch can match only a single VLAN header. If more than
one VLAN header is present, then <ref field="eth_type"/>
holds the TPID of the inner VLAN header. Open vSwitch stops
parsing the packet after the inner TPID, so matching further
into the packet (e.g. on the inner TCI or L3 fields) is not
possible.
</p>
<p>
OpenFlow only directly supports matching a single VLAN header. In
OpenFlow 1.1 or later, one OpenFlow table can match on the outermost VLAN
header and pop it off, and a later OpenFlow table can match on the next
outermost header. Open vSwitch does not support this.
</p>
<h2>VLAN Field Details</h2>
<p>
The four variants have three different levels of expressiveness: OpenFlow
1.0 and 1.1 VLAN matching are less powerful than OpenFlow 1.2+ VLAN
matching, which is less powerful than Open vSwitch extension VLAN
matching.
</p>
<h2>OpenFlow 1.0 VLAN Fields</h2>
<p>
OpenFlow 1.0 uses two fields, called <code>dl_vlan</code> and
<code>dl_vlan_pcp</code>, each of which can be either exact-matched or
wildcarded, to specify VLAN matches:
</p>
<ul>
<li>
When both <code>dl_vlan</code> and <code>dl_vlan_pcp</code> are
wildcarded, the flow matches packets without an 802.1Q header or
with any 802.1Q header.
</li>
<li>
The match <code>dl_vlan=0xffff</code> causes a flow to match only
packets without an 802.1Q header. Such a flow should also wildcard
<code>dl_vlan_pcp</code>, since a packet without an 802.1Q header does
not have a PCP. OpenFlow does not specify what to do if a match on PCP
is actually present, but Open vSwitch ignores it.
</li>
<li>
<p>
Otherwise, the flow matches only packets with an 802.1Q
header. If <code>dl_vlan</code> is not wildcarded, then the
flow only matches packets with the VLAN ID specified in
<code>dl_vlan</code>'s low 12 bits. If
<code>dl_vlan_pcp</code> is not wildcarded, then the flow
only matches packets with the priority specified in
<code>dl_vlan_pcp</code>'s low 3 bits.
</p>
<p>
OpenFlow does not specify how to interpret the high 4 bits of
<code>dl_vlan</code> or the high 5 bits of <code>dl_vlan_pcp</code>.
Open vSwitch ignores them.
</p>
</li>
</ul>
<field id="MFF_DL_VLAN" title="OpenFlow 1.0 VLAN ID" hidden="yes"/>
<field id="MFF_DL_VLAN_PCP" title="OpenFlow 1.0 VLAN Priority"
hidden="yes"/>
<h2>OpenFlow 1.1 VLAN Fields</h2>
<p>
VLAN matching in OpenFlow 1.1 is similar to OpenFlow 1.0.
The one refinement is that when <code>dl_vlan</code> matches on
<code>0xfffe</code> (<code>OFVPID_ANY</code>), the flow matches
only packets with an 802.1Q header, with any VLAN ID. If
<code>dl_vlan_pcp</code> is wildcarded, the flow matches any
packet with an 802.1Q header, regardless of VLAN ID or priority.
If <code>dl_vlan_pcp</code> is not wildcarded, then the flow
only matches packets with the priority specified in
<code>dl_vlan_pcp</code>'s low 3 bits.
</p>
<p>
OpenFlow 1.1 uses the name <code>OFPVID_NONE</code>, instead of
<code>OFP_VLAN_NONE</code>, for a <code>dl_vlan</code> of
<code>0xffff</code>, but it has the same meaning.
</p>
<p>
In OpenFlow 1.1, Open vSwitch reports error
<code>OFPBMC_BAD_VALUE</code> for an attempt to match on
<code>dl_vlan</code> between 4,096 and <code>0xfffd</code>,
inclusive, or <code>dl_vlan_pcp</code> greater than 7.
</p>
<h2>OpenFlow 1.2 VLAN Fields</h2>
<field id="MFF_VLAN_VID" title="OpenFlow 1.2+ VLAN ID">
<p>
The OpenFlow standard describes this field as consisting of
``12+1'' bits. On ingress, its value is 0 if no 802.1Q header
is present, and otherwise it holds the VLAN VID in its least
significant 12 bits, with bit 12 (<code>0x1000</code> aka
<code>OFPVID_PRESENT</code>) also set to 1. The three most
significant bits are always zero:
</p>
<diagram>
<header name="OXM_OF_VLAN_VID">
<bits name="" above="3" below="0" width=".6"/>
<bits name="P" above="1" width=".1"/>
<bits name="VLAN ID" above="12" width=".9"/>
</header>
</diagram>
<p>
As a consequence of this field's format, one may use it to match the
VLAN ID in all of the ways available with the OpenFlow 1.0 and 1.1
formats, and a few new ways:
</p>
<dl>
<dt>Fully wildcarded</dt>
<dd>
Matches any packet, that is, one without an 802.1Q header or
with an 802.1Q header with any TCI value.
</dd>
<dt>
Value <code>0x0000</code> (<code>OFPVID_NONE</code>), mask
<code>0xffff</code> (or no mask)
</dt>
<dd>
Matches only packets without an 802.1Q header.
</dd>
<dt>
Value <code>0x1000</code>, mask <code>0x1000</code>
</dt>
<dd>
Matches any packet with an 802.1Q header, regardless of VLAN
ID.
</dd>
<dt>
Value <code>0x1009</code>, mask <code>0xffff</code> (or no mask)
</dt>
<dd>
Match only packets with an 802.1Q header with VLAN ID 9.
</dd>
<dt>Value <code>0x1001</code>, mask <code>0x1001</code></dt>
<dd>
Matches only packets that have an 802.1Q header with an
odd-numbered VLAN ID. (This is just an example; one can
match on any desired VLAN ID bit pattern.)
</dd>
</dl>
</field>
<field id="MFF_VLAN_PCP" title="OpenFlow 1.2+ VLAN Priority">
<p>
The 3 least significant bits may be used to match the PCP bits
in an 802.1Q header. Other bits are always zero:
</p>
<diagram>
<header name="OXM_OF_VLAN_VID">
<bits name="zero" above="5" below="0" width="1.0"/>
<bits name="PCP" above="3" width=".6"/>
</header>
</diagram>
<p>
This field may only be used when <ref field="vlan_vid"/> is not
wildcarded and does not exact match on 0 (which only matches
when there is no 802.1Q header).
</p>
<p>
See <cite>VLAN Comparison Chart</cite>, below, for some examples.
</p>
</field>
<h2>Open vSwitch Extension VLAN Field</h2>
<p>
The <ref field="vlan_tci"/> extension can describe more kinds of VLAN
matches than the other variants. It is also simpler than the other
variants.
</p>
<field id="MFF_VLAN_TCI" title="VLAN TCI">
<p>
For a packet without an 802.1Q header, this field is zero. For a
packet with an 802.1Q header, this field is the TCI with the bit in
CFI's position (marked <code>P</code> for ``present'' below) forced to
1. Thus, for a packet in VLAN 9 with priority 7, it has the value
<code>0xf009</code>:
</p>
<diagram>
<header name="NXM_VLAN_TCI">
<bits name="PCP" above="3" below="7" width=".6"/>
<bits name="P" above="1" below="1" width=".2"/>
<bits name="VID" above="12" below="9" width=".9"/>
</header>
</diagram>
<p>
Usage examples:
</p>
<dl>
<dt><code>vlan_tci=0</code></dt>
<dd>
Match packets without an 802.1Q header.
</dd>
<dt><code>vlan_tci=0x1000/0x1000</code></dt>
<dd>
Match packets with an 802.1Q header, regardless of VLAN
and priority values.
</dd>
<dt><code>vlan_tci=0xf123</code></dt>
<dd>
Match packets tagged with priority 7 in VLAN 0x123.
</dd>
<dt><code>vlan_tci=0x1123/0x1fff</code></dt>
<dd>
Match packets tagged with VLAN 0x123 (and any priority).
</dd>
<dt><code>vlan_tci=0x5000/0xf000</code></dt>
<dd>
Match packets tagged with priority 2 (in any VLAN).
</dd>
<dt><code>vlan_tci=0/0xfff</code></dt>
<dd>
Match packets with no 802.1Q header or tagged with VLAN 0
(and any priority).
</dd>
<dt><code>vlan_tci=0x5000/0xe000</code></dt>
<dd>
Match packets with no 802.1Q header or tagged with priority 2 (in any VLAN).
</dd>
<dt><code>vlan_tci=0/0xefff</code></dt>
<dd>
Match packets with no 802.1Q header or tagged with VLAN 0
and priority 0.
</dd>
</dl>
<p>
See <cite>VLAN Comparison Chart</cite>, below, for more examples.
</p>
</field>
<h2>VLAN Comparison Chart</h2>
<p>
The following table describes each of several possible matching
criteria on 802.1Q header may be expressed with each variation
of the VLAN matching fields:
</p>
<tbl>
tab(;);
r r r r r.
Criteria;OpenFlow 1.0;OpenFlow 1.1;OpenFlow 1.2+;NXM
\_;\_;\_;\_;\_
[1];\fL????\fR/\fL1\fR,\fL??\fR/\fL?\fR;\fL????\fR/\fL1\fR,\fL??\fR/\fL?\fR;\fL0000\fR/\fL0000\fR,\fL--\fR;\fL0000\fR/\fL0000\fR
[2];\fLffff\fR/\fL0\fR,\fL??\fR/\fL?\fR;\fLffff\fR/\fL0\fR,\fL??\fR/\fL?\fR;\fL0000\fR/\fLffff\fR,\fL--\fR;\fL0000\fR/\fLffff\fR
[3];\fL0xxx\fR/\fL0\fR,\fL??\fR/\fL1\fR;\fL0xxx\fR/\fL0\fR,\fL??\fR/\fL1\fR;\fL1xxx\fR/\fLffff\fR,\fL--\fR;\fL1xxx\fR/\fL1fff\fR
[4];\fL????\fR/\fL1\fR,\fL0y\fR/\fL0\fR;\fLfffe\fR/\fL0\fR,\fL0y\fR/\fL0\fR;\fL1000\fR/\fL1000\fR,\fL0y\fR;\fLz000\fR/\fLf000\fR
[5];\fL0xxx\fR/\fL0\fR,\fL0y\fR/\fL0\fR;\fL0xxx\fR/\fL0\fR,\fL0y\fR/\fL0\fR;\fL1xxx\fR/\fLffff\fR,\fL0y\fR;\fLzxxx\fR/\fLffff\fR
.T&
r c c r r.
[6];(none);(none);\fL1001\fR/\fL1001\fR,\fL--\fR;\fL1001\fR/\fL1001\fR
.T&
r c c c r.
[7];(none);(none);(none);\fL3000\fR/\fL3000\fR
[8];(none);(none);(none);\fL0000\fR/\fL0fff\fR
[9];(none);(none);(none);\fL0000\fR/\fLf000\fR
[10];(none);(none);(none);\fL0000\fR/\fLefff\fR
</tbl>
<p>
All numbers in the table are expressed in hexadecimal. The
columns in the table are interpreted as follows:
</p>
<dl>
<dt>Criteria</dt>
<dd>See the list below.</dd>
<dt>OpenFlow 1.0</dt>
<dt>OpenFlow 1.1</dt>
<dd>
<literal>wwww/x,yy/z</literal> means VLAN ID match value
<literal>wwww</literal> with wildcard bit <literal>x</literal>
and VLAN PCP match value <literal>yy</literal> with wildcard
bit <literal>z</literal>. <literal>?</literal> means that the
given bits are ignored (and conventionally
<literal>0</literal> for <literal>wwww</literal> or
<literal>yy</literal>, conventionally <literal>1</literal> for
<literal>x</literal> or <literal>z</literal>). ``(none)''
means that OpenFlow 1.0 (or 1.1) cannot match with these
criteria.
</dd>
<dt>OpenFlow 1.2+</dt>
<dd>
<literal>xxxx/yyyy,zz</literal> means <ref field="vlan_vid"/> with
value <literal>xxxx</literal> and mask <literal>yyyy</literal>, and
<ref field="vlan_pcp"/> (which is not maskable) with value
<literal>zz</literal>. <literal>--</literal> means that <ref
field="vlan_pcp"/> is omitted. ``(none)'' means that OpenFlow 1.2
cannot match with these criteria.
</dd>
<dt>NXM</dt>
<dd>
<literal>xxxx/yyyy</literal> means <ref field="vlan_tci"/> with value
<literal>xxxx</literal> and mask <literal>yyyy</literal>.
</dd>
</dl>
<p>
The matching criteria described by the table are:
</p>
<dl>
<dt>[1]</dt>
<dd>
Matches any packet, that is, one without an 802.1Q header or
with an 802.1Q header with any TCI value.
</dd>
<dt>[2]</dt>
<dd>
<p>
Matches only packets without an 802.1Q header.
</p>
<p>
OpenFlow 1.0 doesn't define the behavior if <ref field="dl_vlan"/> is
set to <code>0xffff</code> and <ref field="dl_vlan_pcp"/> is not
wildcarded. (Open vSwitch always ignores <ref field="dl_vlan_pcp"/>
when <ref field="dl_vlan"/> is set to <code>0xffff</code>.)
</p>
<p>
OpenFlow 1.1 says explicitly to ignore <ref field="dl_vlan_pcp"/>
when <ref field="dl_vlan"/> is set to <code>0xffff</code>.
</p>
<p>
OpenFlow 1.2 doesn't say how to interpret a match with <ref
field="vlan_vid"/> value 0 and a mask with
<code>OFPVID_PRESENT</code> (<code>0x1000</code>) set to 1 and some
other bits in the mask set to 1 also. Open vSwitch interprets it the
same way as a mask of <code>0x1000</code>.
</p>
<p>
Any NXM match with <ref field="vlan_tci"/> value 0 and the CFI bit
set to 1 in the mask is equivalent to the one listed in the table.
</p>
</dd>
<dt>[3]</dt>
<dd>
Matches only packets that have an 802.1Q header with VID
<literal>xxx</literal> (and any PCP).
</dd>
<dt>[4]</dt>
<dd>
<p>
Matches only packets that have an 802.1Q header with PCP
<literal>y</literal> (and any VID).
</p>
<p>
OpenFlow 1.0 doesn't clearly define the behavior for this
case. Open vSwitch implements it this way.
</p>
<p>
In the NXM value, <literal>z</literal> equals
(<literal>y</literal> << 1) | 1.
</p>
</dd>
<dt>[5]</dt>
<dd>
<p>
Matches only packets that have an 802.1Q header with VID
<literal>xxx</literal> and PCP <literal>y</literal>.
</p>
<p>
In the NXM value, <literal>z</literal> equals
(<literal>y</literal> << 1) | 1.
</p>
</dd>
<dt>[6]</dt>
<dd>
Matches only packets that have an 802.1Q header with an
odd-numbered VID (and any PCP). Only possible with OpenFlow
1.2 and NXM. (This is just an example; one can match on any
desired VID bit pattern.)
</dd>
<dt>[7]</dt>
<dd>
Matches only packets that have an 802.1Q header with an
odd-numbered PCP (and any VID). Only possible with NXM.
(This is just an example; one can match on any desired VID bit
pattern.)
</dd>
<dt>[8]</dt>
<dd>
Matches packets with no 802.1Q header or with an 802.1Q header
with a VID of 0. Only possible with NXM.
</dd>
<dt>[9]</dt>
<dd>
Matches packets with no 802.1Q header or with an 802.1Q header
with a PCP of 0. Only possible with NXM.
</dd>
<dt>[10]</dt>
<dd>
Matches packets with no 802.1Q header or with an 802.1Q header
with both VID and PCP of 0. Only possible with NXM.
</dd>
</dl>
</group>
<group title="Layer 2.5: MPLS">
<p>
One or more MPLS headers (more commonly called <dfn>MPLS
labels</dfn>) follow an Ethernet type field that specifies an
MPLS Ethernet type [RFC 3032]. Ethertype <code>0x8847</code> is
used for all unicast. Multicast MPLS is divided into two
specific classes, one of which uses Ethertype
<code>0x8847</code> and the other <code>0x8848</code> [RFC
5332].
</p>
<p>
The most common overall packet format is Ethernet II, shown
below (SNAP encapsulation may be used but is not ordinarily seen
in Ethernet networks):
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.75"/>
<bits name="src" above="48" width="0.75"/>
<bits name="type" above="16" below="0x8847" width="0.4"/>
</header>
<header name="MPLS">
<bits name="label" above="20" width=".6"/>
<bits name="TC" above="3" width=".3"/>
<bits name="S" above="1" width=".1"/>
<bits name="TTL" above="8" width=".4"/>
</header>
<dots/>
</diagram>
<p>
MPLS can be encapsulated inside an 802.1Q header, in which case
the combination looks like this:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width=".75"/>
<bits name="src" above="48" width=".75"/>
</header>
<header name="802.1Q">
<bits name="TPID" above="16" below="0x8100" width=".4"/>
<bits name="TCI" above="16" width=".4"/>
</header>
<header name="Ethertype">
<bits name="type" above="16" below="0x8847" width=".4"/>
</header>
<header name="MPLS">
<bits name="label" above="20" width=".6"/>
<bits name="TC" above="3" width=".3"/>
<bits name="S" above="1" width=".1"/>
<bits name="TTL" above="8" width=".4"/>
</header>
<dots/>
</diagram>
<p>
The fields within an MPLS label are:
</p>
<dl>
<dt>Label, 20 bits.</dt>
<dd>
An identifier.
</dd>
<dt>Traffic control (TC), 3 bits.</dt>
<dd>
Used for quality of service.
</dd>
<dt>Bottom of stack (BOS), 1 bit (labeled just ``S'' above).</dt>
<dd>
<p>
0 indicates that another MPLS label follows this one.
</p>
<p>
1 indicates that this MPLS label is the last one in the
stack, so that some other protocol follows this one.
</p>
</dd>
<dt>Time to live (TTL), 8 bits.</dt>
<dd>
<p>
Each hop across an MPLS network decrements the TTL by 1. If
it reaches 0, the packet is discarded.
</p>
<p>
OpenFlow does not make the MPLS TTL available as a match field, but
actions are available to set and decrement the TTL. Open vSwitch 2.6
and later makes the MPLS TTL available as an extension.
</p>
</dd>
</dl>
<h2>MPLS Label Stacks</h2>
<p>
Unlike the other encapsulations supported by OpenFlow and Open vSwitch,
MPLS labels are routinely used in ``stacks'' two or three deep and
sometimes even deeper. Open vSwitch currently supports up to three
labels.
</p>
<p>
The OpenFlow specification only supports matching on the outermost MPLS
label at any given time. To match on the second label, one must first
``pop'' the outer label and advance to another OpenFlow table, where the
inner label may be matched. To match on the third label, one must pop
the two outer labels, and so on.
</p>
<h2>MPLS Inner Protocol</h2>
<p>
Unlike all other forms of encapsulation that Open vSwitch and
OpenFlow support, an MPLS label does not indicate what inner
protocol it encapsulates. Different deployments determine the
inner protocol in different ways [RFC 3032]:
</p>
<ul>
<li>
A few reserved label values do indicate an inner protocol.
Label 0, the ``IPv4 Explicit NULL Label,'' indicates inner
IPv4. Label 2, the ``IPv6 Explicit NULL Label,'' indicates
inner IPv6.
</li>
<li>
Some deployments use a single inner protocol consistently.
</li>
<li>
In some deployments, the inner protocol must be inferred from
the innermost label.
</li>
<li>
In some deployments, the inner protocol must be inferred from
the innermost label and the encapsulated data, e.g. to
distinguish between inner IPv4 and IPv6 based on whether the
first nibble of the inner protocol data are <code>4</code> or
<code>6</code>. OpenFlow and Open vSwitch do not currently
support these cases.
</li>
</ul>
<p>
Open vSwitch and OpenFlow do not infer the inner protocol, even if
reserved label values are in use. Instead, the flow table must specify
the inner protocol at the time it pops the bottommost MPLS label, using
the Ethertype argument to the <code>pop_mpls</code> action.
</p>
<h2>Field Details</h2>
<field id="MFF_MPLS_LABEL" title="MPLS Label">
<p>
The least significant 20 bits hold the ``label'' field from
the MPLS label. Other bits are zero:
</p>
<diagram>
<header name="OXM_OF_MPLS_LABEL">
<bits name="zero" above="12" below="0" width=".6"/>
<bits name="label" above="20" width="1.0"/>
</header>
</diagram>
<p>
Most label values are available for any use by deployments.
Values under 16 are reserved.
</p>
</field>
<field id="MFF_MPLS_TC" title="MPLS Traffic Class">
<p>
The least significant 3 bits hold the TC field from the MPLS
label. Other bits are zero:
</p>
<diagram>
<header name="OXM_OF_MPLS_TC">
<bits name="zero" above="5" below="0" width="1.0"/>
<bits name="TC" above="3" width=".6"/>
</header>
</diagram>
<p>
This field is intended for use for Quality of Service (QoS)
and Explicit Congestion Notification purposes, but its
particular interpretation is deployment specific.
</p>
<p>
Before 2009, this field was named EXP and reserved for
experimental use [RFC 5462].
</p>
</field>
<field id="MFF_MPLS_BOS" title="MPLS Bottom of Stack">
<p>
The least significant bit holds the BOS field from the MPLS
label. Other bits are zero:
</p>
<diagram>
<header name="OXM_OF_MPLS_BOS">
<bits name="zero" above="7" below="0" width="1.3"/>
<bits name="BOS" above="1" width=".3"/>
</header>
</diagram>
<p>
This field is useful as part of processing a series of incoming MPLS
labels. A flow that includes a <code>pop_mpls</code> action should
generally match on <ref field="mpls_bos"/>:
</p>
<ul>
<li>
When <ref field="mpls_bos"/> is 0, there is another MPLS label
following this one, so the Ethertype passed to <code>pop_mpls</code>
should be an MPLS Ethertype. For example: <code>table=0,
dl_type=0x8847, mpls_bos=0, actions=pop_mpls:0x8847,
goto_table:1</code>
</li>
<li>
When <ref field="mpls_bos"/> is 1, this MPLS label is the last one,
so the Ethertype passed to <code>pop_mpls</code> should be a non-MPLS
Ethertype such as IPv4. For example: <code>table=1, dl_type=0x8847,
mpls_bos=1, actions=pop_mpls:0x0800, goto_table:2</code>
</li>
</ul>
</field>
<field id="MFF_MPLS_TTL" title="MPLS Time-to-Live">
<p>
Holds the 8-bit time-to-live field from the MPLS label:
</p>
<diagram>
<header name="NXM_NX_MPLS_TTL">
<bits name="TTL" above="8" width=".4"/>
</header>
</diagram>
</field>
</group>
<group title="Layer 3: IPv4 and IPv6">
<h2>IPv4 Specific Fields</h2>
<p>
These fields are applicable only to IPv4 flows, that is, flows that match
on the IPv4 Ethertype <code>0x0800</code>.
</p>
<field id="MFF_IPV4_SRC" title="IPv4 Source Address">
<p>
The source address from the IPv4 header:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" width="0.4"/>
<bits name="src" above="32" width="0.4" fill="yes"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<dots/>
</diagram>
<p>
For historical reasons, in an ARP or RARP flow, Open vSwitch interprets
matches on <code>nw_src</code> as actually referring to the ARP SPA.
</p>
</field>
<field id="MFF_IPV4_DST" title="IPv4 Destination Address">
<p>
The destination address from the IPv4 header:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" width="0.4"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
For historical reasons, in an ARP or RARP flow, Open vSwitch interprets
matches on <code>nw_dst</code> as actually referring to the ARP TPA.
</p>
</field>
<h2>IPv6 Specific Fields</h2>
<p>
These fields apply only to IPv6 flows, that is, flows that match
on the IPv6 Ethertype <code>0x86dd</code>.
</p>
<field id="MFF_IPV6_SRC" title="IPv6 Source Address">
<p>
The source address from the IPv6 header:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x86dd" width="0.4"/>
</header>
<header name="IPv6">
<bits name="..." width="0.4"/>
<bits name="next" above="8" width="0.3"/>
<bits name="src" above="128" width="0.8" fill="yes"/>
<bits name="dst" above="128" width="0.8"/>
</header>
<dots/>
</diagram>
<p>
Open vSwitch 1.8 added support for bitwise matching; earlier versions
supported only CIDR masks.
</p>
</field>
<field id="MFF_IPV6_DST" title="IPv6 Destination Address">
<p>
The destination address from the IPv6 header:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x86dd" width="0.4"/>
</header>
<header name="IPv6">
<bits name="..." width="0.4"/>
<bits name="next" above="8" width="0.3"/>
<bits name="src" above="128" width="0.8"/>
<bits name="dst" above="128" width="0.8" fill="yes"/>
</header>
<dots/>
</diagram>
<p>
Open vSwitch 1.8 added support for bitwise matching; earlier versions
supported only CIDR masks.
</p>
</field>
<field id="MFF_IPV6_LABEL" title="IPv6 Flow Label">
<p>
The least significant 20 bits hold the flow label field from
the IPv6 header. Other bits are zero:
</p>
<diagram>
<header name="OXM_OF_IPV6_FLABEL">
<bits name="zero" above="12" below="0" width=".6"/>
<bits name="label" above="20" width="1.0"/>
</header>
</diagram>
</field>
<h2>IPv4/IPv6 Fields</h2>
<p>
These fields exist with at least approximately the same meaning in both
IPv4 and IPv6, so they are treated as a single field for matching
purposes. Any flow that matches on the IPv4 Ethertype
<code>0x0800</code> or the IPv6 Ethertype <code>0x86dd</code> may match
on these fields.
</p>
<field id="MFF_IP_PROTO" title="IPv4/v6 Protocol">
<p>
Matches the IPv4 or IPv6 protocol type.
</p>
<p>
For historical reasons, in an ARP or RARP flow, Open vSwitch interprets
matches on <code>nw_proto</code> as actually referring to the ARP
opcode. The ARP opcode is a 16-bit field, so for matching purposes ARP
opcodes greater than 255 are treated as 0; this works adequately
because in practice ARP and RARP only use opcodes 1 through 4.
</p>
<p>
In the case of fragmented traffic, a difference exists in the way
the field acts for IPv4 and IPv6 later fragments. For IPv6 fragments
with nonzero offset, <code>nw_proto</code> is set to the IPv6 protocol
type for fragments (44).
Conversely, for IPv4 later fragments, the field is set based on the
protocol type present in the header.
</p>
</field>
<field id="MFF_IP_TTL" title="IPv4/v6 TTL/Hop Limit">
The main reason to match on the TTL or hop limit field is to detect
whether a <code>dec_ttl</code> action will fail due to a TTL exceeded
error. Another way that a controller can detect TTL exceeded is to
listen for <code>OFPR_INVALID_TTL</code> ``packet-in'' messages via
OpenFlow.
</field>
<field id="MFF_IP_FRAG" title="IPv4/v6 Fragment Bitmask">
<p>
Specifies what kinds of IP fragments or non-fragments to match. The
value for this field is most conveniently specified as one of the
following:
</p>
<dl>
<dt><code>no</code></dt>
<dd>
Match only non-fragmented packets.
</dd>
<dt><code>yes</code></dt>
<dd>
Matches all fragments.
</dd>
<dt><code>first</code></dt>
<dd>
Matches only fragments with offset 0.
</dd>
<dt><code>later</code></dt>
<dd>
Matches only fragments with nonzero offset.
</dd>
<dt><code>not_later</code></dt>
<dd>
Matches non-fragmented packets and fragments with zero offset.
</dd>
</dl>
<p>
The field is internally formatted as 2 bits: bit 0 is 1 for an IP
fragment with any offset (and otherwise 0), and bit 1 is 1 for an IP
fragment with nonzero offset (and otherwise 0), like so:
</p>
<diagram>
<header name="NXM_NX_IP_FRAG">
<bits name="zero" above="6" below="0" width=".9"/>
<bits name="later" above="1" width=".3"/>
<bits name="any" above="1" width=".3"/>
</header>
</diagram>
<p>
Even though 2 bits have 4 possible values, this field only uses 3 of
them:
</p>
<ul>
<li>
A packet that is not an IP fragment has value 0.
</li>
<li>
A packet that is an IP fragment with offset 0 (the first fragment)
has bit 0 set and thus value 1.
</li>
<li>
A packet that is an IP fragment with nonzero offset has bits 0 and 1
set and thus value 3.
</li>
</ul>
<p>
The switch may reject matches against values that can never appear.
</p>
<p>
It is important to understand how this field interacts with the
OpenFlow fragment handling mode:
</p>
<ul>
<li>
In <code>OFPC_FRAG_DROP</code> mode, the OpenFlow switch drops all IP
fragments before they reach the flow table, so every packet that is
available for matching will have value 0 in this field.
</li>
<li>
Open vSwitch does not implement <code>OFPC_FRAG_REASM</code> mode,
but if it did then IP fragments would be reassembled before they
reached the flow table and again every packet available for matching
would always have value 0.
</li>
<li>
In <code>OFPC_FRAG_NORMAL</code> mode, all three values are possible,
but OpenFlow 1.0 says that fragments' transport ports are always 0,
even for the first fragment, so this does not provide much extra
information.
</li>
<li>
In <code>OFPC_FRAG_NX_MATCH</code> mode, all three values are
possible. For fragments with offset 0, Open vSwitch makes L4 header
information available.
</li>
</ul>
<p>
Thus, this field is likely to be most useful for an Open vSwitch switch
configured in <code>OFPC_FRAG_NX_MATCH</code> mode. See the
description of the <code>set-frags</code> command in
<code>ovs-ofctl</code>(8), for more details.
</p>
</field>
<h3>IPv4/IPv6 TOS Fields</h3>
<p>
IPv4 and IPv6 contain a one-byte ``type of service'' or TOS field that
has the following format:
</p>
<diagram>
<header name="type of service">
<bits name="DSCP" above="6" width=".9"/>
<bits name="ECN" above="2" width=".3"/>
</header>
</diagram>
<field id="MFF_IP_DSCP" title="IPv4/v6 DSCP (Bits 2-7)">
<p>
This field is the TOS byte with the two ECN bits cleared to 0:
</p>
<diagram>
<header name="NXM_OF_IP_TOS">
<bits name="DSCP" above="6" width=".9"/>
<bits name="zero" above="2" below="0" width=".3"/>
</header>
</diagram>
</field>
<field id="MFF_IP_DSCP_SHIFTED" title="IPv4/v6 DSCP (Bits 0-5)">
<p>
This field is the TOS byte shifted right to put the DSCP bits in the
6 least-significant bits:
</p>
<diagram>
<header name="OXM_OF_IP_DSCP">
<bits name="zero" above="2" below="0" width=".3"/>
<bits name="DSCP" above="6" width=".9"/>
</header>
</diagram>
</field>
<field id="MFF_IP_ECN" title="IPv4/v6 ECN">
<p>
This field is the TOS byte with the DSCP bits cleared to 0:
</p>
<diagram>
<header name="OXM_OF_IP_ECN">
<bits name="zero" above="6" below="0" width=".9"/>
<bits name="ECN" above="2" width=".35"/>
</header>
</diagram>
</field>
</group>
<group title="Layer 3: ARP">
<p>
In theory, Address Resolution Protocol, or ARP, is a generic protocol
generic protocol that can be used to obtain the hardware address that
corresponds to any higher-level protocol address. In contemporary usage,
ARP is used only in Ethernet networks to obtain the Ethernet address for
a given IPv4 address. OpenFlow and Open vSwitch only support this usage
of ARP. For this use case, an ARP packet has the following format, with
the ARP fields exposed as Open vSwitch fields highlighted:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x806" width="0.4"/>
</header>
<header name="ARP">
<bits name="hrd" above="16" below="1" width=".3"/>
<bits name="pro" above="16" below="0x800" width=".3"/>
<bits name="hln" above="8" below="6" width=".2"/>
<bits name="pln" above="8" below="4" width=".2"/>
<bits name="op" above="16" width=".2" fill="yes"/>
<bits name="sha" above="48" width="0.5" fill="yes"/>
<bits name="spa" above="32" width="0.5" fill="yes"/>
<bits name="tha" above="48" width="0.5" fill="yes"/>
<bits name="tpa" above="32" width="0.5" fill="yes"/>
</header>
</diagram>
<p>
The ARP fields are also used for RARP, the Reverse Address Resolution
Protocol, which shares ARP's wire format.
</p>
<field id="MFF_ARP_OP" title="ARP Opcode">
Even though this is a 16-bit field, Open vSwitch does not support ARP
opcodes greater than 255; it treats them to zero. This works adequately
because in practice ARP and RARP only use opcodes 1 through 4.
</field>
<field id="MFF_ARP_SPA" title="ARP Source IPv4 Address"/>
<field id="MFF_ARP_TPA" title="ARP Target IPv4 Address"/>
<field id="MFF_ARP_SHA" title="ARP Source Ethernet Address"/>
<field id="MFF_ARP_THA" title="ARP Target Ethernet Address"/>
</group>
<group title="Layer 3: NSH">
<p>
Service functions are widely deployed and essential in many networks.
These service functions provide a range of features such as security,
WAN acceleration, and server load balancing. Service functions may
be instantiated at different points in the network infrastructure
such as the wide area network, data center, and so forth.
</p>
<p>
Prior to development of the SFC architecture [RFC 7665] and the
protocol specified in this document, current service function
deployment models have been relatively static and bound to topology
for insertion and policy selection. Furthermore, they do not adapt
well to elastic service environments enabled by virtualization.
</p>
<p>
New data center network and cloud architectures require more flexible
service function deployment models. Additionally, the transition to
virtual platforms demands an agile service insertion model that
supports dynamic and elastic service delivery. Specifically, the
following functions are necessary:
</p>
<ol>
<li>
The movement of service functions and application workloads in
the network.
</li>
<li>
The ability to easily bind service policy to granular information, such
as per-subscriber state.
</li>
<li>
The capability to steer traffic to the requisite service function(s).
</li>
</ol>
<p>
The Network Service Header (NSH) specification defines a new data
plane protocol, which is an encapsulation for service function
chains. The NSH is designed to encapsulate an original packet or
frame, and in turn be encapsulated by an outer transport
encapsulation (which is used to deliver the NSH to NSH-aware network
elements), as shown below:
</p>
<diagram>
<header>
<bits name="Transport Encapsulation" width="1.8"/>
</header>
<nospace/>
<header>
<bits name="Network Service Header (NSH)" width="2.0"/>
</header>
<nospace/>
<header>
<bits name="Original Packet/Frame" width="1.8"/>
</header>
</diagram>
<p>
The NSH is composed of the following elements:
</p>
<ol>
<li>Service Function Path identification.</li>
<li>Indication of location within a Service Function Path.</li>
<li>Optional, per packet metadata (fixed length or variable).</li>
</ol>
<p>
[RFC 7665] provides an overview of a service chaining architecture
that clearly defines the roles of the various elements and the scope
of a service function chaining encapsulation. Figure 3 of [RFC 7665]
depicts the SFC architectural components after classification. The
NSH is the SFC encapsulation referenced in [RFC 7665].
</p>
<field id="MFF_NSH_FLAGS"
title="flags field (2 bits)"/>
<field id="MFF_NSH_TTL"
title="TTL field (6 bits)"/>
<field id="MFF_NSH_MDTYPE"
title="mdtype field (8 bits)"/>
<field id="MFF_NSH_NP"
title="np (next protocol) field (8 bits)"/>
<field id="MFF_NSH_SPI"
title="spi (service path identifier) field (24 bits)"/>
<field id="MFF_NSH_SI"
title="si (service index) field (8 bits)"/>
<field id="MFF_NSH_C1"
title="c1 (Network Platform Context) field (32 bits)"/>
<field id="MFF_NSH_C2"
title="c2 (Network Shared Context) field (32 bits)"/>
<field id="MFF_NSH_C3"
title="c3 (Service Platform Context) field (32 bits)"/>
<field id="MFF_NSH_C4"
title="c4 (Service Shared Context) field (32 bits)"/>
</group>
<group title="Layer 4: TCP, UDP, and SCTP">
<p>
For matching purposes, no distinction is made whether these protocols are
encapsulated within IPv4 or IPv6.
</p>
<h2>TCP</h2>
<p>
The following diagram shows TCP within IPv4. Open vSwitch also supports
TCP in IPv6. Only TCP fields implemented as Open vSwitch fields are
shown:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="6" width="0.3"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="TCP">
<bits name="src" above="16" width=".2"/>
<bits name="dst" above="16" width=".2"/>
<bits name="..." width=".75"/>
<bits name="flags" above="12" width=".3"/>
<bits name="..." width=".6"/>
</header>
<dots/>
</diagram>
<field id="MFF_TCP_SRC" title="TCP Source Port">
Open vSwitch 1.6 added support for bitwise matching.
</field>
<field id="MFF_TCP_DST" title="TCP Destination Port">
Open vSwitch 1.6 added support for bitwise matching.
</field>
<field id="MFF_TCP_FLAGS" title="TCP Flags">
<p>
This field holds the TCP flags. TCP currently defines 9 flag bits. An
additional 3 bits are reserved. For more information, see [RFC 793],
[RFC 3168], and [RFC 3540].
</p>
<p>
Matches on this field are most conveniently written in terms of
symbolic names (given in the diagram below), each preceded by either
<code>+</code> for a flag that must be set, or <code>-</code> for a
flag that must be unset, without any other delimiters between the
flags. Flags not mentioned are wildcarded. For example,
<code>tcp,tcp_flags=+syn-ack</code> matches TCP SYNs that are not ACKs,
and <code>tcp,tcp_flags=+[200]</code> matches TCP packets with the
reserved [200] flag set. Matches can also be written as
<code><var>flags</var>/<var>mask</var></code>, where <var>flags</var>
and <var>mask</var> are 16-bit numbers in decimal or in hexadecimal
prefixed by <code>0x</code>.
</p>
<p>
The flag bits are:
</p>
<diagram>
<header>
<bits name="zero" above="4" below="0" width=".9"/>
</header>
<nospace/>
<header name="reserved">
<bits name="[800]" above="1" width=".35"/>
<bits name="[400]" above="1" width=".35"/>
<bits name="[200]" above="1" width=".35"/>
</header>
<nospace/>
<header name="later RFCs">
<bits name="NS" above="1" width=".35"/>
<bits name="CWR" above="1" width=".35"/>
<bits name="ECE" above="1" width=".35"/>
</header>
<nospace/>
<header name="RFC 793">
<bits name="URG" above="1" width=".35"/>
<bits name="ACK" above="1" width=".35"/>
<bits name="PSH" above="1" width=".35"/>
<bits name="RST" above="1" width=".35"/>
<bits name="SYN" above="1" width=".35"/>
<bits name="FIN" above="1" width=".35"/>
</header>
</diagram>
</field>
<h2>UDP</h2>
<p>
The following diagram shows UDP within IPv4. Open vSwitch also supports
UDP in IPv6. Only UDP fields that Open vSwitch exposes as fields are
shown:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="17" width="0.3"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="UDP">
<bits name="src" above="16" width=".2"/>
<bits name="dst" above="16" width=".2"/>
<bits name="..." width=".4"/>
</header>
<dots/>
</diagram>
<field id="MFF_UDP_SRC" title="UDP Source Port"/>
<field id="MFF_UDP_DST" title="UDP Destination Port"/>
<h2>SCTP</h2>
<p>
The following diagram shows SCTP within IPv4. Open vSwitch also supports
SCTP in IPv6. Only SCTP fields that Open vSwitch exposes as fields are
shown:
</p>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="132" width="0.3"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="SCTP">
<bits name="src" above="16" width=".2"/>
<bits name="dst" above="16" width=".2"/>
<bits name="..." width=".8"/>
</header>
<dots/>
</diagram>
<field id="MFF_SCTP_SRC" title="SCTP Source Port"/>
<field id="MFF_SCTP_DST" title="SCTP Destination Port"/>
</group>
<group title="Layer 4: ICMPv4 and ICMPv6">
<h2>ICMPv4</h2>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x800" width="0.4"/>
</header>
<header name="IPv4">
<bits name="..." width="0.4"/>
<bits name="proto" above="8" below="1" width="0.3"/>
<bits name="src" above="32" width="0.4"/>
<bits name="dst" above="32" width="0.4"/>
</header>
<header name="ICMPv4">
<bits name="type" above="8" width=".3"/>
<bits name="code" above="8" width=".3"/>
<bits name="..." width=".8"/>
</header>
<dots/>
</diagram>
<field id="MFF_ICMPV4_TYPE" title="ICMPv4 Type">
<p>
For historical reasons, in an ICMPv4 flow, Open vSwitch interprets
matches on <code>tp_src</code> as actually referring to the ICMP type.
</p>
</field>
<field id="MFF_ICMPV4_CODE" title="ICMPv4 Code">
<p>
For historical reasons, in an ICMPv4 flow, Open vSwitch interprets
matches on <code>tp_dst</code> as actually referring to the ICMP code.
</p>
</field>
<h2>ICMPv6</h2>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x86dd" width="0.4"/>
</header>
<header name="IPv6">
<bits name="..." width="0.2"/>
<bits name="next" above="8" below="58" width="0.3"/>
<bits name="src" above="128" width="0.4"/>
<bits name="dst" above="128" width="0.4"/>
</header>
<header name="ICMPv6">
<bits name="type" above="8" width=".3"/>
<bits name="code" above="8" width=".3"/>
<bits name="..." width=".8"/>
</header>
<dots/>
</diagram>
<field id="MFF_ICMPV6_TYPE" title="ICMPv6 Type"/>
<field id="MFF_ICMPV6_CODE" title="ICMPv6 Code"/>
<h2>ICMPv6 Neighbor Discovery</h2>
<diagram>
<header name="Ethernet">
<bits name="dst" above="48" width="0.4"/>
<bits name="src" above="48" width="0.4"/>
<bits name="type" above="16" below="0x86dd" width="0.4"/>
</header>
<header name="IPv6">
<bits name="..." width="0.2"/>
<bits name="next" above="8" below="58" width="0.3"/>
<bits name="src" above="128" width="0.4"/>
<bits name="dst" above="128" width="0.4"/>
</header>
<header name="ICMPv6">
<bits name="type" above="8" below="135/136" width=".3"/>
<bits name="code" above="8" below="0" width=".3"/>
<bits name="..." width=".8"/>
</header>
<header name="ICMPv6 ND">
<bits name="target" above="128" width=".4"/>
<bits name="option ..." width=".6"/>
</header>
</diagram>
<field id="MFF_ND_TARGET" title="ICMPv6 Neighbor Discovery Target IPv6"/>
<field id="MFF_ND_SLL"
title="ICMPv6 Neighbor Discovery Source Ethernet Address"/>
<field id="MFF_ND_TLL"
title="ICMPv6 Neighbor Discovery Target Ethernet Address"/>
<field id="MFF_ND_RESERVED"
title="ICMPv6 Neighbor Discovery Reserved Field"/>
<p>
This is used to set the R,S,O bits in Neighbor Advertisement Messages
</p>
<field id="MFF_ND_OPTIONS_TYPE"
title="ICMPv6 Neighbor Discovery Options Type Field"/>
<p>
A value of 1 indicates that the option is Source Link Layer.
A value of 2 indicates that the options is Target Link Layer.
See RFC 4861 for further details.
</p>
</group>
<h1>References</h1>
<dl>
<dt>Casado</dt>
<dd>
M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, ``Ethane: Taking Control of the Enterprise,''
Computer Communications Review, October 2007.
</dd>
<dt>ERSPAN</dt>
<dd>
M. Foschiano, K. Ghosh, M. Mehta, ``Cisco Systems' Encapsulated Remote
Switch Port Analyzer (ERSPAN),'' <url
href="https://tools.ietf.org/html/draft-foschiano-erspan-03"/>.
</dd>
<dt>EXT-56</dt>
<dd>
J. Tonsing, ``Permit one of a set of prerequisites to apply, e.g. don't
preclude non-Ethernet media,'' <url
href="https://rs.opennetworking.org/bugs/browse/EXT-56"/> (ONF
members only).
</dd>
<dt>EXT-112</dt>
<dd>
J. Tourrilhes, ``Support non-Ethernet packets throughout the
pipeline,'' <url
href="https://rs.opennetworking.org/bugs/browse/EXT-112"/> (ONF
members only).
</dd>
<dt>EXT-134</dt>
<dd>
J. Tourrilhes, ``Match first nibble of the MPLS payload,'' <url
href="https://rs.opennetworking.org/bugs/browse/EXT-134"/> (ONF
members only).
</dd>
<dt>Geneve</dt>
<dd>
J. Gross, I. Ganga, and T. Sridhar, editors, ``Geneve: Generic Network
Virtualization Encapsulation,'' <url
href="https://datatracker.ietf.org/doc/draft-ietf-nvo3-geneve/"/>.
</dd>
<dt>IEEE OUI</dt>
<dd>
IEEE Standards Association, ``MAC Address Block Large (MA-L),''
<url
href="https://standards.ieee.org/develop/regauth/oui/index.html"/>.
</dd>
<dt>NSH</dt>
<dd>
P. Quinn and U. Elzur, editors, ``Network Service Header,'' <url
href="https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/"/>.
</dd>
<dt>OpenFlow 1.0.1</dt>
<dd>
Open Networking Foundation, ``OpenFlow Switch Errata, Version
1.0.1,'' June 2012.
</dd>
<dt>OpenFlow 1.1</dt>
<dd>
OpenFlow Consortium, ``OpenFlow Switch Specification Version
1.1.0 Implemented (Wire Protocol 0x02),'' February 2011.
</dd>
<dt>OpenFlow 1.5</dt>
<dd>
Open Networking Foundation, ``OpenFlow Switch Specification Version
1.5.0 (Protocol version 0x06),'' December 2014.
</dd>
<dt>OpenFlow Extensions 1.3.x Package 2</dt>
<dd>
Open Networking Foundation, ``OpenFlow Extensions 1.3.x Package 2,''
December 2013.
</dd>
<dt>TCP Flags Match Field Extension</dt>
<dd>
Open Networking Foundation, ``TCP flags match field Extension,'' December
2014. In [OpenFlow Extensions 1.3.x Package 2].
</dd>
<dt>Pepelnjak</dt>
<dd>
I. Pepelnjak, ``OpenFlow and Fermi Estimates,'' <url
href="http://blog.ipspace.net/2013/09/openflow-and-fermi-estimates.html"/>.
</dd>
<dt>RFC 793</dt>
<dd>
``Transmission Control Protocol,'' <url
href="http://www.ietf.org/rfc/rfc793.txt"/>.
</dd>
<dt>RFC 3032</dt>
<dd>
E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci,
T. Li, and A. Conta, ``MPLS Label Stack Encoding,'' <url
href="http://www.ietf.org/rfc/rfc3032.txt"/>.
</dd>
<dt>RFC 3168</dt>
<dd>
K. Ramakrishnan, S. Floyd, and D. Black, ``The Addition of Explicit
Congestion Notification (ECN) to IP,'' <url href="https://tools.ietf.org/html/rfc3168"/>.
</dd>
<dt>RFC 3540</dt>
<dd>
N. Spring, D. Wetherall, and D. Ely, ``Robust Explicit Congestion
Notification (ECN) Signaling with Nonces,'' <url
href="https://tools.ietf.org/html/rfc3540"/>.
</dd>
<dt>RFC 4632</dt>
<dd>
V. Fuller and T. Li, ``Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan,'' <url
href="https://tools.ietf.org/html/rfc4632"/>.
</dd>
<dt>RFC 5462</dt>
<dd>
L. Andersson and R. Asati, ``Multiprotocol Label Switching
(MPLS) Label Stack Entry: ``EXP'' Field Renamed to ``Traffic
Class'' Field,'' <url
href="http://www.ietf.org/rfc/rfc5462.txt"/>.
</dd>
<dt>RFC 7348</dt>
<dd>
M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar,
M. Bursell, and C. Wright, ``Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over
Layer 3 Networks, '' <url href="https://tools.ietf.org/html/rfc7348"/>.
</dd>
<dt>RFC 7665</dt>
<dd>
J. Halpern, Ed. and C. Pignataro, Ed.,
``Service Function Chaining (SFC) Architecture,''
<url href="https://tools.ietf.org/html/rfc7665"/>.
</dd>
<dt>Srinivasan</dt>
<dd>
V. Srinivasan, S. Suriy, and G. Varghese, ``Packet
Classification using Tuple Space Search,'' SIGCOMM 1999.
</dd>
<dt>Pagiamtzis</dt>
<dd>
K. Pagiamtzis and A. Sheikholeslami, ``Content-addressable
memory (CAM) circuits and architectures: A tutorial and
survey,'' IEEE Journal of Solid-State Circuits, vol. 41, no. 3,
pp. 712-727, March 2006.
</dd>
<dt>VXLAN Group Policy Option</dt>
<dd>
M. Smith and L. Kreeger, `` VXLAN Group Policy Option.'' Internet-Draft.
<url href="https://tools.ietf.org/html/draft-smith-vxlan-group-policy"/>.
</dd>
</dl>
<h1>Authors</h1>
<p>
Ben Pfaff, with advice from Justin Pettit and Jean Tourrilhes.
</p>
</fields>
<!--
OXM fields not yet supported Future Directions References/See Also
OXM fields required by various versions and by the "Conformance Test Specification for OpenFlow Switch Specification 1.0.1"
-->
|