1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#include <ctime>
#include <chrono>
#include <map>
#include <opm/input/eclipse/Parser/Parser.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Deck/DeckKeyword.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <fmt/format.h>
#include <pybind11/stl.h>
#include <pybind11/chrono.h>
#include "export.hpp"
namespace {
using system_clock = std::chrono::system_clock;
/*
timezones - the stuff that make you wonder why didn't do social science in
university. The situation here is as follows:
1. In the C++ code Eclipse style string literals like "20. NOV 2017" are
converted to time_t values using the utc based function timegm() which
does not take timezones into account.
2. Here we use the function gmtime( ) to convert back from a time_t value
to a broken down struct tm representation.
3. The broken down representation is then converted to a time_t value
using the timezone aware function mktime().
4. The time_t value is converted to a std::chrono::system_clock value.
Finally std::chrono::system_clock value is automatically converted to a
python datetime object as part of the pybind11 process. This latter
conversion *is* timezone aware, that is the reason we must go through
these hoops.
*/
system_clock::time_point datetime( std::time_t utc_time) {
struct tm utc_tm;
time_t local_time;
gmtime_r(&utc_time, &utc_tm);
local_time = mktime(&utc_tm);
return system_clock::from_time_t(local_time);
}
const Well& get_well( const Schedule& sch, const std::string& name, const size_t& timestep ) try {
return sch.getWell( name, timestep );
} catch( const std::invalid_argument& e ) {
throw py::key_error( name );
}
std::map<std::string, double> get_production_properties(
const Schedule& sch, const std::string& well_name, const size_t& report_step)
{
const Well* well = nullptr;
try{
well = &(sch.getWell( well_name, report_step ));
} catch( const std::out_of_range& e ) {
throw py::index_error( fmt::format("well {} is not defined", well_name ));
}
if (well->isProducer()) {
auto& prod_prop = well->getProductionProperties();
return {
{ "oil_rate", prod_prop.OilRate.get<double>() },
{ "gas_rate", prod_prop.GasRate.get<double>() },
{ "water_rate", prod_prop.WaterRate.get<double>() },
{ "liquid_rate", prod_prop.LiquidRate.get<double>() },
{ "resv_rate", prod_prop.ResVRate.get<double>() },
{ "bhp_target", prod_prop.BHPTarget.get<double>() },
{ "thp_target", prod_prop.THPTarget.get<double>() },
{ "alq_value", prod_prop.ALQValue.get<double>() },
};
}
else {
throw py::key_error( fmt::format("well {} is not a producer", well_name) );
}
}
std::map<std::string, double> get_injection_properties(
const Schedule& sch, const std::string& well_name, const size_t& report_step)
{
const Well* well = nullptr;
try{
well = &(sch.getWell( well_name, report_step ));
} catch( const std::out_of_range& e ) {
throw py::index_error( fmt::format("well {}: invalid well name", well_name ));
}
if (well->isInjector()) {
auto& inj_prop = well->getInjectionProperties();
return {
{ "surf_inj_rate", inj_prop.surfaceInjectionRate.get<double>() },
{ "resv_inj_rate", inj_prop.reservoirInjectionRate.get<double>() },
{ "bhp_target", inj_prop.BHPTarget.get<double>() },
{ "thp_target", inj_prop.THPTarget.get<double>() },
};
}
else {
throw py::key_error( fmt::format("well {} is not an injector", well_name) );
}
}
system_clock::time_point get_start_time( const Schedule& s ) {
return datetime(s.posixStartTime());
}
system_clock::time_point get_end_time( const Schedule& s ) {
return datetime(s.posixEndTime());
}
std::vector<system_clock::time_point> get_timesteps( const Schedule& s ) {
std::vector< system_clock::time_point > v;
for( size_t i = 0; i < s.size(); ++i )
v.push_back( datetime( std::chrono::system_clock::to_time_t(s[i].start_time() )));
return v;
}
std::vector<Group> get_groups( const Schedule& sch, size_t timestep ) {
std::vector< Group > groups;
for( const auto& group_name : sch.groupNames())
groups.push_back( sch.getGroup(group_name, timestep) );
return groups;
}
bool has_well( const Schedule& sch, const std::string& wellName) {
return sch.hasWell( wellName );
}
const Group& get_group(const ScheduleState& st, const std::string& group_name) {
return st.groups.get(group_name);
}
const ScheduleState& getitem(const Schedule& sch, std::size_t index) {
return sch[index];
}
void insert_keywords(
Schedule& sch,
const std::string& deck_string,
std::size_t index,
const UnitSystem& unit_system
)
{
Parser parser;
std::string str {unit_system.deck_name() + "\n\n" + deck_string};
auto deck = parser.parseString(str);
std::vector<DeckKeyword*> keywords;
for (auto &keyword : deck) {
keywords.push_back(&keyword);
}
sch.applyKeywords(keywords, index);
}
// NOTE: this overload does currently not work, see PR #2833. The plan
// is to fix this in a later commit. For now, the overload insert_keywords()
// above taking a deck_string (std::string) instead of a list of DeckKeywords
// has to be used instead.
void insert_keywords(
Schedule& sch, py::list& deck_keywords, std::size_t index)
{
Parser parser;
std::vector<DeckKeyword*> keywords;
for (py::handle item : deck_keywords) {
DeckKeyword &keyword = item.cast<DeckKeyword&>();
keywords.push_back(&keyword);
}
sch.applyKeywords(keywords, index);
}
}
void python::common::export_Schedule(py::module& module) {
py::class_<ScheduleState>(module, "ScheduleState")
.def_property_readonly("nupcol", py::overload_cast<>(&ScheduleState::nupcol, py::const_))
.def("group", &get_group, ref_internal);
// Note: In the below class we use std::shared_ptr as the holder type, see:
//
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html
//
// this makes it possible to share the returned object with e.g. and
// opm.simulators.BlackOilSimulator Python object
//
py::class_< Schedule, std::shared_ptr<Schedule> >( module, "Schedule")
.def(py::init<const Deck&, const EclipseState& >())
.def("_groups", &get_groups )
.def_property_readonly( "start", &get_start_time )
.def_property_readonly( "end", &get_end_time )
.def_property_readonly( "timesteps", &get_timesteps )
.def("__len__", &Schedule::size)
.def("__getitem__", &getitem)
.def( "shut_well", &Schedule::shut_well)
.def( "open_well", &Schedule::open_well)
.def( "stop_well", &Schedule::stop_well)
.def( "get_wells", &Schedule::getWells)
.def( "get_injection_properties", &get_injection_properties, py::arg("well_name"), py::arg("report_step"))
.def( "get_production_properties", &get_production_properties, py::arg("well_name"), py::arg("report_step"))
.def("well_names", py::overload_cast<const std::string&>(&Schedule::wellNames, py::const_))
.def( "get_well", &get_well)
.def( "insert_keywords",
py::overload_cast<Schedule&, py::list&, std::size_t>(&insert_keywords),
py::arg("keywords"), py::arg("step"))
.def( "insert_keywords",
py::overload_cast<
Schedule&, const std::string&, std::size_t, const UnitSystem&
>(&insert_keywords),
py::arg("data"), py::arg("step"), py::arg("unit_system"))
.def( "__contains__", &has_well );
}
|