File: schedule.cpp

package info (click to toggle)
opm-common 2022.10%2Bds-7
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 78,468 kB
  • sloc: cpp: 164,554; python: 2,872; sh: 216; xml: 174; ansic: 149; pascal: 136; makefile: 12
file content (227 lines) | stat: -rw-r--r-- 8,346 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include <ctime>
#include <chrono>
#include <map>

#include <opm/input/eclipse/Parser/Parser.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Deck/DeckKeyword.hpp>

#include <opm/input/eclipse/EclipseState/EclipseState.hpp>

#include <opm/input/eclipse/Schedule/Schedule.hpp>

#include <fmt/format.h>
#include <pybind11/stl.h>
#include <pybind11/chrono.h>
#include "export.hpp"


namespace {

    using system_clock = std::chrono::system_clock;


    /*
      timezones - the stuff that make you wonder why didn't do social science in
      university. The situation here is as follows:

      1. In the C++ code Eclipse style string literals like "20. NOV 2017" are
         converted to time_t values using the utc based function timegm() which
         does not take timezones into account.

      2. Here we use the function gmtime( ) to convert back from a time_t value
         to a broken down struct tm representation.

      3. The broken down representation is then converted to a time_t value
         using the timezone aware function mktime().

      4. The time_t value is converted to a std::chrono::system_clock value.

      Finally std::chrono::system_clock value is automatically converted to a
      python datetime object as part of the pybind11 process. This latter
      conversion *is* timezone aware, that is the reason we must go through
      these hoops.
    */
    system_clock::time_point datetime( std::time_t utc_time) {
        struct tm utc_tm;
        time_t local_time;

        gmtime_r(&utc_time, &utc_tm);
        local_time = mktime(&utc_tm);

        return system_clock::from_time_t(local_time);
    }

    const Well& get_well( const Schedule& sch, const std::string& name, const size_t& timestep ) try {
        return sch.getWell( name, timestep );
    } catch( const std::invalid_argument& e ) {
        throw py::key_error( name );
    }

    std::map<std::string, double> get_production_properties(
        const Schedule& sch, const std::string& well_name, const size_t& report_step)
    {
        const Well* well = nullptr;
        try{
            well = &(sch.getWell( well_name, report_step ));
        } catch( const std::out_of_range& e ) {
            throw py::index_error( fmt::format("well {} is not defined", well_name ));
        }
        if (well->isProducer()) {
            auto& prod_prop = well->getProductionProperties();
            return {
                { "oil_rate", prod_prop.OilRate.get<double>() },
                { "gas_rate", prod_prop.GasRate.get<double>() },
                { "water_rate", prod_prop.WaterRate.get<double>() },
                { "liquid_rate", prod_prop.LiquidRate.get<double>() },
                { "resv_rate", prod_prop.ResVRate.get<double>() },
                { "bhp_target", prod_prop.BHPTarget.get<double>() },
                { "thp_target", prod_prop.THPTarget.get<double>() },
                { "alq_value", prod_prop.ALQValue.get<double>() },
            };
        }
        else {
            throw py::key_error( fmt::format("well {} is not a producer", well_name) );
        }
    }

    std::map<std::string, double> get_injection_properties(
        const Schedule& sch, const std::string& well_name, const size_t& report_step)
    {
        const Well* well = nullptr;
        try{
            well = &(sch.getWell( well_name, report_step ));
        } catch( const std::out_of_range& e ) {
            throw py::index_error( fmt::format("well {}: invalid well name", well_name ));
        }

        if (well->isInjector()) {
            auto& inj_prop = well->getInjectionProperties();
            return {
                { "surf_inj_rate", inj_prop.surfaceInjectionRate.get<double>() },
                { "resv_inj_rate", inj_prop.reservoirInjectionRate.get<double>() },
                { "bhp_target", inj_prop.BHPTarget.get<double>() },
                { "thp_target", inj_prop.THPTarget.get<double>() },
            };
        }
        else {
            throw py::key_error( fmt::format("well {} is not an injector", well_name) );
        }
    }

    system_clock::time_point get_start_time( const Schedule& s ) {
        return datetime(s.posixStartTime());
    }

    system_clock::time_point get_end_time( const Schedule& s ) {
        return datetime(s.posixEndTime());
    }

    std::vector<system_clock::time_point> get_timesteps( const Schedule& s ) {
        std::vector< system_clock::time_point > v;

        for( size_t i = 0; i < s.size(); ++i )
            v.push_back( datetime( std::chrono::system_clock::to_time_t(s[i].start_time() )));

        return v;
    }

    std::vector<Group> get_groups( const Schedule& sch, size_t timestep ) {
        std::vector< Group > groups;
        for( const auto& group_name : sch.groupNames())
            groups.push_back( sch.getGroup(group_name, timestep) );

        return groups;
    }

    bool has_well( const Schedule& sch, const std::string& wellName) {
        return sch.hasWell( wellName );
    }

    const Group& get_group(const ScheduleState& st, const std::string& group_name) {
        return st.groups.get(group_name);
    }


    const ScheduleState& getitem(const Schedule& sch, std::size_t index) {
        return sch[index];
    }

    void insert_keywords(
        Schedule& sch,
        const std::string& deck_string,
        std::size_t index,
        const UnitSystem& unit_system
    )
    {
        Parser parser;
        std::string str {unit_system.deck_name() + "\n\n" + deck_string};
        auto deck = parser.parseString(str);
        std::vector<DeckKeyword*> keywords;
        for (auto &keyword : deck) {
            keywords.push_back(&keyword);
        }
        sch.applyKeywords(keywords, index);
    }

    // NOTE: this overload does currently not work, see PR #2833. The plan
    //  is to fix this in a later commit. For now, the overload insert_keywords()
    //  above taking a deck_string (std::string) instead of a list of DeckKeywords
    //  has to be used instead.
    void insert_keywords(
        Schedule& sch, py::list& deck_keywords, std::size_t index)
    {
        Parser parser;
        std::vector<DeckKeyword*> keywords;
        for (py::handle item : deck_keywords) {
            DeckKeyword &keyword = item.cast<DeckKeyword&>();
            keywords.push_back(&keyword);
        }
        sch.applyKeywords(keywords, index);
    }
}



void python::common::export_Schedule(py::module& module) {


    py::class_<ScheduleState>(module, "ScheduleState")
        .def_property_readonly("nupcol", py::overload_cast<>(&ScheduleState::nupcol, py::const_))
        .def("group", &get_group, ref_internal);


    // Note: In the below class we use std::shared_ptr as the holder type, see:
    //
    //  https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html
    //
    // this makes it possible to share the returned object with e.g. and
    //   opm.simulators.BlackOilSimulator Python object
    //
    py::class_< Schedule, std::shared_ptr<Schedule> >( module, "Schedule")
    .def(py::init<const Deck&, const EclipseState& >())
    .def("_groups", &get_groups )
    .def_property_readonly( "start",  &get_start_time )
    .def_property_readonly( "end",    &get_end_time )
    .def_property_readonly( "timesteps", &get_timesteps )
    .def("__len__", &Schedule::size)
    .def("__getitem__", &getitem)
    .def( "shut_well", &Schedule::shut_well)
    .def( "open_well", &Schedule::open_well)
    .def( "stop_well", &Schedule::stop_well)
    .def( "get_wells", &Schedule::getWells)
    .def( "get_injection_properties", &get_injection_properties, py::arg("well_name"), py::arg("report_step"))
    .def( "get_production_properties", &get_production_properties, py::arg("well_name"), py::arg("report_step"))
    .def("well_names", py::overload_cast<const std::string&>(&Schedule::wellNames, py::const_))
    .def( "get_well", &get_well)
    .def( "insert_keywords",
        py::overload_cast<Schedule&, py::list&, std::size_t>(&insert_keywords),
        py::arg("keywords"), py::arg("step"))
    .def( "insert_keywords",
        py::overload_cast<
               Schedule&, const std::string&, std::size_t, const UnitSystem&
           >(&insert_keywords),
        py::arg("data"), py::arg("step"), py::arg("unit_system"))
    .def( "__contains__", &has_well );

}