1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
|
/*
Copyright 2025 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/io/eclipse/ERst.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Parser/ErrorGuard.hpp>
#include <opm/input/eclipse/Parser/InputErrorAction.hpp>
#include <opm/input/eclipse/Parser/ParseContext.hpp>
#include <opm/input/eclipse/Parser/Parser.hpp>
#include <cstddef>
#include <getopt.h>
#include <iostream>
#include <memory>
#include <sstream>
class Node
{
public:
explicit Node(const std::string& name);
const std::string& name() const
{
return m_name;
}
void set_outlet(std::shared_ptr<Node> outlet)
{
m_outlet = outlet;
}
std::shared_ptr<Node> get_outlet()
{
return m_outlet;
}
void add_inlet_node(std::shared_ptr<Node> n);
void set_vfp(int vfp)
{
m_vfp = vfp;
}
int get_vfp()
{
return m_vfp;
}
void set_fixed_pres(double pres)
{
m_fixed_pres = pres;
}
double get_fixed_pres()
{
return m_fixed_pres;
}
int get_xpos()
{
return m_xpos;
}
void print(std::stringstream& netw_str);
bool delete_from_inlet_list(const std::string& name);
bool add_well(const std::string& name);
void reset_outlet()
{
m_outlet = nullptr;
}
private:
int m_vfp;
int m_xpos = -1;
double m_fixed_pres = -1.0;
std::string m_name;
std::shared_ptr<Node> m_outlet;
std::vector<std::shared_ptr<Node>> m_inlet_list;
std::vector<std::string> m_well_list;
std::shared_ptr<Node> next_branch();
};
Node::Node(const std::string& name)
: m_name(name)
{
m_vfp = -1;
}
std::shared_ptr<Node>
Node::next_branch()
{
std::shared_ptr<Node> p1 = m_outlet;
while (p1 != nullptr) {
if (std::any_of(p1->m_inlet_list.begin(), p1->m_inlet_list.end(),
[](const auto& inlet) { return inlet->m_xpos == -1 ;}))
{
return p1;
}
p1 = p1->m_outlet;
}
return p1;
}
bool
Node::delete_from_inlet_list(const std::string& name)
{
const auto it = std::find_if(m_inlet_list.begin(), m_inlet_list.end(),
[&name](const auto& inlet) { return inlet->name() == name; });
if (it == m_inlet_list.end()) {
return false;
} else {
m_inlet_list.erase(it);
return true;
}
}
bool
Node::add_well(const std::string& name)
{
if (!m_inlet_list.empty()) {
return false;
}
m_well_list.push_back(name);
return true;
}
void
Node::print(std::stringstream& netw_str)
{
netw_str.seekg(0, std::ios::end);
int init_length = netw_str.tellg();
int pos_lineshift = 0;
auto p = netw_str.str().find_last_of("\n");
if (p != std::string::npos) {
pos_lineshift = p + 1;
}
if (m_outlet == nullptr) {
netw_str << " o (" << m_name << ")";
m_xpos = netw_str.str().find_first_of("o", init_length) - pos_lineshift;
} else if (m_vfp == 9999) {
netw_str << " --- +(" << m_name << ")";
m_xpos = netw_str.str().find_first_of("+", init_length) - pos_lineshift;
} else {
netw_str << " --[" << m_vfp << "]-- +(" << m_name << ")";
m_xpos = netw_str.str().find_first_of("+", init_length) - pos_lineshift;
}
for (std::size_t m = 0; m < m_inlet_list.size(); m++) {
m_inlet_list[m]->print(netw_str);
}
if (m_inlet_list.size() == 0) {
auto next_br = next_branch();
netw_str << " : ";
for (const auto& well : m_well_list) {
netw_str << " " << well;
}
if (next_br != nullptr) {
std::string xpos_str(next_br->m_xpos, ' ');
netw_str << "\n" << xpos_str << "\\\n" << xpos_str;
}
}
}
void
Node::add_inlet_node(std::shared_ptr<Node> node)
{
std::vector<std::shared_ptr<Node>>::iterator exist;
exist = std::find_if(m_inlet_list.begin(), m_inlet_list.end(),
[&](const auto& val) { return val->name() == node->name(); });
if (exist != m_inlet_list.end()) {
m_inlet_list.erase(exist);
}
m_inlet_list.push_back(node);
}
class NetWork
{
public:
// upptree, downtree, vfp
using bran_input_type = std::tuple<std::string, std::string, int>;
// name and fixed pressure
using node_input_type = std::tuple<std::string, int>;
// well and group name
using well_input_type = std::tuple<std::string, std::string>;
explicit NetWork(const std::string& filename);
void print_report_steps();
int number_report_steps()
{
return m_report_time_list.size();
}
void build_network(int rstep);
void print_network(int rstep);
private:
time_t time_from_rec(const Opm::DeckRecord& rec);
time_t time_from_rst(const std::string& rstfile, int rstep);
bool node_exist(const std::string& name);
void add_node(const std::string& name);
void add_branch(const std::string& downtree, const std::string& uptree, int vfp);
void delete_branch(const std::string& downtree, const std::string& uptree);
void br_input_from_rst(const std::string& rstfile,
const std::vector<int>& rstep_vect);
void parse_data_deck(const std::filesystem::path& inputFileName);
void parse_unrst(const std::filesystem::path& inputFileName);
std::stringstream m_netw_str;
time_t m_start_date;
time_t m_rst_time;
bool m_from_unrst = false;
std::vector<time_t> m_report_time_list;
std::vector<std::vector<bran_input_type>> m_bran_input_list;
std::vector<std::vector<node_input_type>> m_node_input_list;
std::vector<std::vector<well_input_type>> m_well_input_list;
std::string time_str(time_t t1);
std::vector<std::shared_ptr<Node>> m_node_list;
std::vector<std::shared_ptr<Node>> m_top_node_list;
};
NetWork::NetWork(const std::string& filename)
{
std::filesystem::path inputFileName {filename};
if (inputFileName.extension() == ".DATA") {
parse_data_deck(inputFileName);
}
else if (inputFileName.extension() == ".UNRST") {
parse_unrst(inputFileName);
m_from_unrst = true;
}
else {
std::cout << "\n!Error, unsupported file type " << filename << "\n\n";
exit(1);
}
}
void
NetWork::parse_data_deck(const std::filesystem::path& inputFileName)
{
Opm::ParseContext parseContext;
parseContext.update(Opm::ParseContext::PARSE_UNKNOWN_KEYWORD, Opm::InputErrorAction::IGNORE);
parseContext.update(Opm::ParseContext::PARSE_RANDOM_TEXT, Opm::InputErrorAction::IGNORE);
parseContext.update(Opm::ParseContext::PARSE_EXTRA_RECORDS, Opm::InputErrorAction::IGNORE);
parseContext.update(Opm::ParseContext::PARSE_RANDOM_SLASH, Opm::InputErrorAction::IGNORE);
std::vector<Opm::Ecl::SectionType> sections = {Opm::Ecl::RUNSPEC, Opm::Ecl::SOLUTION, Opm::Ecl::SCHEDULE};
Opm::Parser parser;
Opm::Deck deck_schecule;
try {
deck_schecule = parser.parseFile(inputFileName, parseContext, sections);
}
catch (const std::exception& e) {
std::cout << "\n!Error parsing data deck " << inputFileName << "\n\n";
std::cout << e.what() << "\n\n";
exit(1);
}
bool restart = false;
bool skiprest = false;
time_t last_time;
auto network_keyw = deck_schecule["NETWORK"];
if (network_keyw.size() == 0) {
std::cout << "\n > !Error, data deck " << inputFileName << " doesn't include a production network \n\n";
exit(1);
}
for (const auto& keyw : deck_schecule) {
if (keyw.name() == "START") {
m_node_input_list.push_back({});
m_bran_input_list.push_back({});
m_well_input_list.push_back({});
m_start_date = time_from_rec(keyw[0]);
last_time = m_start_date;
}
else if (keyw.name() == "TSTEP") {
for (std::size_t n = 0; n < keyw[0].getItem(0).data_size(); n++) {
auto dt = keyw[0].getItem(0).get<double>(n);
last_time = last_time + static_cast<int>(dt * 24.0 * 3600.0);
if (!skiprest) {
m_report_time_list.push_back(last_time);
m_node_input_list.push_back({});
m_bran_input_list.push_back({});
m_well_input_list.push_back({});
}
if ((skiprest) && (last_time >= m_rst_time)) {
skiprest = false;
}
}
}
else if (keyw.name() == "DATES") {
for (const auto& rec : keyw) {
last_time = time_from_rec(rec);
if (m_report_time_list.size() == 0) {
if ((last_time <= m_start_date) && (!skiprest)) {
std::cout << "\n!Error, next report step '" << time_str(last_time)
<< "' has already passed \n\n";
exit(1);
}
}
else {
if ((last_time <= m_report_time_list.back()) && (!skiprest)) {
std::cout << "\n!Error, next report step '" << time_str(last_time)
<< "' has already passed \n\n";
exit(1);
}
}
if (!skiprest) {
m_report_time_list.push_back(last_time);
m_node_input_list.push_back({});
m_bran_input_list.push_back({});
m_well_input_list.push_back({});
}
if ((skiprest) && (last_time >= m_rst_time)) {
skiprest = false;
}
}
}
else if (keyw.name() == "RESTART") {
auto rst_file = keyw[0].getItem(0).get<std::string>(0) + ".UNRST";
auto rst_rstep = keyw[0].getItem(1).get<int>(0);
br_input_from_rst(rst_file, {rst_rstep});
restart = true;
}
else if (keyw.name() == "SKIPREST") {
if (restart) {
skiprest = true;
}
}
else if ((keyw.name() == "BRANPROP") && (!skiprest)) {
for (const auto& rec : keyw) {
auto downtree = rec.getItem(0).get<std::string>(0);
auto uptree = rec.getItem(1).get<std::string>(0);
auto vfp = rec.getItem(2).get<int>(0);
auto br = std::make_tuple(downtree, uptree, vfp);
m_bran_input_list.back().push_back(br);
}
}
else if ((keyw.name() == "NODEPROP") && (!skiprest)) {
for (const auto& rec : keyw) {
if (rec.getItem(1).hasValue(0)) {
auto node_name = rec.getItem(0).get<std::string>(0);
auto node_pres = rec.getItem(1).get<double>(0);
auto node = std::make_tuple(node_name, node_pres);
m_node_input_list.back().push_back(node);
}
}
}
else if ((keyw.name() == "WELSPECS") && (!skiprest)) {
for (const auto& rec : keyw) {
auto wname = rec.getItem(0).get<std::string>(0);
auto gname = rec.getItem(1).get<std::string>(0);
auto well = std::make_tuple(wname, gname);
m_well_input_list.back().push_back(well);
}
}
}
}
void
NetWork::parse_unrst(const std::filesystem::path& inputFileName)
{
Opm::EclIO::ERst rst1(inputFileName);
auto all_reports = rst1.listOfReportStepNumbers();
std::vector<int> rstep_vect;
std::copy_if(all_reports.begin(), all_reports.end(),
std::back_inserter(rstep_vect),
[](const auto r) { return r > 0; });
m_node_input_list.push_back({});
m_bran_input_list.push_back({});
m_well_input_list.push_back({});
br_input_from_rst(inputFileName, rstep_vect);
}
std::string
NetWork::time_str(time_t t1)
{
const std::vector<std::string> mndStr {
"JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"
};
const std::tm* date = std::localtime(&t1);
std::stringstream date_str;
// ignoring daylight saving time
int hr = date->tm_hour;
int day = date->tm_mday;
if (date->tm_isdst == 1) {
hr = hr - 1;
if (hr < 0) {
hr = hr + 24;
day = day - 1;
}
}
date_str << std::setw(2) << std::setfill('0') << day;
date_str << " '" << mndStr[date->tm_mon] << "' " << date->tm_year + 1900;
date_str << " " << std::setw(2) << std::setfill('0') << hr;
date_str << ":" << std::setw(2) << std::setfill('0') << date->tm_min;
date_str << ":" << std::setw(2) << std::setfill('0') << date->tm_sec;
return date_str.str();
}
bool
NetWork::node_exist(const std::string& name)
{
return std::any_of(m_node_list.begin(), m_node_list.end(),
[&name](const auto& node) { return node->name() == name; });
}
void
NetWork::add_node(const std::string& name)
{
if (!this->node_exist(name)) {
m_node_list.push_back(std::make_shared<Node>(name));
}
else {
std::cout << "in function add_node: Node " << name << " already exists \n\n";
exit(1);
}
}
void
NetWork::add_branch(const std::string& downtree, const std::string& uptree, int vfp)
{
if (vfp == 0) {
std::cout << "\n!Error, vfp = 0, use function remove_branch to remove a branch \n\n";
exit(1);
}
std::shared_ptr<Node> pUptree;
std::shared_ptr<Node> pDowntree;
// handle uptree node
for (std::size_t n = 0; n < m_node_list.size(); n++) {
if (m_node_list[n]->name() == uptree) {
pUptree = m_node_list[n];
}
}
if (pUptree == nullptr) {
add_node(uptree);
pUptree = m_node_list.back();
}
// handle down tree node
for (std::size_t n = 0; n < m_node_list.size(); n++) {
if (m_node_list[n]->name() == downtree) {
pDowntree = m_node_list[n];
}
}
if (pDowntree == nullptr) {
add_node(downtree);
pDowntree = m_node_list.back();
}
pDowntree->set_outlet(pUptree);
pDowntree->set_vfp(vfp);
pUptree->add_inlet_node(pDowntree);
}
void
NetWork::delete_branch(const std::string& downtree, const std::string& uptree)
{
auto up_it = std::find_if(m_node_list.begin(), m_node_list.end(),
[&uptree](const auto& node) { return node->name() == uptree;});
auto down_it = std::find_if(m_node_list.begin(), m_node_list.end(),
[&downtree](const auto& node) { return node->name() == downtree;});
if (up_it == m_node_list.end() || down_it == m_node_list.end()) {
std::cout << "\n!Error, pointer to downtree and/or uptree not found \n\n";
exit(1);
}
if ((*up_it)->delete_from_inlet_list(downtree) == false) {
std::cout << "\n!Error, problem with deleteing branch, needs to be checked \n\n";
exit(1);
}
(*down_it)->reset_outlet();
const auto top_it = std::find_if(m_top_node_list.begin(), m_top_node_list.end(),
[&downtree](const auto& node) { return node->name() == downtree; });
if (top_it == m_top_node_list.end()) {
m_top_node_list.push_back(*up_it);
}
}
void
NetWork::build_network(int rstep)
{
std::vector<int> input_step_vect;
// input from restart file -> each report step describes a complete state of network
// input from data deck -> network build from all steps up to report step (branprop increments)
if (m_from_unrst) {
input_step_vect.push_back(rstep - 1);
}
else {
for (int n = 0; n < rstep; n++) {
input_step_vect.push_back(n);
}
}
for (const auto n : input_step_vect) {
for (std::size_t b = 0; b < m_bran_input_list[n].size(); b++) {
auto downtree = std::get<0>(m_bran_input_list[n][b]);
auto uptree = std::get<1>(m_bran_input_list[n][b]);
auto vfp = std::get<2>(m_bran_input_list[n][b]);
if (vfp == 0) {
delete_branch(downtree, uptree);
}
else {
add_branch(downtree, uptree, vfp);
}
}
}
m_top_node_list.clear();
for (std::size_t n = 0; n < m_node_list.size(); n++) {
if (m_node_list[n]->get_outlet() == nullptr) {
m_top_node_list.push_back(m_node_list[n]);
}
}
std::map<std::string, std::string> well_map;
for (const auto n : input_step_vect) {
for (std::size_t b = 0; b < m_well_input_list[n].size(); b++) {
auto wname = std::get<0>(m_well_input_list[n][b]);
auto gname = std::get<1>(m_well_input_list[n][b]);
well_map[wname] = gname;
}
}
for (const auto& m : well_map) {
auto gname = m.second;
auto wname = m.first;
for (std::size_t n = 0; n < m_node_list.size(); n++) {
if (m_node_list[n]->name() == gname) {
m_node_list[n]->add_well(wname);
}
}
}
for (const auto n : input_step_vect) {
for (std::size_t b = 0; b < m_node_input_list[n].size(); b++) {
auto node = std::get<0>(m_node_input_list[n][b]);
auto pressure = std::get<1>(m_node_input_list[n][b]);
for (std::size_t m = 0; m < m_node_list.size(); m++) {
if (m_node_list[m]->name() == node) {
m_node_list[m]->set_fixed_pres(pressure);
}
}
}
}
}
void
NetWork::print_network(int rstep)
{
std::cout << "\n\n";
time_t t = m_report_time_list[rstep - 1];
std::cout << "Report step : " << time_str(t) << "\n\n";
for (std::size_t n = 0; n < m_top_node_list.size(); n++) {
m_top_node_list[n]->print(m_netw_str);
m_netw_str << "\n\n";
}
std::cout << "\n" << m_netw_str.str() << "";
std::cout << "\nFixed pressure nodes: \n\n";
for (std::size_t n = 0; n < m_node_list.size(); n++) {
auto fixed_pres = m_node_list[n]->get_fixed_pres();
if (fixed_pres > -1.0) {
std::cout << " " << m_node_list[n]->name() << " = ";
std::cout << std::fixed << std::setprecision(2) << fixed_pres;
}
}
std::cout << "\n\n\n";
}
void
NetWork::print_report_steps()
{
if (!m_from_unrst) {
std::cout << "\n\nStart date " << time_str(m_start_date) << "\n";
}
std::cout << "\nList of all report steps \n\n";
for (std::size_t n = 0; n < m_report_time_list.size(); n++) {
std::cout << "Report step " << n + 1 << " | " << time_str(m_report_time_list[n]) << "\n";
}
}
time_t
NetWork::time_from_rec(const Opm::DeckRecord& rec)
{
const std::map<std::string, int> mnd_map {
{"JAN", 0},
{"FEB", 1},
{"MAR", 2},
{"APR", 3},
{"MAY", 4},
{"JUN", 5},
{"JUL", 6},
{"JLY", 6},
{"AUG", 7},
{"SEP", 8},
{"OCT", 9},
{"NOV", 10},
{"DEC", 11}
};
auto day = rec.getItem(0).get<int>(0);
auto mndStr = rec.getItem(1).get<std::string>(0);
auto year = rec.getItem(2).get<int>(0);
auto time = rec.getItem(3).get<std::string>(0);
int sec_frac = 0;
auto p1 = time.find(".");
if (p1 != std::string::npos) {
auto sec_frac_str = time.substr(p1 + 1);
sec_frac = std::stoi(sec_frac_str);
time = time.substr(0, p1);
}
if (sec_frac > 0) {
std::cout << "\n!Error, fraction of section not supported \n";
exit(1);
}
p1 = time.find(":");
if (p1 == std::string::npos) {
std::cout << "\n!Error, invalied format for time " << time << "\n";
exit(1);
}
auto p2 = time.find(":", p1 + 1);
if (p2 == std::string::npos) {
std::cout << "\n!Error, Second invalied format for time " << time << "\n";
exit(1);
}
int h = std::stoi(time.substr(0, p1));
int min = std::stoi(time.substr(p1 + 1, p2 - p1 - 1));
int sec = std::stoi(time.substr(p2 + 1));
int mnd = mnd_map.at(mndStr);
// std::tm date1 = {sec, min, h, day, mnd, year - 1900 };
std::tm date1 = {};
date1.tm_sec = sec;
date1.tm_min = min;
date1.tm_hour = h;
date1.tm_mday = day;
date1.tm_mon = mnd;
date1.tm_year = year - 1900;
return std::mktime(&date1);
}
time_t
NetWork::time_from_rst(const std::string& rstfile, int rstep)
{
Opm::EclIO::ERst rst1(rstfile);
auto inteh = rst1.getRestartData<int>("INTEHEAD", rstep);
int year = inteh[66];
int mnd = inteh[65];
int day = inteh[64];
int h = inteh[206];
int min = inteh[207];
int sec = static_cast<int>(inteh[410] / 1000000);
std::tm date1 = {};
date1.tm_sec = sec;
date1.tm_min = min;
date1.tm_hour = h;
date1.tm_mday = day;
date1.tm_mon = mnd - 1;
date1.tm_year = year - 1900;
return std::mktime(&date1);
}
void
NetWork::br_input_from_rst(const std::string& rstfile,
const std::vector<int>& rstep_vect)
{
Opm::EclIO::ERst rst1(rstfile);
for (const int rstep : rstep_vect) {
m_rst_time = time_from_rst(rstfile, rstep);
m_report_time_list.push_back(m_rst_time);
auto intehead = rst1.getRestartData<int>("INTEHEAD", rstep);
if (rst1.hasArray("ZNODE", rstep)) {
std::vector<std::string> nodelist;
auto noactnod = intehead[129]; // Number of active/defined nodes in the network
auto nibran = intehead[133]; // number of entries per branch in the IBRAN array
auto noactbr = intehead[130]; // Number of active/defined branches in the network
auto nrnode = intehead[136]; // number of entries per node in the RNODE array
auto znode = rst1.getRestartData<std::string>("ZNODE", rstep);
auto ibran = rst1.getRestartData<int>("IBRAN", rstep);
auto rnode = rst1.getRestartData<double>("RNODE", rstep);
for (int n = 0; n < noactnod; n++) {
nodelist.push_back(znode[2 * n]);
}
for (int b = 0; b < noactbr; b++) {
int ind = b * nibran;
std::string downtree = nodelist[ibran[ind] - 1];
std::string uptree = nodelist[ibran[ind + 1] - 1];
int vfp = ibran[ind + 2];
auto br = std::make_tuple(downtree, uptree, vfp);
m_bran_input_list.back().push_back(br);
}
for (int n = 0; n < noactnod; n++) {
int ind = n * nrnode;
if (rnode[ind + 1] == 0.0) {
auto node = std::make_tuple(nodelist[n], rnode[ind + 2]);
m_node_input_list.back().push_back(node);
}
}
}
std::vector<std::string> grouplist;
auto nzwelz = intehead[27]; // Number of 8-character words per well in ZWEL array
auto nswells = intehead[16]; // Number of wells
auto nzgrpz = intehead[39]; // Number of data elements per group in ZGRP array
auto ngmaxz = intehead[20]; // Maximum number of groups in field
auto niwelz = intehead[24]; // Number of data elements per well in IWEL array
auto zwel = rst1.getRestartData<std::string>("ZWEL", rstep);
auto iwel = rst1.getRestartData<int>("IWEL", rstep);
auto zgrp = rst1.getRestartData<std::string>("ZGRP", rstep);
for (int g = 0; g < ngmaxz; g++) {
grouplist.push_back(zgrp[g * nzgrpz]);
}
for (int n = 0; n < nswells; n++) {
std::string wname = zwel[n * nzwelz];
int grp_ind = iwel[n * niwelz + 5] - 1;
std::string gname = grouplist[grp_ind];
auto well = std::make_tuple(wname, gname);
m_well_input_list.back().push_back(well);
}
m_node_input_list.push_back({});
m_bran_input_list.push_back({});
m_well_input_list.push_back({});
}
}
static void
printHelp()
{
std::cout << "\n This program visualizes a production network with terminal output."
<< " Input to this program should be a valid data deck (.DATA) \n or a unified"
<< " restart file (.UNRST).\n\n The program takes these options"
<< " (which must be given before the arguments):\n\n"
<< " -l lists all available report steps and exit.\n"
<< " -r selects report step to be visualized. Default is the last report step \n"
<< " -h Print help and exit.\n\n";
}
int
main(int argc, char** argv)
{
int c = 0;
bool list_report_steps = false;
int rstep = -1;
while ((c = getopt(argc, argv, "lr:h")) != -1) {
switch (c) {
case 'l':
list_report_steps = true;
break;
case 'h':
printHelp();
return 0;
case 'r':
rstep = atoi(optarg);
break;
default:
return EXIT_FAILURE;
}
}
int argOffset = optind;
NetWork netw(argv[argOffset]);
if (list_report_steps) {
netw.print_report_steps();
std::cout << "\n";
return 0;
}
if (rstep == -1) {
rstep = netw.number_report_steps();
}
else {
if ((rstep < 1) || (rstep > netw.number_report_steps())) {
std::cout << "\n!Error, invalid report step " << rstep;
std::cout << " should be > 0 and less than " << netw.number_report_steps() << "\n";
std::cout << " use option -l to list all report steps. " << "\n\n";
exit(1);
}
}
netw.build_network(rstep);
netw.print_network(rstep);
std::cout << "\n\n";
return EXIT_SUCCESS;
}
|