1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief This is the unit test for the co2 brine PVT model
*
*/
#include "config.h"
#include <opm/material/fluidsystems/blackoilpvt/Co2GasPvt.hpp>
#include <opm/material/fluidsystems/blackoilpvt/BrineCo2Pvt.hpp>
#include <opm/material/binarycoefficients/Brine_CO2.hpp>
#include <opm/material/components/SimpleHuDuanH2O.hpp>
#include <opm/material/components/CO2.hpp>
#include <opm/material/components/CO2Tables.hpp>
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <stdexcept>
#include <string>
#include <vector>
#include <utility>
namespace {
template <class Co2Pvt>
double densityGas(const Co2Pvt& co2Pvt, const double p, const double T, const double Rv)
{
return co2Pvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
T,
p,
Rv,
/*Rvw=*/0.0) * co2Pvt.gasReferenceDensity(0);
}
template <class BrinePvt>
double densityBrine(const BrinePvt& brinePvt, const double p, const double T, const double Rs)
{
double bo = brinePvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
T,
p,
Rs);
return bo * (brinePvt.oilReferenceDensity(0) + Rs * brinePvt.gasReferenceDensity(0));
}
std::pair<double, double> moleFractionMutualSolubility(const double p,
const double T,
const double s,
const int activityModel)
{
// Init. output
double yH2O;
double xCO2;
// Calc. mutual solubility
using H2O = Opm::SimpleHuDuanH2O<double>;
using CO2 = Opm::CO2<double>;
using BinaryCoeffBrineCO2 = Opm::BinaryCoeff::Brine_CO2<double, H2O, CO2>;
Opm::CO2Tables co2Tables;
BinaryCoeffBrineCO2::calculateMoleFractions(co2Tables, T, p, s, -1, xCO2, yH2O, activityModel, true);
return {xCO2, yH2O};
}
double moleFractionCO2inBrine(const double p,
const double T,
const double s,
const int activityModel)
{
// Calculate mutual solubilities
auto [xCO2, yH2O] = moleFractionMutualSolubility(p, T, s, activityModel);
return xCO2;
}
double moleFractionBrineInCO2(const double p,
const double T,
const double s,
const int activityModel)
{
// Calculate mutual solubilities
auto [xCO2, yH2O] = moleFractionMutualSolubility(p, T, s, activityModel);
return yH2O;
}
double molalityCO2inBrine(const double p,
const double T,
const double m_sal,
const int activityModel)
{
// Mole fraction CO2 in brine
const double MmNaCl = 58.44e-3; // molar mass of NaCl [kg/mol]
const double s = 1 / ( 1 + 1 / (m_sal*MmNaCl));
double xlCO2 = moleFractionCO2inBrine(p, T, s, activityModel);
// return molal co2
return xlCO2 * (2 * m_sal + 55.508) / (1 - xlCO2);
}
} // Anonymous namespace
int main(int argc, char **argv)
{
bool help = false;
for (int i = 1; i < argc; ++i) {
std::string tmp = argv[i];
help = help || (tmp == "--h") || (tmp == "--help");
}
if (argc < 5 || help) {
std::cout << "USAGE:" << std::endl;
std::cout << "co2brinepvt <prop> <phase> <p> <T> <salinity> <rs> <rv> <saltmodel> <thermalmixingmodelgas> <thermalmixingmodelliquid> <thermalmixingmodelsalt>"<< std::endl;
std::cout << "prop = {density, invB, B, viscosity, rsSat, internalEnergy, enthalpy, diffusionCoefficient}" << std::endl;
std::cout << "phase = {CO2, brine}" << std::endl;
std::cout << "p: pressure in bar" << std::endl;
std::cout << "T: temperature in celcius" << std::endl;
std::cout << "salinity(optional): salt molality in mol/kg" << std::endl;
std::cout << "rs(optional): amount of dissolved CO2 in Brine in SM3/SM3" << std::endl;
std::cout << "rv(optional): amount of vaporized water in Gas in SM3/SM3" << std::endl;
std::cout << "saltmodel(optional): 0 = no salt activity; 1 = Rumpf et al (1996) [default];"
" 2 = Duan-Sun in Spycher & Pruess (2009); 3 = Duan-Sun in Sycher & Pruess (2005)" << std::endl;
std::cout << "thermalmixingmodelgas(optional): 0 = pure component [default]; 1 = ideal mixing;" << std::endl;
std::cout << "thermalmixingmodelliquid(optional): 0 = pure component; 1 = ideal mixing; 2 = heat of dissolution according to duan sun [default]" << std::endl;
std::cout << "thermalmixingmodelsalt(optional): 0 = pure water; 1 = model in MICHAELIDES [default];" << std::endl;
std::cout << "OPTIONS:" << std::endl;
std::cout << "--h/--help Print help and exit." << std::endl;
std::cout << "DESCRIPTION:" << std::endl;
std::cout << "co2brinepvt computes PVT properties of a brine/co2 system " << std::endl;
std::cout << "for a given phase (oil or brine), pressure, temperature, salinity and rs." << std::endl;
std::cout << "The properties support are: density, the inverse phase formation volume factor (invB), viscosity, " << std::endl;
std::cout << "saturated dissolution factor (rsSat) " << std::endl;
std::cout << "See CO2STORE in the OPM manual for more details." << std::endl;
return EXIT_FAILURE;
}
std::string prop = argv[1];
std::string phase = argv[2];
double p = atof(argv[3]) * 1e5;
double T = atof(argv[4]) + 273.15;
double molality = 0.0;
double rs = 0.0;
double rv = 0.0;
int activityModel = 1;
int thermalmixgas = 0;
int thermalmixliquid = 2;
int thermalmixsalt = 1;
if (argc > 5)
molality = atof(argv[5]);
if (argc > 6)
rs = atof(argv[6]);
if (argc > 7)
rv = atof(argv[7]);
if (argc > 8)
activityModel = atoi(argv[8]);
if (argc > 9)
thermalmixgas = atoi(argv[9]);
if (argc > 10)
thermalmixliquid = atoi(argv[10]);
if (argc > 11)
thermalmixsalt = atoi(argv[11]);
const double MmNaCl = 58.44e-3; // molar mass of NaCl [kg/mol]
// convert to mass fraction
std::vector<double> salinity = {0.0};
if (molality > 0.0)
salinity[0] = 1 / ( 1 + 1 / (molality*MmNaCl));
Opm::BrineCo2Pvt<double> brineCo2Pvt(salinity, activityModel, thermalmixsalt, thermalmixliquid);
Opm::Co2GasPvt<double> co2Pvt(salinity, activityModel, thermalmixgas);
double value;
if (prop == "density") {
if (phase == "CO2") {
value = densityGas(co2Pvt, p, T, rv);
} else if (phase == "brine") {
value = densityBrine(brineCo2Pvt, p, T, rs);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "invB" || prop == "B") {
if (phase == "CO2") {
value = co2Pvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
T,
p,
rv,
/*Rvw=*/0.0);
} else if (phase == "brine") {
value = brineCo2Pvt.inverseFormationVolumeFactor(/*regionIdx=*/0,
T,
p,
rs);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
if (prop == "B")
value = 1 / value;
} else if (prop == "viscosity") {
if (phase == "CO2") {
value = co2Pvt.viscosity(/*regionIdx=*/0,
T,
p,
rv,
/*Rvw=*/0.0);
} else if (phase == "brine") {
value = brineCo2Pvt.viscosity(/*regionIdx=*/0,
T,
p,
rs);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "rsSat") {
if (phase == "CO2") {
value = co2Pvt.saturatedWaterVaporizationFactor(/*regionIdx=*/0,
T,
p);
} else if (phase == "brine") {
value = brineCo2Pvt.saturatedGasDissolutionFactor(/*regionIdx=*/0,
T,
p);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "diffusionCoefficient") {
size_t comp_idx = 0; // not used
if (phase == "CO2") {
value = co2Pvt.diffusionCoefficient(T,p, comp_idx);
} else if (phase == "brine") {
value = brineCo2Pvt.diffusionCoefficient(T,p, comp_idx);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "internalEnergy") {
if (phase == "CO2") {
value = co2Pvt.internalEnergy(/*regionIdx=*/0 ,T,p, rv, 0.0);
} else if (phase == "brine") {
value = brineCo2Pvt.internalEnergy(/*regionIdx=*/0 ,T,p, rs);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "enthalpy") {
if (phase == "CO2") {
value = p / densityGas(co2Pvt, p, T, rv) + co2Pvt.internalEnergy(/*regionIdx=*/0 ,T,p, rv, 0.0);
} else if (phase == "brine") {
value = p / densityBrine(brineCo2Pvt, p, T, rs) + brineCo2Pvt.internalEnergy(/*regionIdx=*/0 ,T,p, rs);
} else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "solubility_molal") {
if (phase == "CO2") {
// Solubility of CO2 is brine
value = molalityCO2inBrine(p, T, molality, activityModel);
}
else if (phase == "brine") {
throw std::runtime_error("solubility in molal for brine in CO2 gas not implemented yet!");
}
else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "solubility_molefraction") {
if (phase == "CO2") {
// Solubility of CO2 is brine
value = moleFractionCO2inBrine(p, T, salinity[0], activityModel);
}
else if (phase == "brine") {
// Solubility of brine in CO2
value = moleFractionBrineInCO2(p, T, salinity[0], activityModel);
}
else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
} else if (prop == "solubility_molepercent") {
if (phase == "CO2") {
// Solubility of CO2 is brine
value = moleFractionCO2inBrine(p, T, salinity[0], activityModel) * 100;
}
else if (phase == "brine") {
// Solubility of brine in CO2
value = moleFractionBrineInCO2(p, T, salinity[0], activityModel) * 100;
}
else {
throw std::runtime_error("phase " + phase + " not recognized. Use either CO2 or brine");
}
}
else {
throw std::runtime_error("prop " + prop + " not recognized. "
+ "Use either density, visosity, invB, B, internalEnergy, enthalpy or diffusionCoefficient");
}
std::cout << std::setprecision (15) << value << std::endl;
return 0;
}
|