1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \brief A small application to extract relative permeability and
* capillary pressures curves from a history of saturations
* If hysteresis is enabled the tool can be used to extract
* the scanning curves.
*
*/
#include "config.h"
#include <opm/material/fluidmatrixinteractions/EclEpsGridProperties.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/Grid/EclipseGrid.hpp>
#include <opm/input/eclipse/EclipseState/Grid/FieldPropsManager.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>
#include <opm/input/eclipse/Parser/Parser.hpp>
#include <array>
#include <cstdlib>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
namespace {
template<class Scalar>
struct Fixture {
enum { numPhases = 3 };
enum { waterPhaseIdx = 0 };
enum { oilPhaseIdx = 1 };
enum { gasPhaseIdx = 2 };
static constexpr bool enableHysteresis = true;
static constexpr bool enableEndpointScaling = true;
using MaterialTraits = Opm::ThreePhaseMaterialTraits<Scalar,
waterPhaseIdx,
oilPhaseIdx,
gasPhaseIdx,
enableHysteresis,
enableEndpointScaling>;
using FluidState = Opm::SimpleModularFluidState<Scalar,
/*numPhases=*/3,
/*numComponents=*/3,
void,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false>;
using MaterialLawManager = Opm::EclMaterialLaw::Manager<MaterialTraits>;
using MaterialLaw = typename MaterialLawManager::MaterialLaw;
};
// To support Local Grid Refinement for CpGrid, additional arguments have been added
// in some EclMaterialLawManager(InitParams) member functions. Therefore, we define
// some lambda expressions that does not affect this test file.
std::function<std::vector<int>(const Opm::FieldPropsManager&, const std::string&, bool)> doOldLookup =
[](const Opm::FieldPropsManager& fieldPropManager, const std::string& propString, bool needsTranslation)
{
std::vector<int> dest{};
const auto& intRawData = fieldPropManager.get_int(propString);
const unsigned int numElems = intRawData.size();
dest.resize(numElems);
for (unsigned elemIdx = 0; elemIdx < numElems; ++elemIdx) {
dest[elemIdx] = intRawData[elemIdx] - needsTranslation;
}
return dest;
};
std::function<unsigned(unsigned)> doNothing = [](unsigned elemIdx){ return elemIdx; };
template<class Scalar, class MaterialLawParam, class FluidState>
std::array<Scalar,Fixture<Scalar>::numPhases>
capillaryPressure(const MaterialLawParam& param, const FluidState& fs)
{
using MaterialLaw = typename Fixture<double>::MaterialLaw;
constexpr int numPhases = Fixture<Scalar>::numPhases;
std::array<Scalar,numPhases> pc;
MaterialLaw::capillaryPressures(pc,
param,
fs);
return pc;
}
template<class Scalar, class MaterialLawParam, class FluidState>
std::array<Scalar,Fixture<Scalar>::numPhases>
relativePermeabilities(const MaterialLawParam& param, const FluidState& fs)
{
using MaterialLaw = typename Fixture<double>::MaterialLaw;
constexpr int numPhases = Fixture<Scalar>::numPhases;
std::array<Scalar,numPhases> kr;
MaterialLaw::relativePermeabilities(kr,
param,
fs);
return kr;
}
std::vector<double> readCSVToVector(const std::string& fname)
{
// Open the File
std::ifstream file(fname);
std::vector<double> vector;
std::string value;
while (getline(file, value, '\n' )) {
vector.push_back(std::stod(value));
}
file.close();
return vector;
}
} // Anonymous namespace
int main(int argc, char **argv)
{
bool help = false;
for (int i = 1; i < argc; ++i) {
std::string tmp = argv[i];
help = help || (tmp == "--h") || (tmp == "--help");
}
if (argc < 5 || help) {
std::cout << "USAGE:" << std::endl;
std::cout << "hysteresis <fn_data> <fn_input> <fn_output> <wphase> <cellIdx>"<< std::endl;
std::cout << "fn_data: Data file name that contains SGOF, EHYSTR etc. " << std::endl;
std::cout << "fn_input: Data file name that contains saturations (s = water or gas depending on two-phase-system type). Single saturation per line " << std::endl;
std::cout << "fn_output: Data file name that contains [sw, krw, kro, Pcow, krnSwMdc(So at turning point), Sn(trapped s) ]. (for water-oil system)" << std::endl;
std::cout << "two-phase-system: = {WO, GO, GW}, WO=water-oil, GO=gas-oil, GW=gas-water" << std::endl;
std::cout << "cellIdx: cell index (default = 0), used to map SATNUM/IMBNUM" << std::endl;
return help ? EXIT_SUCCESS : EXIT_FAILURE;
}
std::string input = argv[1];
std::string input_csv = argv[2];
std::vector<double> saturations = readCSVToVector(input_csv);
std::string output_csv = argv[3];
std::string two_phase_system = argv[4];
double cellIdx = 0;
if (argc > 5)
cellIdx = std::stod(argv[5]);
using MaterialLawManager = typename Fixture<double>::MaterialLawManager;
using MaterialLaw = typename Fixture<double>::MaterialLaw;
Opm::Parser parser;
const auto deck = parser.parseFile(input);
const Opm::EclipseState eclState(deck);
MaterialLawManager materialLawManager;
materialLawManager.initFromState(eclState);
const auto& satnum = eclState.fieldProps().get_int("SATNUM");
size_t n = satnum.size();
materialLawManager.initParamsForElements(eclState, n, doOldLookup, doNothing);
auto& param = materialLawManager.materialLawParams(cellIdx);
const auto& ph = eclState.runspec().phases();
bool hasGas = ph.active(Opm::Phase::GAS);
bool hasOil = ph.active(Opm::Phase::OIL);
bool hasWater = ph.active(Opm::Phase::WATER);
int phaseIdx1 = -1; // saturations
int phaseIdx2 = -1; // 1 - saturations
int phaseIdx3 = -1; // 0
if (two_phase_system == "WO" && hasWater && hasOil) {
phaseIdx1 = Fixture<double>::waterPhaseIdx;
phaseIdx2 = Fixture<double>::oilPhaseIdx;
phaseIdx3 = Fixture<double>::gasPhaseIdx;
} else if (two_phase_system == "GO" && hasGas && hasOil) {
phaseIdx1 = Fixture<double>::gasPhaseIdx;
phaseIdx2 = Fixture<double>::oilPhaseIdx;
phaseIdx3 = Fixture<double>::waterPhaseIdx;
} else if (two_phase_system == "GW" && hasGas && hasWater) {
phaseIdx1 = Fixture<double>::gasPhaseIdx;
phaseIdx2 = Fixture<double>::waterPhaseIdx;
phaseIdx3 = Fixture<double>::oilPhaseIdx;
} else {
std::cout << "Invalid or inconsistent two-phase-system. " << std::endl;
std::cout << "Valid two-phase-system: = {WO, GO, GW}, WO=water-oil, GO=gas-oil, GW=gas-water" << std::endl;
std::cout << "Also make sure that the input deck is valid for the given two-phase-sytem." << std::endl;
return EXIT_FAILURE;
}
typename Fixture<double>::FluidState fs;
std::ofstream outfile;
outfile.open (output_csv);
for (const auto& s : saturations) {
outfile << s << ",";
fs.setSaturation(phaseIdx1, s);
fs.setSaturation(phaseIdx2, 1 - s);
fs.setSaturation(phaseIdx3, 0);
auto relperm = relativePermeabilities<double>(param, fs);
auto cap = capillaryPressure<double>(param, fs);
outfile << relperm[phaseIdx1] << "," << relperm[phaseIdx2]<< "," << cap[phaseIdx1] << ",";
MaterialLaw::updateHysteresis(param, fs);
double somax_out = 0.0;
if (two_phase_system == "WO") {
double swmax_out = 0.0;
double swmin_out = 0.0;
MaterialLaw::oilWaterHysteresisParams(somax_out,
swmax_out,
swmin_out,
param);
}
if (two_phase_system == "GO") {
double shmax_out = 0.0;
double sowmin_out = 0.0;
MaterialLaw::gasOilHysteresisParams(somax_out,
shmax_out,
sowmin_out,
param);
}
if (two_phase_system == "GW") {
// The GW hysteresis params is not possible to get directly from the 3p MaterialLaw
//MaterialLaw::gasWaterHysteresisParams(pcSwMdc_out,
// somax_out,
// param);
}
double trapped_out = MaterialLaw::trappedGasSaturation(param, /*maximumTrapping*/ false);
outfile << somax_out << "," << trapped_out << std::endl;
}
outfile.close();
return 0;
}
|