File: mirror_grid.cpp

package info (click to toggle)
opm-grid 2022.10%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,004 kB
  • sloc: cpp: 23,644; ansic: 3,114; sh: 67; makefile: 13
file content (412 lines) | stat: -rw-r--r-- 18,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
/*
  Copyright 2014 Statoil ASA.
  Copyright 2014 Andreas Lauser.

  This file is part of the Open Porous Media project (OPM).

  OPM is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  OPM is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with OPM.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "config.h"

#include <algorithm>
#include <iostream>
#include <fstream>

/**
 * @file mirror_grid.cpp
 * @brief Mirror grid taken from grdecl file
 *
 * The input grid is mirrored in either the x- or y-direction, resulting in a periodic grid.
 *
 */

#if HAVE_ECL_INPUT
#include <opm/grid/utility/OpmParserIncludes.hpp>
#include <opm/input/eclipse/Deck/Deck.hpp>

#include <opm/input/eclipse/Parser/Parser.hpp>

/// Print init message in new grid filename
void printInitMessage(std::ofstream& out, const char* origfilename, std::string direction) {
    std::ifstream infile;
    infile.open(origfilename, std::ios::in);
    if (!infile) {
        std::cerr << "Can't open input file " << origfilename << std::endl;
        exit(1);
    }
    // Print init message and copy comments from original grid file
    out << "-- This grdecl file is generated from OPM application 'mirror_grid.cpp'." << std::endl
        << "-- The grid '" << origfilename << "' is mirrored around itself in the " << direction << " direction." << std::endl
        << "-- Thus, the resulting grid should be periodic in the " << direction << "-direction." << std::endl
        << "-- Original comments taken from '" << origfilename << "':" << std::endl;
    std::string nextInLine;
    while (getline(infile, nextInLine)) {
        if (nextInLine.substr(0,2) == "--") {
            out << nextInLine << std::endl;
        }
        else {
            break;
        }
    }
    out << std::endl;
}

/// Write keyword values to file
template <class T>
void printKeywordValues(std::ofstream& out, std::string keyword, std::vector<T> values, int nCols) {
    out << keyword << std::endl;
    int col = 0;
    typename std::vector<T>::iterator iter;
    for (iter = values.begin(); iter != values.end(); ++iter) {
        out << *iter << " ";
        ++col;
        // Break line for every nCols entry.
        if (col == nCols) {
            out << std::endl;
            col = 0;
        }
    }
    if (col != 0)
        out << std::endl;
    out << "/" << std::endl << std::endl;
}

// forward declaration
std::vector<double> getMapaxesValues(const Opm::Deck& deck);

/// Mirror keyword MAPAXES in deck
void mirror_mapaxes( const Opm::Deck& deck, std::string direction, std::ofstream& out) {
    // Assumes axis aligned with x/y-direction
    std::cout << "Warning: Keyword MAPAXES not fully understood. Result should be verified manually." << std::endl;
    if (deck.hasKeyword("MAPAXES")) {
        std::vector<double> mapaxes = getMapaxesValues(deck);
        std::vector<double> mapaxes_mirrored = mapaxes;
        // Double the length of the coordinate axis
        if (direction == "x") {
            mapaxes_mirrored[4] = (mapaxes[4]-mapaxes[2])*2 + mapaxes[2];
        }
        else if (direction == "y") {
            mapaxes_mirrored[1] = (mapaxes[1]-mapaxes[3])*2 + mapaxes[3];
        }
        printKeywordValues(out, "MAPAXES", mapaxes_mirrored, 2);
    }
}

/// Mirror keyword SPECGRID in deck
void mirror_specgrid( const Opm::Deck& deck, std::string direction, std::ofstream& out) {
    // We only need to multiply the dimension by 2 in the correct direction.
    const auto& specgridRecord = deck["SPECGRID"].back().getRecord(0);
    std::vector<int> dimensions(3);
    dimensions[0] = specgridRecord.getItem("NX").get< int >(0);
    dimensions[1] = specgridRecord.getItem("NY").get< int >(0);
    dimensions[2] = specgridRecord.getItem("NZ").get< int >(0);
    if (direction == "x")      {dimensions[0] *= 2;}
    else if (direction == "y") {dimensions[1] *= 2;}
    else                       {std::cerr << "Direction should be either x or y" << std::endl; exit(1);}
    out << "SPECGRID" << std::endl << dimensions[0] << " " << dimensions[1] << " " << dimensions[2] << " "
        << specgridRecord.getItem("NUMRES").get< int >(0) << " "
        << specgridRecord.getItem("COORD_TYPE").get< std::string >(0) << " "
        << std::endl << "/" << std::endl << std::endl;
}

/// Mirror keyword COORD in deck
void mirror_coord(const Opm::Deck& deck, std::string direction, std::ofstream& out) {
    // We assume uniform spacing in x and y directions and parallel top and bottom faces
    const auto& specgridRecord = deck["SPECGRID"].back().getRecord(0);
    std::vector<int> dimensions(3);
    dimensions[0] = specgridRecord.getItem("NX").get< int >(0);
    dimensions[1] = specgridRecord.getItem("NY").get< int >(0);
    dimensions[2] = specgridRecord.getItem("NZ").get< int >(0);
    std::vector<double> coord = deck["COORD"].back().getRawDoubleData();
    const int entries_per_pillar = 6;
    std::vector<double> coord_mirrored;
    // Handle the two directions differently due to ordering of the pillars.
    if (direction == "x") {
        // Total entries in mirrored ZCORN. Number of pillars times 6
        const int entries = (2*dimensions[0] + 1) * (dimensions[1] + 1) * entries_per_pillar;
        // Entries per line in x-direction. Number of pillars in x-direction times 6
        const int entries_per_line = entries_per_pillar*(dimensions[0] + 1);
        coord_mirrored.assign(entries, 0.0);
        // Distance between pillars in x-directiion
        const double spacing = coord[entries_per_pillar]-coord[0];
        std::vector<double>::iterator it_new = coord_mirrored.begin();
        std::vector<double>::iterator it_orig;
        // Loop through each pillar line in the x-direction
        for (it_orig = coord.begin(); it_orig != coord.end(); it_orig += entries_per_line) {
            // Copy old pillars
            copy(it_orig, it_orig + entries_per_line, it_new);
            // Add new pillars in between
            it_new += entries_per_line;
            std::vector<double> next_vec(it_orig + entries_per_line - entries_per_pillar, it_orig + entries_per_line);
            for (int r=0; r < dimensions[0]; ++r) {
                next_vec[0] += spacing;
                next_vec[3] += spacing;
                copy(next_vec.begin(), next_vec.end(), it_new);
                it_new += entries_per_pillar;
            }
        }
    }
    else if (direction == "y") {
        // Total entries in mirrored ZCORN. Number of pillars times 6
        const int entries = (dimensions[0] + 1) * (2*dimensions[1] + 1) * entries_per_pillar;
        // Entries per line in y-direction. Number of pillars in y-direction times 6
        const int entries_per_line = entries_per_pillar*(dimensions[0] + 1);
        coord_mirrored.assign(entries, 0.0);
        // Distance between pillars in y-directiion
        const double spacing = coord[entries_per_line + 1]-coord[1];
        std::vector<double>::iterator it_new = coord_mirrored.begin();
        // Copy old pillars
        copy(coord.begin(), coord.end(), it_new);
        // Add new pillars at the end
        it_new += coord.size();
        std::vector<double> next_vec(coord.end() - entries_per_line, coord.end());
        for ( ; it_new != coord_mirrored.end(); it_new += entries_per_line) {
            for (int i = 1; i < entries_per_line; i += 3) {
                next_vec[i] += spacing;
            }
            copy(next_vec.begin(), next_vec.end(), it_new);
        }
    }
    else {
        std::cerr << "Direction should be either x or y" << std::endl;
        exit(1);
    }
    // Write new COORD values to output file
    printKeywordValues(out, "COORD", coord_mirrored, 6);
}

/// Mirror keyword ZCORN in deck
void mirror_zcorn(const Opm::Deck& deck, std::string direction, std::ofstream& out) {
    const auto& specgridRecord = deck["SPECGRID"].back().getRecord(0);
    std::vector<int> dimensions(3);
    dimensions[0] = specgridRecord.getItem("NX").get< int >(0);
    dimensions[1] = specgridRecord.getItem("NY").get< int >(0);
    dimensions[2] = specgridRecord.getItem("NZ").get< int >(0);
    std::vector<double> zcorn = deck["ZCORN"].back().getRawDoubleData();
    std::vector<double> zcorn_mirrored;
    // Handle the two directions differently due to ordering of the pillars.
    if (direction == "x") {
        // Total entries in mirrored ZCORN. Eight corners per cell.
        const int entries = dimensions[0]*2*dimensions[1]*dimensions[2]*8;
        zcorn_mirrored.assign(entries, 0.0);
        // Entries per line in x-direction. Two for each cell.
        const int entries_per_line = dimensions[0]*2;
        std::vector<double>::iterator it_new = zcorn_mirrored.begin();
        std::vector<double>::iterator it_orig = zcorn.begin();
        // Loop through each line and copy old corner-points and add new (which are the old reversed)
        for ( ; it_orig != zcorn.end(); it_orig += entries_per_line) {
            std::vector<double> next_vec(it_orig, it_orig + entries_per_line);
            std::vector<double> next_reversed = next_vec;
            reverse(next_reversed.begin(), next_reversed.end());
            // Copy old corner-points
            copy(it_orig, it_orig + entries_per_line, it_new);
            it_new += entries_per_line;
            // Add new corner-points
            copy(next_reversed.begin(), next_reversed.end(), it_new);
            it_new += entries_per_line;
        }
    }
    else if (direction == "y") {
        // Total entries in mirrored ZCORN. Eight corners per cell.
        const int entries = dimensions[0]*dimensions[1]*2*dimensions[2]*8;
        zcorn_mirrored.assign(entries, 0.0);
        // Entries per line in x-direction. Two for each cell.
        const int entries_per_line_x = dimensions[0]*2;
        // Entries per layer of corner-points. Four for each cell
        const int entries_per_layer = dimensions[0]*dimensions[1]*4;
        std::vector<double>::iterator it_new = zcorn_mirrored.begin();
        std::vector<double>::iterator it_orig = zcorn.begin();
        // Loop through each layer and copy old corner-points and add new (which are the old reordered)
        for ( ; it_orig != zcorn.end(); it_orig += entries_per_layer) {
            // Copy old corner-points
            copy(it_orig, it_orig + entries_per_layer, it_new);
            it_new += entries_per_layer;
            // Add new corner-points
            std::vector<double> next_vec(it_orig, it_orig + entries_per_layer);
            std::vector<double> next_reordered(entries_per_layer, 0.0);
            std::vector<double>::iterator it_next = next_vec.end();
            std::vector<double>::iterator it_reordered = next_reordered.begin();
            // Reorder next entries
            for ( ; it_reordered != next_reordered.end(); it_reordered += entries_per_line_x) {
                copy(it_next - entries_per_line_x, it_next, it_reordered);
                it_next -= entries_per_line_x;
            }
            copy(next_reordered.begin(), next_reordered.end(), it_new);
            it_new += entries_per_layer;
        }
    }
    else {
        std::cerr << "Direction should be either x or y" << std::endl;
        exit(1);
    }
    // Write new ZCORN values to output file
    printKeywordValues(out, "ZCORN", zcorn_mirrored, 8);
}

std::vector<int> getKeywordValues(std::string keyword, const Opm::Deck& deck, int /*dummy*/) {
    return deck[keyword].back().getIntData();
}

std::vector<double> getKeywordValues(std::string keyword, const Opm::Deck& deck, double /*dummy*/) {
    return deck[keyword].back().getRawDoubleData();
}

std::vector<double> getMapaxesValues(const Opm::Deck& deck)
{
    const auto& mapaxesRecord = deck["MAPAXES"].back().getRecord(0);
    std::vector<double> result;
    for (size_t itemIdx = 0; itemIdx < mapaxesRecord.size(); ++itemIdx) {
        const auto& curItem = mapaxesRecord.getItem(itemIdx);

        for (size_t dataItemIdx = 0; dataItemIdx < curItem.data_size(); ++dataItemIdx) {
            result.push_back(curItem.get< double >(dataItemIdx));
        }
    }
    return result;
}

/// Mirror keywords that have one value for each cell
template <class T>
void mirror_celldata(std::string keyword, const Opm::Deck& deck, std::string direction, std::ofstream& out) {
    if ( ! deck.hasKeyword(keyword)) {
        std::cout << "Ignoring keyword " << keyword << " as it was not found." << std::endl;
        return;
    }
    // Get data from eclipse deck
    const auto& specgridRecord = deck["SPECGRID"].back().getRecord(0);
    std::vector<int> dimensions(3);
    dimensions[0] = specgridRecord.getItem("NX").get< int >(0);
    dimensions[1] = specgridRecord.getItem("NY").get< int >(0);
    dimensions[2] = specgridRecord.getItem("NZ").get< int >(0);
    std::vector<T> values = getKeywordValues(keyword, deck, T(0.0));
    std::vector<T> values_mirrored(2*dimensions[0]*dimensions[1]*dimensions[2], 0.0);
    // Handle the two directions differently due to ordering of the pillars.
    if (direction == "x") {
        typename std::vector<T>::iterator it_orig = values.begin();
        typename std::vector<T>::iterator it_new = values_mirrored.begin();
        // Loop through each line and copy old cell data and add new (which are the old reversed)
        for ( ; it_orig != values.end(); it_orig += dimensions[0]) {
            // Copy old cell data
            copy(it_orig, it_orig + dimensions[0], it_new);
            it_new += dimensions[0];
            // Add new cell data
            std::vector<double> next_vec(it_orig, it_orig + dimensions[0]);
            std::vector<double> next_reversed = next_vec;
            reverse(next_reversed.begin(), next_reversed.end());
            copy(next_reversed.begin(), next_reversed.end(), it_new);
            it_new += dimensions[0];
        }
    }
    else if (direction =="y") {
        typename std::vector<T>::iterator it_orig = values.begin();
        typename std::vector<T>::iterator it_new = values_mirrored.begin();
        // Entries per layer
        const int entries_per_layer = dimensions[0]*dimensions[1];
        // Loop through each layer and copy old cell data and add new (which are the old reordered)
        for ( ; it_orig != values.end(); it_orig += entries_per_layer) {
            // Copy old cell data
            copy(it_orig, it_orig + entries_per_layer, it_new);
            it_new += entries_per_layer;
            // Add new cell data
            std::vector<T> next_vec(it_orig, it_orig + entries_per_layer);
            std::vector<T> next_reordered(entries_per_layer, 0.0);
            typename std::vector<T>::iterator it_next = next_vec.end();
            typename std::vector<T>::iterator it_reordered = next_reordered.begin();
            // Reorder next entries
            for ( ; it_reordered != next_reordered.end(); it_reordered += dimensions[0]) {
                copy(it_next - dimensions[0], it_next, it_reordered);
                it_next -= dimensions[0];
            }
            copy(next_reordered.begin(), next_reordered.end(), it_new);
            it_new += entries_per_layer;
        }
    }
    else {
        std::cerr << "Direction should be either x or y" << std::endl;
        exit(1);
    }
    // Write new keyword values to output file
    printKeywordValues(out, keyword, values_mirrored, 8);
}


int main(int argc, char** argv)
{
    // Set output precision
    int decimals = 16;

    // Process input parameters
    if (argc != 3) {
        std::cout << "Usage: mirror_grid filename.grdecl direction" << std::endl;
        std::cout << "(replace direction with either x or y)" << std::endl;
        exit(1);
    }
    const char* eclipsefilename = argv[1];
    std::string direction(argv[2]);
    if ( ! ((direction == "x") || (direction == "y")) ) {
        std::cerr << "Unrecognized input parameter for direction: '" << direction
                  << "'. Should be either x or y (maybe also z later)." << std::endl;
        exit(1);
    }

    // Parse grdecl file
    std::cout << "Parsing grid file '" << eclipsefilename << "' ..." << std::endl;
    Opm::Parser parser;
    Opm::ParseContext parseContext;
    const Opm::Deck deck(parser.parseFile(eclipsefilename , parseContext));
    if ( ! (deck.hasKeyword("SPECGRID") && deck.hasKeyword("COORD") && deck.hasKeyword("ZCORN")) ) {
        std::cerr << "Grid file " << eclipsefilename << "are missing keywords SPECGRID, COORD or ZCORN!" << std::endl;
        exit(1);
    }

    // Create new grid file
    std::string mirrored_eclipsefilename = std::string(eclipsefilename);
    std::string::size_type last_dot = mirrored_eclipsefilename.find_last_of('.');
    mirrored_eclipsefilename = mirrored_eclipsefilename.substr(0, last_dot) + "_mirrored-" + direction + ".grdecl";
    std::ofstream outfile;
    outfile.open(mirrored_eclipsefilename.c_str(), std::ios::out | std::ios::trunc);
    if (!outfile) {
        std::cerr << "Can't open output file " << mirrored_eclipsefilename << std::endl;
        exit(1);
    }
    outfile.precision(decimals);
    outfile.setf(std::ios::fixed);

    // Print init message
    printInitMessage(outfile, eclipsefilename, direction);

    // Mirror keywords
    mirror_mapaxes(deck, direction, outfile);
    mirror_specgrid(deck, direction, outfile);
    mirror_coord(deck, direction, outfile);
    mirror_zcorn(deck, direction, outfile);
    mirror_celldata<int>("ACTNUM", deck, direction, outfile);
    mirror_celldata<double>("PERMX", deck, direction, outfile);
    mirror_celldata<double>("PERMY", deck, direction, outfile);
    mirror_celldata<double>("PERMZ", deck, direction, outfile);
    mirror_celldata<double>("PORO", deck, direction, outfile);
    mirror_celldata<int>("SATNUM", deck, direction, outfile);
    mirror_celldata<double>("NTG", deck, direction, outfile);
    mirror_celldata<double>("SWCR", deck, direction, outfile);
    mirror_celldata<double>("SOWCR", deck, direction, outfile);
    return 0;
}
#else
int main () {
    std::cerr << "Program need activated ECL input. (Configure opm-common "
              << " with -DENABLE_ECL_INPUT=ON)"<<std::endl
    return 1;
}
#endif // #if HAVE_OPM_COMMON